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Background: Cardiovascular diseases are the leading causes of mortality worldwide.
One reason behind this lethality lies in the fact that often cardiovascular illnesses develop
into systemic failure due to the multiple connections to organismal metabolism. This in
turn is associated with co-morbidities and multimorbidity. The prevalence of coexisting
diseases and the relationship between the molecular origins adds to the complexity of
the management of cardiovascular diseases and thus requires a profound knowledge of
the genetic interaction of diseases.

Objective: In order to develop a deeper understanding of this phenomenon, we
examined the patterns of comorbidity as well as their genetic interaction of the diseases
(or the lack of evidence of it) in a large set of cases diagnosed with cardiovascular
conditions at the national reference hospital for cardiovascular diseases in Mexico.

Methods: We performed a cross-sectional study of the National Institute of Cardiology.
Socioeconomic information, principal diagnosis that led to the hospitalization and
other conditions identified by an ICD-10 code were obtained for 34,099 discharged
cases. With this information a cardiovascular comorbidity networks were built both for
the full database and for ten 10-years age brackets. The associated cardiovascular
comorbidities modules were found. Data mining was performed in the comprehensive
ClinVar database with the disease names (as extracted from ICD-10 codes) to establish
(when possible) connections between the genetic associations of the genetic interaction
of diseases. The rationale is that some comorbidities may have a stronger genetic origin,
whereas for others, the environment and other factors may be stronger.

Results: We found that comorbidity networks are highly centralized in prevalent
diseases, such as cardiac arrhythmias, heart failure, chronic kidney disease,
hypertension, and ischemic diseases. Said comorbidity networks are actually modular
on their connectivity. Modules recapitulate physiopathological commonalities, e.g.,
ischemic diseases clustering together. This is also the case of chronic systemic
diseases, of congenital malformations and others. The genetic and environmental
commonalities behind some of the relations in these modules were also found by
resorting to clinical genetics databases and functional pathway enrichment studies.
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Conclusions: This methodology, hence may allow the clinician to look up for
non-evident comorbidities whose knowledge will lead to improve therapeutically designs.
By continued and consistent analysis of these types of patterns, we envisaged that it may
be possible to acquire, strong clinical and basic insights that may further our advance
toward a better understanding of cardiovascular diseases as a whole. Hopefully these
may in turn lead to further development of better, integrated therapeutic strategies.

Keywords: comorbidity, cardiovascular disease, biomedical network science, differential diagnostics, genetic

conditions

1. INTRODUCTION

Cardiovascular diseases are the leading cause of humanmortality
worldwide (Mittal et al., 2019). Most of these deaths are related
to aging and often coexist with other diseases affecting the
individual’s function and survival. To account for this, the term
comorbidity was coined to represent the occurrence of other
medical conditions in addition to an index condition of interest
(Ng et al., 2012). Such comorbidity relationships occur whenever
two or more diseases are present in the same individual more
often than by chance alone (Faner et al., 2014). Recent times have
witnessed dramatic advances in medical research characterized
by moving forward from the single-disease focused model to a
systemic, patient-centered view, such approaches progressively
permeate into medical technology, and therapeutics resulting in
significant reduction in morbidity and mortality in some specific
cases. However, less attention has been paid to the design of
clinical guidelines that are still mostly devoted to treating single
maladies (Bell and Saraf, 2016).

A relevant issue is then how do comorbidities associate among
them (comorbidity clustering), because of the implications of
this phenomenon in terms of disease-disease and drug-drug
interactions. In fact, if the therapy recommended for one
disease is contraindicated in the presence of a concurrent
medical condition, the usefulness of clinical practice guidelines
becomes limited. In such a scenario, evidence-based treatment
guidelines, designed for single diseases, can lead to serious
therapeutic conflicts (Maggi et al., 2019). To circumvent such
limitations, a personalized approach to medicine may benefit
from the inclusion of ideas from a somewhat recent field
of research, generally known as systems biology or network
medicine—when applied to humans. This approach offers the
potential to decipher and understand the relationships between
comorbidities or multimorbidities at a much deeper level by
considering coordinated instances (systems) rather than single
conditions (Faner et al., 2014).

Within this theoretical framework, the concept of diseasome
was introduced to indicate that although often treated separately,
most human diseases are indeed interdependent. These ideas
lead to the construction of the so-called human disease network
(HDN), a graph in which two diseases are connected if they
have a common genetic, regulatory or metabolic origin and/or
common protein protein interactions. Analyzing HDN lead to
the identification of disease modules as well as systematic finding
of druggable pathways, and to a cartography of the molecular

relationships behindmultimorbidity (Faner et al., 2014; Sun et al.,
2014). In the following section, we will provide a description of
how we address these ideas in this work.

2. MATERIALS AND METHODS

Since the inception of HDNs, a number of different approaches
have been developed, there are, in general, three types of disease-
linking networks, based on three different formalisms: diseases
are linked based on shared genes; disease connections reflecting
shared metabolic pathways; and disease comorbidity networks,
where links between diseases are based on their significant
co-occurrence. In this work we will start by considering a
comorbidity network, and then we will analyze the genetic and
functional relationships within this network.

We will thus analyze an empirically based cardiovascular
comorbidity network, curated from clinical data at the
national reference hospital for CVDs in Mexico. From this
network, cardiovascular comorbidity modules were inferred,
hand-curated mapping of disorder gene associations and
cardiovascular comorbidities Jaccard coefficient analyzed,
followed by discussion of the results. We used as biological
data annotations from ClinVar. Figure 1 shows a schematic
representation of the methodology applied in this article.

2.1. Data Acquisition (Electronic Health
Records)
The National Institute of Cardiology “Ignacio Chávez” (NIC-
ICh) is the referral hospital for specialized cardiovascular care in
Mexico (Vargas-Alarcón et al., 2010). The NIC-ICh is a public
hospital for specialized cardiovascular care, since 1944 it was
the first of its kind in the world. It has been a hospital center
for the care of the patient with few resources who lacks social
security; a large research laboratory (of basic science and applied
clinical type); as well as a graduate school where specialists
in cardiology and related branches are trained. The NIC-
ICh is the flagship specialized institution for the treatment of
cardiovascular diseases in Mexico, it is also a third level hospital
receiving in-patients with related ailments, such as metabolic,
inflammatory, and systemic diseases, whose treatment may
involve immunology, rheumatology, nephrology, and similar
ailments in addition to pure cardiology-related treatments.

We used the Electronic Health Record (EHR) Database
entries between January 1, 2011 and December 31, 2016.
This database contains the socioeconomic information and
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FIGURE 1 | Schematic representation of the diverse layers of the
methodology applied in this article.

the principal diagnosis led to hospitalization, as well as other
diseases, disorders, conditions or health problems. International
Classification of Diseases, tenth revision (ICD-10) was used
to identify and classificate them, by an ICD-10 code. The
EHR management procedures of the Institution are set to
provide up to five main comorbidities. In order to minimize
biases we have considered as our population, the full set of
hospital discharged patients in the time period under study,
with the exception of those with incomplete or erroneous
coding. To be clear, all types of diagnostics present in the

EHRs are considered (see inclusion and exclusion criteria
below). The study population included 34,099 discharged cases.
The cardiovascular comorbidities assessed included any disease
registered in each case.

Inclusion and exclusion criteria were as follows:

• Inclusion criteria

1. Clinical records of any geographic region.
2. Clinical records of any socioeconomic level.
3. Clinical records of any sex.
4. Clinical records of any age.
5. Clinical records of any medical or hospital service.
6. Clinical records of any comorbidities.
7. Clinical records of any cause of death.

• Exclusion criteria

1. Clinical records with incomplete information.
2. Clinical records with non-existing codes.

2.2. Data Processing (Coding)
The EHR data was processed using custom code (in the R
programming language) for the design and analysis of a network
of comorbidities, which would then be used to infer communities
of comorbidities, which eventually lead to a connection between
genes and their metabolic pathways for each community group
studied. Programming code for this study is available in the
following public access repository: https://github.com/CSB-IG/
Comorbidity_Networks.

Information of comorbidities or coexisting illnesses was based
on diagnoses and proceduresmapped to ICD-10 codes, and genes
associated with each disease were searched and coded according
to the ClinVar database. ClinVar is a large public archive of
reports that collects information on genomic variants and their
relationships with human health (Landrum et al., 2017; Landrum
and Kattman, 2018).

ClinVar has become a valuable resource to support clinical
variant interpretation and provides a growing resource for
studying genotype and phenotype correlations. ClinVar contains
503,065 unique genetic variants from 1,229 submitters from
all around the world. ClinVar provides for each variant entry
more than 30 fields of data that come in multiple levels and are
connected to external resources, for example, the National Center
for Biotechnology Information (NCBI), the NCBI database of
genetic variation (dbSNP), PubMed Central or the Reference
Sequence Database (Pérez-Palma et al., 2019).

Some of the disease names or ICD-10 codes obtained from
the EHR database and those used in the ClinVar database by
geneticists are not identical. Therefore, we map manually, but
very carefully the ClinVar disease names into ICD-10 codes and
established connections between the genetic associations and
the comorbidity measures in order to obtain a dataset for the
experimental models. Those incorrectly registered disease names
or codes were discarded from the beginning of data curation.

It is worth noticing that the use of ICD-10 codes in research
presents a number of challenges and limitations, since the system
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was originally developed with hospital administration and cost-
estimation purposes, rather than as a controlled vocabulary for
standardized clinical reporting.

It is known that ICD codes were introduced as a support
for hospital administrative databases, which are often aimed
to obtain reimbursement. They were not explicitly planned for
clinical research. With this in mind, when these codes are
used for clinical purposes, it is necessary to carefully evaluate
them, since the actual subjects of interest may not be accurately
defined. This may be critical in the assessment of chronic
conditions. Moreover, ICD codes perform better with sets of
diseases enriched for frequent, well-known conditions. A broad
discussion on the scope and limitations of ICD-10 coding, as used
in this work, is presented as “Supplementary Document 1.”

Regarding the specific case of EHRs in the NIC-ICh, it is
worth noticing that its administrative database coding, archiving
and retrieval procedures have been certified and validated by the
World Health Organization by means of the local “Collaborating
Center for WHO International Classification Schemes—
Mexico Chapter” (CEMECE, for its Spanish acronym). These
procedures are in agreement with ISO 9001:2000, ISO/IEC 27001
certifications and with the Official Mexican Norm (NOM for its
Spanish acronym): NOM-004-SSA3-2012.

2.3. Cardiovascular Comorbidity Network
(CVCnetwork)
Once the mining of the medical cases was carried out, an
undirected network, was built based on the significant co-
occurrent diseases coded according to ICD-10. The node is
the unit of analysis of the main disease network represented
on a connectivity map. Since this work is founded in the
framework of the theory of complex networks, some of the
technical terms may not be familiar to readers in the clinical
research setting. An introductory briefing, to provide for the
necessary concepts and terminology has been included as
“Supplementary Document 2.”

The origin and destination nodes are diseases that are
identified with a default code of ICD-10. Subsequently, a link
was drawn between these nodes, as long as at least two diseases
occurred in the same person more often than by chance alone
[hypergeometric test, with a False Discovery Rate (FDR) multiple
testing correction FDR < 0.05].

In network theory, one of the parameters used to evaluate the
connections in the graph is the degree centrality (DC), the total
number of links on a node or the sum of the frequencies of the
interactions. The degree distribution of a disease is the number
of ICD-10 codes associated with that disease. The “Network
Analyzer” plugin (Doncheva et al., 2012) in the “Cytoscape” open
source network analysis suite was used to explore and visualize
the network (Kohl et al., 2011).

2.4. Cardiovascular Comorbidities
Modularity (CVCmodules)
Modularity or clustering is a property that allows further
analysis of local structural properties of a network that lead to
the appearance of subunits known as strongly interconnected

modules or communities (Alcalá-Corona et al., 2018b); that is,
it contains a greater number of links between nodes within
the community, than the number of links to nodes outside it
(Alcalá-Corona et al., 2018a).

Recently, networkmodularity studies have been used to unveil
clinically relevant comorbidity patterns (Barabási et al., 2011;
Divo et al., 2015; Choi et al., 2017; Guo et al., 2019). In a similar
way to cluster analysis is to assign diseases into modules or
communities, so that nodes in the same community are strongly
associated with one another than entities from different clusters.
The accurate use of community detection analysis of comorbidity
networks to identify comorbidity patterns depending upon how
the coincidental comorbidity is accounted for Ng et al. (2012).

A community grouping algorithm—based on random walks
and information theory focused on the interdependence of the
links—called Infomap (Rosvall and Bergstrom, 2008) was used
to infer the modules in the comorbidity network. For the
modular visualization of these subunits the online application
called MapEquation (Bohlin et al., 2014) was used. Modules
were labeled with the name of the node, of the ICD-10 code
for the disease, with the highest PageRank index (PRI) on it
(Brin and Page, 1998). This is a measure of centrality based on
various algorithms used to numerically assign the relevance of the
main diseases, in this way, communities constitute the units of
structured diseases of greater complexity than individual diseases
(Rosvall and Bergstrom, 2008).

2.5. Cardiovascular Comorbidities-Gene
Associations (CVCgenes)
From the obtained modules, the three largest were selected.
A semi-supervised curation of coincidences between associated
genes in the “ClinVar” database was performed for these modules
using a custom-made comparison program. ClinVar is a freely
accessible, public archive of reports of the relationships among
human genetic variations and phenotypes, with supporting
evidence from the published literature, clinical trials and other
accountable reports. With the information obtained, tables
were made with variables that contain, on the one hand, the
codes of the diseases compared and the other number of gene
matches found.

The Jaccard index was used to measure the degree of genetic
similarity between the two diseases. The Jaccard Index (JI) is a
reliable measure of similarity between two sets, being the ratio of
the size of the intersection of the sets to the size of their union,
for two sets A and B this is written as:

JIA,B =
n(A

⋂
B)

n(A
⋃

B)
(1)

This way, two completely different sets will have JIA,B = 0,
whereas two identical sets will have JIA,B = 1.

2.6. Cardiovascular Comorbidities Pathway
Enrichment (CVCpathways)
From a semi-causal or mechanistic point of view, comorbidities
may arise due to a common genetic background, due to
shared environmental and risk factors, or, more likely due to a
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combination of both with a broad range of proportions from
the former and the latter. In order to analyze the extent of the
genetic contribution in the chosen examples we have decided to
implement pathway enrichment analysis (García-Campos et al.,
2015) in the lists of shared genes for each comorbidity pair.

Pathway enrichment analysis for a given list of genes involves
the search for annotations of biological functions for all the
different genes in biological databases, such as KEGG and Gene
Ontology. A gene set is said to be significantly enriched for
a given function if there are more genes annotated as related
to that function than would be found by chance alone and
then performing a statistical significance test on the size of this
difference. In this case, hypergeometric tests with false discovery
rate (FDR) corrections for multiple testing were applied. An
FDR-corrected hypergeometric test was performed on each list
with a significance threshold corrected p-value <0.05, using the
“Webgestalt” online tool (Liao et al., 2019).

2.7. Age-Grouped Cardiovascular
Comorbidity Networks (ACVCnetworks)
Clinical comorbidities are differentially present among the
diverse age groups. For instance, congenital diseases are more
common in newborn, infants and children, whereas chronic
degenerative diseases often occur in later stages in life. In
order to capture to what extent comorbidities in cardiovascular
diseases vary along different age groups, we have stratified our
patient database in 10 non-overlapping age brackets (spaced
by 10-years differences) ranging from newborn to centennial
and we have built their age-tagged comorbidity networks,
following the same methodological principles just presented in
the previous subsection.

3. RESULTS

3.1. General Features
We used the EHR Database of the National Institute of
Cardiology “Ignacio Chávez” to deploy the study population.
Principal diagnosis led to the hospitalization by sex and by
age 34,099 discharged cases with cardiovascular diseases were
included. They were extracted from electronic medical records
(including the International Classification of Diseases code
version 10 [ICD-10]) at discharge.We defined comorbidity as the
concurrent presence of ≥2 chronic diseases. Comorbidities were
summed to provide a dataset of the number of comorbidities in
the entire cohort and stratified according to age and sex. Themost
prevalent comorbidities, in both male and female were related
to ischemic heart disease, congenital malformations of heart and
kidney diseases.

With regard to women, we can see that Congenital
malformations of the circulatory system (Q20–Q28), are the most
representative, with the highest incidence percentage (94.60%),
in the age range of 0–10 years and the incidence of the disease
decreases with increasing age. RegardingChronic rheumatic heart
diseases (I05–I09), these are manifested most frequently between
the 40 and 70 years old (y.o.). For Ischemic heart disease (I20–
I25), the highest incidence is seen beginning in the 50 y.o. and
increases in the following decades until the 80s. And Other forms

of heart disease (I30–I52), mostly diagnosed in women of age
91–100 y.o. (54.64%), is present throughout all the years.

On the other hand, the group of men is also affected by
Congenital malformations of the circulatory system (Q20–Q28),
in ages 0–10 y.o. (93.07%). Regarding Chronic rheumatic heart
diseases (I05–I09), these are manifested much less in men, on
the contrary, Ischemic heart diseases (I20–I25) are noticeably
manifested more frequently in men than in women from the age
of 40–80 y.o. In both groups there was no difference regarding
the Diseases of the genitourinary system, but Renal failure (N17–
N19) were the most incidents in almost all ages. These general
results will be further discussed when we present the age grouped
cardiovascular comorbidity networks (ACVCnetworks).

3.2. A Cardiovascular Comorbidity Network
(CVCnetwork)
We modeled the cardiovascular comorbidity data as a graph,
the cardiovascular comorbidity network (CVCnetwok): nodes
represent the codes of diseases (ICD-10), and undirected
edges between a pair of coexisting diseases (see Methods).
The CVCnetwork constitutes a single component connected, all
diseases are directly or indirectly connected. The number of
nodes is: 1,473, and the number of edges: 20,543.

Despite the large number of connections, this is a relatively
low density network (network density = 0.019). This means
that of all possible comorbidity relations between the 1,473
diseases, only about 2% of them are actually found in our
corpus. By further considering that some diseases (such as
arrhythmias, heart failure, and chronic kidney disease, as we will
see below) have hundreds of reported comorbidities, this means
that multimorbidity is quite heterogeneous, with a few highly
multimorbid conditions (such as the ones mentioned above) and
many others with few comorbidities.

Diseases with the highest number of connections are:
Other specified cardiac arrhythmias (I49.8) with 707 disease
neighbors; Heart failure, unspecified (I50.9) with 629;
Chronic kidney disease, unspecified (N18.9) with 626 disease
neighbors; then, Essential (primary) hypertension (I10.X)

with 564; Other specified congenital malformations of heart
(Q24.8) with 490, Other forms of chronic ischemic heart
disease (I25.8) with 443 connections or neighbors and so
on, as it can be appreciated in the center of the Figure 2

[see Supplementary Datasheet 1 (Network Interactions)

and Supplementary Figure 1 (Network Visualizations) for
more detail].

The structure of this comorbidity network is such that these
highly connected diseases are indeed forming multimorbidity
clusters centralizing a large fraction of the network comorbidity
connections (relatively high network centrality = 0.462). More
clear details on multimorbidity patterns may be discussed later,
in the context of age-grouped comorbidity networks.

Perhaps the most useful result for clinicians is presented in the
comorbidity networks presented in the form of Supplementary
Tables [see Supplementary Datasheet 1 (Network Interactions)].
A clinician may go to the table, search for their condition of
interest and look up what are the common (or even uncommon)
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FIGURE 2 | Main comorbidity network. Nodes correspond to the most
common connected comorbidities. Node size and color are proportional to the
connectivity degree. Small, reddish nodes on the periphery are, the less
connected diseases, whereas bigger green nodes at the core are highly
connected diseases.

comorbidities for this condition. Many of them will be quite
obvious to someone involved in clinical practice. Some others
may not and we envision this information may be useful for
differential diagnostics or to anticipate complications that
may indeed require specialized treatment, say in intensive
care units.

3.3. Cardiovascular Comorbidities Modules
(CVCmodules)
From the CVC network, a modular decomposition was
performed. Comorbidity modules approach is used
to study interrelationships between groups or classes
of diseases. We extracted these CVCmodules using a
community detection algorithm (based on random walks
and information theory) focused on the interdependence
of the links called Infomap (see Methods) that resorts the
use of the so-called MapEquation (Rosvall and Bergstrom,
2008; Bohlin et al., 2014). This model offers a module-
based description of the emergence gene of comorbidity
relations, many of them involve complex or polygenic disorders
(Goh et al., 2007).

With illustrative purposes, we show three groups of
comorbidities occurring together more often than would
have been expected by chance see Figure 3. Each group included
between two and eight different comorbidity sub-clusters. We
selected those three communities of comorbidities: Other forms
of chronic ischemic heart disease (I25.8); Chronic kidney disease,
unspecified (N18.9) and Other specified congenital malformations
of heart (Q24.8), as these modules represent three main areas of

interest in cardiovascular health: congenital conditions, purely
cardiovascular/circulatory diseases and systemic failures.

Community Other forms of chronic ischemic heart disease
(I25.8) was the largest, it is connected with 711 comorbidities,
of which only 307 (43% of comorbidities in this community)
were identified with associated genes. In module Chronic kidney
disease, unspecified (N18.9), 178 related comorbidities were
found, but only 66 (37%) of these had associated genes.
Regarding the third module selected, Other specified congenital
malformations of heart (Q24.8) was related to 155 diseases and
only 67 (43%) had genes associated with them.

3.4. Cardiovascular Comorbidity Modules:
Physiological, Functional, and Genetic
Associations (CVCgenes and
CVCpathways)
We prepared a curated mapping of ICD-10 codes based on the
genetic disorders reported in ClinVar to describe the relation
of metabolic pathways involved in each community diseases
selected. Regarding the analysis of the metabolic pathways
involved and shared between comorbidities, we analyzed
some of the most representative with respect to the Jaccard
index (see Methods).

From Other forms of chronic ischemic heart disease (I25.8)

we choose to analyze in more detail the following comorbidity
pairs Other and unspecified encephalopathy (G93.4) and Acute
respiratory distress syndrome (J80.X), Other and unspecified
encephalopathy (G93.4) and Acute respiratory failure (J96.0),
Other obesity (E66.8) and Other disorders of the lung (J98.4), and
Liver disease, unspecified (K76.9) and Acute respiratory failure
(J96.0) (see Figure 4 and Table 1).

Regarding the community of Chronic kidney disease,
unspecified (N18.9), the pathways of the three comorbidities
were compared as it can be seen in Figure 5 and Table 2.
Congenital hydronephrosis (Q62.0) and Cough (R05.X), Benign
neoplasm of kidney (D30.0) and Other hyperparathyroidism
(E21.1), and Myeloid leukemia, unspecified (C92.9) and Anemia
in neoplastic disease (D63.0).

For the following Other specified congenital malformations of
heart (Q24.8) community, three comparisons were made: the
first between Exotropia (H50.1) and Pectus excavatum (Q67.6),
Exotropia (H50.1) and Agenesis of lung Q33.3 and Unspecified
adverse effect of drug or medication (T88.7) and Intentional self-
inflicted injury by hanging, strangulation or suffocation, at an
unspecified location (X70.9), see Figure 6 and Table 3.

On the other hand, a large number of disease pairs that indeed
share genetic background, do not show significant comorbidity
within our cohort. We may hypothesize that pleiotropy could be
playing a role, an observation that has been already made in this
regard (Park et al., 2009).

3.5. Age-Grouped Cardiovascular
Comorbidity Networks (ACVCnetworks)
Since comorbidity andmultimorbidity patterns in cardiovascular
diseases are highly heterogeneous among different age-groups,
it is considered advantageous to analyze comorbidity networks
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FIGURE 3 | Communities correspond to the most common connected comorbidities.

FIGURE 4 | Pathways related to the main I25.8 (other forms of chronic ischemic heart disease) comorbidities.

according with said age-groups. In this section, we will present
the main results of the analysis of comorbidities as they are
present within age-groups spanning over decades, from 0 to 10
years old, 11 to 20, and so on up until 90–100 years of age. The
comorbidity network structures and the main players are indeed
quite different between age groups. The comorbidity paired tables
representing all the networks as well as network visualizations for
all of them are included in the Supplementary Figure 1.

To exemplify and discuss such differences, in Figure 7

we present a figure with four distinctive age groups: 0–
10 (Panel A), 31–40 (Panel B), 61–70 (panel C), and 91–
100 (Panel D) years old. As it can be observed in the
figure, the topological structure of all four networks is quite

different. The network in Panel A corresponding to infancy
and early childhood presents a star-like topology in which
most connections are dominated by a central node; in this
case Other specified congenital malformations of heart (Q24.8).
Q24.8 is followed, but not-so closely by Other specified cardiac
arrhythmias (I49.8) and most other nodes are in comparison
less-connected.

Let us recall that in Figure 7 the sizes and colors of the
nodes (diseases) correspond with their connectivity, hence big
red nodes are highly connected diseases implying a large number
of comorbidities in that age-group, whereas small, green nodes
correspond to less connected diseases (i.e., lower number of
comorbidities). This star-like topology is also represented in the
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TABLE 1 | Comorbidities analyzed in the Other forms of chronic ischemic heart disease (I25.8) module.

Module Comorbidity duplex Common genes Jaccard index Enriched pathways

Other forms of chronic

ischemic heart

Folate-mediated one-carbon metabolism

disease (I25.8)

Antifolate resistance

Cell adhesion

Other and unspecified Transendothelial leukocyte migration

encephalopathy (G93.4) Tight junction regulation

and Acute respiratory Response to hepatitis C

distress syndrome (J80.X) 437 0.827651515 Natural killer cell-mediated cytotoxicity

Response to measles

Alzheimer’s disease

Response to Influenza

Other and unspecified Folate-mediated one-carbon metabolism

encephalopathy (G93.4) Antifolate resistance

and Acute respiratory Cell adhesion

and failure (J96.0) 440 0.787119857 Transendothelial leukocyte migration

Tight junction regulation

Response to hepatitis C

Natural killer cell-mediated cytotoxicity

Response to measles

Alzheimer’s disease

Response to Influenza

Protein digestion and absorption

Other obesity (E66.8) Pentose phosphate pathway

and Other disorders Glycine, serine and threonine metabolism

of lung (J98.4) 1198 0.670772676 Amino acid biosynthesis

Carbon metabolism

Primary immunodeficiencies

Renin-angiotensinogen system

Neuroactive ligand-receptor interaction

mRNA surveillance pathway

RNA transport

Ribosome biogenesis in eukaryotes

Liver disease, unspecified Reserve of one-carbon by folate

(K76.9) and Acute Fanconi anemia

respiratory failure (J96.0) 457 0.640953717 Homologous recombination

Viral myocarditis

Cell adhesion molecules (CAM)

Tight junction

Transendothelial leukocyte migration

Cytotoxicity mediated by natural killer cells

Hepatitis C

Metabolic pathways

high value of network centralization = 0.771 for this age bracket
as it can be seen in Table 4.

In this regard, Figure 8 displays the top20 more connected
diseases (the ones with a larger number of comorbidities) for
each age group. The figure presents these also by visualizing
the degree of connectedness as proportional to size and color,
following the same scheme as in Figure 7, i.e., big red nodes are
highly connected diseases and small, green nodes correspond to
less connected diseases.

Moving on to Figure 7B, corresponding to the comorbidity
network for people 31–40 years old. We can notice an important
change in network topology with a larger number of highly
connected diseases making up for most of the connections
in a more distributed connectivity, with a network density
of 0.021 (similar to the network in panel A) and a network
centrality of 0.397 (much lower to the one in the network
in panel A) as it can be seen in the corresponding row
in Table 4.
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FIGURE 5 | Pathways related to the main N18.9 (chronic kidney disease, unspecified) comorbidities.

Aside from topology, important differences between the
comorbidity network for infants and children (Figure 7A) and
that of adults aged 31–40 (Figure 7B) lies in the ailments
involved. The network for children is mainly centered in
birth-related defects, such as congenital malformations and
arrhythmias, whereas main players in the adult network in
panel B correspond to sistemic diseases, such as Chronic kidney
disease, unspecified (N18.9), Heart failure, unspecified (I50.9)

and Essential (primary) hypertension (I10.X), see Figure 8. This
systemic character of cardiovascular diseases in the adulthood is
indeed captured by the topology of the associated comorbidity
network. Connections are more evenly distributed among a
larger number of central diseases, a sign of complex traits leading
to multimorbidity.

A similar comment can be made regarding (Figure 7C)
corresponding to network comorbidities in senior adults aged
61–70 years old. Indeed, it can be argued that network topology
points out to a higher presence of multimorbidity (higher
network density of 0.03 and middle-valued network centrality
of 0.445, as it can be seen in Table 4). After looking up to the
corresponding column in Figure 8 we can see that aside from
hypertension and chronic kidney diseases (I10.X and N18.9),
systemic diseases, such as Other forms of chronic ischemic heart
disease (I25.8) and of the coming back of Other specified cardiac
arrhythmias (I49.8) are connected in a denser complex pattern.

Figure 7D presents again signs of fewer diseases dominating
the connectivity distribution, in a much smaller network. Panel

D refers to the comorbidity network to individuals more
than 90 years old. There are two main cautionary points
to be taken into account in the analysis of this particular
network: the first is that it corresponds to a significantly
smaller set of patients as compared with the other groups [see
Supplementary Datasheet 2 (Network Statistics)]. This will of
course diminish the heterogeneity captured by the study
(although all comorbidities presented are statistically significant).
The second is related with the fact that individuals that actually
attain such advanced ages (up to 100 years in some cases) are
expected to be outliers to a certain degree, meaning that most of
them did not suffer greatly from sistemic, chronic degenerative
diseases or at least their physical constitution allowed them to
survive them.

The aforementioned facts did not preclude the comorbidity
network in Figure 7D to be free from complexities. It is
the densest of all networks with an impressive 8.9% of all
possible comorbidity relations present (see Table 4). This means
that although there are fewer diseases present, these tend to
accumulate so that any given individual presents a large number
of these. This of course may be a truism related with the presence
of the organic fragility characteristic of old age.

Regarding the particular composition of the top20 more
connected diseases in the 91–100 years old bracket, Figure 8
show them to be mostly related to ischemic and atherosclerotic
origins, as expected from accumulated degenerative processes
characteristic of the elderly.
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TABLE 2 | Comorbidities analyzed in the Chronic kidney disease, unspecified (N18.9) module.

Module Comorbidity duplex Common genes Jaccard index Enriched pathways

Chronic kidney disease

unspecified (N18.9)

Congenital hydronephrosis Cell adhesion molecules

(Q62.0) and Cough (R05.X) 437 0.640953717 Transendothelial leukocyte migration

Tight junction

Natural killer cell mediated cytotoxicity

Reserve of one-carbon by folate

Antifolate resistance

Benign neoplasm of Processing and antigen presentation

kidney (D30.0) and Other Graft-vs.-host disease

hyperparathyroidism (E21.2) 51 0.467889908 Natural killer cell-mediated cytotoxicity

Transcriptional dysregulation in cancer

Gastric cancer

FoxO signaling pathway

Autophagy

Taste transduction

Salivary secretion

Cushing’s syndrome

Myeloid leukemia, Thyroid cancer

unspecified (C92.9) and Pancreatic cancer

Anemia in neoplastic Bladder cancer

disease (D63.0) 10 0.185185185 Endometrial cancer

Breast cancer

Fanconi

ALS

Homologous recombination

Nucleotide excision repair

FIGURE 6 | Pathways related to the main Q24.8 (other specified congenital malformations of heart) comorbidities.

4. DISCUSSION

We will here discuss the main findings presented in the
results regarding the structure of the CVCnetwork, its main
structural features as well as what are the hub diseases and
core components. In particular, we will show that by analyzing
the modular decomposition of the network several highly

connected clusters of comorbidities will arise. From the set of
CVC modules, we choose three of the larger ones and analyze
a number of comorbidity pairs characterized by sharing a
common genetic background. In these duplexes, we studied
both pathway enrichment patterns for these common genes and
clinical evidence of the effects of their comorbidity on human
health. Afterwards a brief final considerations subsection has
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TABLE 3 | Comorbidities analyzed in the Other specified congenital malformations of heart (Q24.8) module.

Module Comorbidity duplex Common genes Jaccard index Enriched pathways

Other specified

congenital

Biosynthesis of phenylalanine tyrosine
Biosynthesis of tryptophan

malformations

Biosynthesis of glycosaminoglycan

of heart (Q24.8)

Exotropia (H50.1) and Mineral absorption

Pectus excavatum (Q67.6) 1,292 0.596766744 Nitrogen metabolism

Biosynthesis of aminoacids

Carbon metabolism

Nf-kappa b signaling pathway
necroptosis

RNAm surveillance

Exotropia (H50.1) and Nicotine addiction

Agenesis of lung (Q33.3) 644 0.37771261 Pentose-phosphate pathway

mRNA surveillance

Ribosome biogenesis in eukaryotes

Amino acid biosynthesis

Carbon metabolism

RNA transport

Nf-kappa b signaling

Neuroactive ligand-receptor
interaction

Necroptosis

Unspecified adverse effect Ascorbate and aldarate metabolism

of drug or medication (T88.7) Pentose and glucuronate
interconversions

and Intentional self-inflicted Steroid hormone biosynthesis

injury by hanging, strangulation Retinol metabolism

or suffocation, in an Porphyrin and chlorophyll metabolism

unspecified location (X70.9) 28 0.120689655 Drug metabolism

Chemical carcinogenesis

Metabolism of xenobiotics

by cytochrome P450

Arrhythmogenic right

Ventricular cardiomyopathy

been included to summarize some of the main findings and
provide some perspectives of future directions for this kind
of research.

4.1. Cardiovascular Comorbidity Network
(CVCnetwork)
As reported in the Results section, the CVCnetwork is constituted
as a single connected component, consistent with previous
observations on the complex, interrelated nature of human
diseases (Goh et al., 2007). It also comes as no surprise that the
most common cardiovascular-related conditions, are the ones
more densely connected in the comorbidity network. Chronic
kidney disease, unspecified (N18.9), Other specified congenital
malformations of heart (Q24.8), Other forms of chronic ischemic
heart disease (I25.8), Essential (primary) hypertension (I10.X)

and Heart failure, unspecified (I50.9) are all complex, system
level diseases affecting a lot of physiological and biomolecular
processes thus being involved in crosstalk with many diseases.

Hundreds of them indeed as it can be seen in Figure 2 and
Supplementary Datasheet 1 (Network Interactions).

Indeed, as evidenced by the high average clustering coefficient
of the CVCnetwork, and in particular of these “hubs,” such
diseases are (as is well-known) also mutually interrelated.
However, as we may show in the next subsection there is an
intricate but clear modular structure in the CVCnetwork, one
in which some of these diseases actually cluster of different
comorbidity modules, i.e., groups of diseases that not only co-
occur more often than by chance but indeed co-occur more
strongly than with other comorbidities within the CVCnetwork.

4.2. Cardiovascular Comorbidity Modules
(CVCmodules)
As it can be seen in the results section, in particular in
Figure 3, the CVCnetwork modular partition yields three
larger comorbidity modules, formed by between two and eight
different comorbidity sub-clusters. These sub-clusters often
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FIGURE 7 | Some examples of groups of ages. (A) 0–10 years old network. (B) 31–40 years old network. (C) 61–70 years old network. (D) 91 years and over network.

TABLE 4 | Comorbidity network topological features by age group.

Age

bracket

Nodes Links Network

density

Average

degree

Network

centralization

0–10 345 2,657 0.045 15.403 0.771

11–20 480 2,955 0.026 12.313 0.467

21–30 625 4,060 0.021 12.992 0.458

31–40 651 4,464 0.021 13.714 0.397

41–50 654 5,098 0.024 15.590 0.383

51–60 681 6,274 0.027 18.426 0.396

61–70 639 6,099 0.030 19.089 0.445

71–80 548 5,032 0.034 18.365 0.405

81–90 326 2,703 0.051 16.583 0.425

91–100 107 506 0.089 9.458 0.351

All ages 1,473 20,543 0.019 27.893 0.462

present a hierarchical submodular structure. For demonstration
purposes, we have selected three main comorbidity modules
corresponding to Other forms of chronic ischemic heart
disease (I25.8); Chronic kidney disease, unspecified (N18.9)

and Other specified congenital malformations of heart (Q24.8).

These modules were chosen by the following criteria: (i)
these are highly common diseases in our cohort, (ii) highly
interconnected in the CVCnetwork, (iii) distributed in different
submodules, (iv) these modules are the larger and richer
in structure.

Regarding of the Other forms of chronic ischemic heart
disease (I25.8) module, it contains 711 comorbidities (307
of which have associated genes in the ClinVar database,
a fact that will become useful in the next subsection),
the Chronic kidney disease, unspecified (N18.9) module is
composed of 178 comorbidities (66 of them with associated
genetic origins in ClinVar) and the Other specified congenital
malformations of heart (Q24.8) module which is formed by
155 diseases (67 of which have genes annotated in ClinVar).
As presented in Methods, we will further analyze how such
clustered comorbidity relations are (partially) related to their
genetic origins as well as to its physiological features. To
account for genetic background relatedness we will study
pairs of diseases clustered in the same module, from their
ClinVar annotations we calculated the Jaccard index (JI) that
points out to the fraction of associated genes they share
(see Methods).

Frontiers in Physiology | www.frontiersin.org 12 August 2020 | Volume 11 | Article 1009

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Cruz-Ávila et al. Comorbidity Networks in Cardiovascular Diseases

FIGURE 8 | Top 20 connected comorbidities by age group.
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4.2.1. Main Comorbidities in the Other Forms of

Chronic Ischemic Heart Disease (I25.8) Module
For this module we choose the four comorbidity pairs with the
highest Jaccard coefficient for further analysis. The first one of
such pairs is formed by Other and unspecified encephalopathy
(G93.4) and Acute respiratory distress syndrome (J80.X) with 437
common genes (JI = 0.827651515). These apparently disparate
diseases share physiological and clinical associations. Burad et al.
(2012) found that acute respiratory syndrome in pneumonia
patients leads to strong systemic ischemia that may in turn
develop into acute encephalopathy. This finding has been further
confirmed in a very large (5.6 million cases) epidemiological risk
factor study of the group of Bell in the US (Rincon et al., 2014).

Aside from environmental and other risk factors, these
diseases large number of shared genes are involved in a number
of relevant biomolecular pathways, ranging from essential
metabolism (folate-mediated one-carbon metabolism, antifolate
resistance), signal transduction (cell adhesion, transendothelial
leukocyte migration, a tight junction regulation). Also, including
immune response and inflammation (response to hepatitis C,
natural killer cell-mediated cytotoxicity, response to measles,
Alzheimer’s disease, and response to Influenza), as it was
evidenced by gene enrichment analysis whose statistical
significance was assessed via hypergeometric tests with false
discovery rate multiple-testing correction (see Methods).

Closely related to this pair is the second one formed by Other
and unspecified encephalopathy (G93.4) and Acute respiratory
failure (J96.0) with 440 common genes representing a JI =
0.787119857, these genes refer to similar pathways involved with
the addition of statistical enrichment of the protein digestion and
absorption pathway. Understanding the role that such molecular
processes may have in the onset and progression of both
diseases, of the comorbidity and of their potential multimorbidity
relations in the context of the CVCnetwork (see Figure 4), may
prove useful, particularly in the design of combined therapeutic
strategies with special emphasis in the critically ill patients in
intensive care units.

In this regard, we may mention the following: it is known
that the physiological manifestation of such biomolecular process
starts in the microvascular endothelium (MVE). Abnormal
functions of this MVE lead to abnormal haemostasis that may be
involved in both encephalopathy and acute respiratory distress, a
novel therapy to alleviate this failure from its molecular origins
consists in the use of tissue factor pathway inhibitor (TFPI). It
has been long known (mostly by animal-based studies) that anti-
TF monoclonal antibodies and recombinant TFPI may be helpful
to treat these and other conditions (Bajaj and Bajaj, 1997). This
comes as no surprise since TFPI therapy works by readjusting
these disrupted processes to their homeostatic levels.

On the other hand, in the same module, the comorbidity
Other obesity (E66.8) and Other disorders of the lung (J98.4),
it was found to share 1,198 genes (JI = 0.670772676). These
genes present significant statistical enrichment for the following
pathways: Pentose phosphate pathway, Glycine, serine and
threonine metabolism, amino acid biosynthesis, and carbon
metabolism, all of them related to essential metabolism, as well as
to primary immunodeficiencies, renin-angiotensinogen system,

neuroactive ligand-receptor interaction related to immune
signaling and inflammation, and to cell cycle processes, such
as the mRNA surveillance pathway, RNA transport, and
ribosome biogenesis in eukaryotes. Although less evident, the
physiological relationship between obesity (in particular its
inflammatory component) and critical disorders of the lung is
not unknown (Bassetti et al., 2011; Pabon et al., 2016; Peters
et al., 2018; Szylińska et al., 2018). Under certain circumstances,
abnormal immune signals associated withmetabolic deregulation
may lead to inflammatory proliferation and cytokine storms
(Ramos Muniz et al., 2018) that may in turn prove critical for
certain functions involved in the lung disease (Lee et al., 2016).

The fourth comorbidity couple discussed in this module
involves Liver disease, unspecified (K76.9) and Acute respiratory
failure (J96.0) (457 shared genes, JI = 0.640953717). These
genes present the following enriched pathways: reserve of one-
carbon by folate, Fanconi anemia, homologous recombination,
viral myocarditis, cell adhesion molecules (CAM), tight junction,
transendothelial leukocyte migration, cytotoxicity mediated by
natural killer cells, Hepatitis C, and metabolic pathways. We can
notice again a lot of immune signaling and transduction activity
mediating the crosstalk of these pathologies. Liver disease, for
instance, is known to be severely exacerbated by mechanical
ventilation (Lai et al., 2020). Lai et al. concluded that in-hospital
mortality of patients with high end-stage liver disease scores
who required mechanical ventilation was higher and it allowed
for predictability of the outcome. The same conclusion was
reached previously by Qadir et al. (2018) that traced some of the
complications to hepatopulmonary syndrome, portopulmonary
hypertension, and hepatic hydrothorax, all of them systemic
failures mediated by exacerbated signaling (Karcz et al., 2012;
Nuzzo et al., 2019).

4.2.2. Main Comorbidities in the Chronic Kidney

Disease, Unspecified (N18.9) Module
Moving onto the second module of interest, the one highly
connected with Chronic kidney disease, unspecified (N18.9), we
will also analyze three pairs of diseases (see Figure 5). We
will start by looking at the association between Congenital
hydronephrosis (Q62.0) and Cough (R05.X). These seemingly
dissimilar diseases share, however 437 common genes (JI =
0.640953717), as in previous cases the molecular associations
point out to immune signaling (cell adhesion molecules,
transendothelial leukocyte migration, tight junction, natural
killer cell mediated cytotoxicity) and essential metabolism
(reserve of one-carbon by folate, antifolate resistance). The joint
observation of these diseases, however, presents less dominance
than previous cases. It has been reported that about 30% of the
cases of congenital hydronephrosis involve definite presence of
cough episodes (McHale et al., 1996).

The second duplex, Benign neoplasm of kidney (D30.0)

and Other hyperparathyroidism (E21.2) involves 51 shared
genes (JI = 0.467889908). Overrepresented pathways include
immune responses (processing and antigen presentation, graft-
vs.-host disease, natural killer cell-mediated cytotoxicity),
abnormal transcriptional regulation and cell cycle (transcriptional
dysregulation in cancer, gastric cancer, FoxO signaling pathway,
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autophagy) as well as hormone-related signal transduction (taste
transduction, salivary secretion, Cushing’s syndrome).

It is noticeable that even if our third comorbidity pair
considered in this moduleMyeloid leukemia, unspecified (C92.9)
and Anemia in neoplastic disease (D63.0) is, perhaps, one of
the most obviously related from the physiological standpoint
(Rafei and DiNardo, 2019), does not have such a large genetic
background. These diseases only share 10 associated genes,
with a mild JI = 0.185185185, general cancer pathways (thyroid
cancer, pancreatic cancer, bladder cancer, endometrial cancer,
breast cancer), erithopoietic and myeloid differentiation processes
(Fanconi, ALS) and DNA repair (homologous recombination,
nucleotide excision repair). Not surprisingly, however, the
presence of anemia becomes a (bad) prognostic marker in cancer
(including of course myeloid leukemia), both in terms of the
presence of anemia itself (Paitan et al., 2018) and of the level of
circulating myeloblasts (Duong et al., 2018).

4.2.3. Main Comorbidities in the Other Specified

Congenital Malformations of Heart (Q24.8) Module
Three comorbidity pairs were also chosen in the Other
specified congenital malformations of heart (Q24.8) module
(Figure 6). The first one consists of Exotropia (H50.1) and Pectus
excavatum (Q67.6) sharing 1,292 genes (JI = 0.596766744).
The physiological relationship between these two diseases
may be traced to generalized hypotonia and share some
similarities with the Elsahy-Waters Syndrome, a rare genetic
disease that arise from (mostly biallelic) mutations in the
cadherin-11 gene (Castori et al., 2018; Harms et al., 2018).
On the genetics and molecular side, both diseases share genes
enriched for metabolic (biosynthesis of phenylalanine tyrosine
and tryptophan, biosynthesis of glycosaminoglycan, mineral
absorption, nitrogenmetabolism, biosynthesis of aminoacids and
carbon metabolism), signaling (Nf-kappa b signaling pathway,
necroptosis, RNAm surveillance). Interestingly, even if both
diseases involve structural dysfunction related for instance to
changes connective tissue and collagen formation (Guixiang
et al., 2007; Tocchioni et al., 2013a,b; Yao et al., 2016),
no statistically significant enrichment was found for related
categories in this set of shared genes, suggesting independent
molecular mechanisms in both cases.

A similar case arises in the consideration of Exotropia (H50.1)

and Agenesis of lung (Q33.3) with 644 common genes (JI =
0.37771261), which are involved in nicotine addiction, pentose-
phosphate pathway, mRNA surveillance, ribosome biogenesis in
eukaryotes, amino acid biosynthesis, carbon metabolism, RNA
transport, Nf-kappa b signaling, neuroactive ligand-receptor
interaction and necroptosis. There is no reported account of this
comorbidity in the published literature, this is unsurprising since
both are rare genetic conditions (since they are both rare, finding
them associated by chance was quite unlikely, so the fact that we
had encountered them in our study group although incidentally
fulfilled our statistical criteria, similarly to the previous case with
Exotropia and Pectus excavatum). What calls for attention is
that they share a relatively high number of genes in functional
pathways. This open the way to understanding these rare diseases
by studying more common conditions involving similar genes

and pathways. Hence, comorbidity networks and functional
analyses may help us take a new look at rare genetic conditions
and orphan diseases.

A different case is the one involving Unspecified adverse
effect of drug or medication (T88.7) and Intentional self-
inflicted injury by hanging, strangulation or suffocation, at an
unspecified location (X70.9), with 28 common genes, and JI
= 0.120689655. Those resulted statistically enriched mostly in
general metabolism (ascorbate and aldarate metabolism, pentose
and glucuronate interconversions, steroid hormone biosynthesis,
retinol metabolism) and drug metabolism (porphyrin and
chlorophyll metabolism, drug metabolism, metabolism of
xenobiotics by cytochrome P450, chemical carcinogenesis) as
well as in arrhythmogenic right ventricular cardiomyopathy
(ARVC). It has been documented that adverse drug events may
induce depression or other mental health conditions associated
with suicidal thoughts or other forms of self-inflicted damage
(Jaga and Dharmani, 2007; Andrew and Brenner, 2015). The
particular case of adverse drug effects conducting to attempts
of self inflicted hanging or suffocation has been documented in
broad scenarios ranging from narcotics (Dinis-Oliveira et al.,
2010) to antibiotics (Ahmed et al., 2011).

4.3. Cardiovascular Comorbidity Networks
by Age (ACVCnetworks)
In this section we will consider some hypothetical clinical
case studies to highlight some potential applications of
ACVCnetworks as a proof of concept. We will discuss how
ACVCnetworks may become an auxiliary tool for differential
diagnostics and therapeutics.

• Consider the (hypothetical) case of a 6 years old female patient
diagnosed with Discordant ventriculoarterial connection
(Q20.3) as well as a secondary Supraventricular tachycardia
(I47.1). Prior to surgical interventions, the treating physician
team may consider the use of β-blockers, calcium channel
blockers and other anti-arrhythmic drugs. However, after
consulting the ACVCnetwork for this age (Figure 7A and the
full table included in the Supplementary Datasheet 1) they
may discover that, aside from a number of congenital defects
of the heart and gastroesophageal reflux, unspecified epilepsy
(G40.9) is also common comorbidity of both Discordant
ventriculoarterial connection (Q20.3) and Supraventricular
tachycardia (I47.1), hence there is an increased probability
that their patient may also suffer from it. Care must be taken,
then since propranolol for instance, may increase significantly
serum thioridazine levels, so it should not be combined
with that anti-seizure medications (Yudofsky and Hales,
1992). Selective serotonin reuptake inhibitors may, in turn,
increase serum levels of β-blockers; carbamazepine however
enhances the opposite effect (Schatzberg et al., 2015). When
designing the therapeutic approach with this patient, the
team should perhaps consider evaluating some neurological
features beforehand.

• When treating an (also hypothetical) 37 years old male patient
whose main diagnosis is a Malignant neoplasm of heart
(C38.0) in preparation for the surgical and chemotherapeutic
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design, it may be worth considering that both, Pleural effusion
(J90.X) and Chronic kidney disease, unspecified (N18.9)

are common comorbidities of heart neoplasms in this age
bracket (ACVCnetwork ages: 31–40 depicted in Figure 7B) as
reported in the Supplementary Datasheet 1. Special care may
be taken when planning the anesthetic and perfusion strategy
for the surgery (due to the Pleural effusion (J90.X) risk) and
the type and dose of antineoplastic drugs (to lower its effects
on the kidney).

• When evaluating a 65 years old patient with Specified chronic
obstructive pulmonary disease (COPD) (J44.8) also suffering
from Sleep apnea (G47.3) it is of relevance to perform
periodic serum and urine sodium tests since Hyponatremia
(E87.1) is a common comorbidity for COPD and for sleep
apnea in this age bracket as evidenced by the corresponding
ACVCnetwork (Figure 7C and Supplementary Datasheet 1)
and it is known that low sodium levels are strongly associated
with poor outcomes for COPD patients (Chalela et al., 2016).
Respiratory insufficiency in combination with hyponatremia
can cause Shy-Drager syndrome that may develop into
multiple-system atrophy, a critical, life-endangering condition
(Glass et al., 2006).

• An important source of mortality in the elderly (in particular
in individuals older than 90 years old) is accidental falls.
In some cases traumatisms in the head may lead to
Traumatic subdural hemorrhage (S06.5) (Uno et al., 2017),
the management of this disease may be complex in spite of
not having such a large number of common comorbidities.
In the ACVCnetwork for 91–100 years old (Figure 7D
and Supplementary Datasheet 1), we can see that traumatic
subdural hemorrhage has only four statistically significant
comorbidities in our database. However, by looking at them
it is obvious that these may be reason for concern either alone
or in the form of multimorbidity. These comorbidities are the
following Atrial fibrillation and flutter (I48.X), Hypertensive
heart disease with heart failure (I11.0), Primary pulmonary
hypertension (I27.0), and Sepsis (A41.9). Anyone of such
diseases may greatly enhance the risk of dying in elderly
subdural hemorrhage patients, an important reason to be
aware of comorbidity risks (Hsieh et al., 2018).

4.4. Main Findings, Strengths, and
Limitations
Careful, systematic examination of electronic health records
by means of network and data science approaches is an
emerging discipline at the interface of computational biology,
biomedical informatics and theoretical medicine. As a nascent
research area, it still faces a number of challenges, in turn, it
offers a fresh perspective on known problems. Cardiovascular
diseases commonly developed into systemic ailments affecting
a multitude of organs in different ways, often conducing
to multimorbidity and multimortality. For these reasons, the
development of an efficient, evidence-based methodology to
study comorbidity in cardiovascular diseases is appealing. In this
work, we have presented a somewhat straightforward approach
to this. The method itself as a tool is a worthy goal. By applying

this tool, we were able to discover novel or poorly known features,
such as the following.

Comorbidity networks in cardiovascular diseases are highly
centralized in the high prevalence diseases, such as cardiac
arrhythmias, heart failure, chronic kidney disease, hypertension
and ischemic diseases. In spite of this centralized structure,
cardiovascular comorbidity networks are actually quite modular
on their connectivity. Interestingly (and perhaps expectedly
to some extent) modules often recapitulate physiopathological
commonalities, for instance, by clustering ischemic diseases
with similar ailments. Such is also the case of chronic systemic
diseases (kidney, liver, rheumatological diseases, and others),
of congenital malformations and others. We have been able to
track down the genetic and environmental commonalities behind
some of the relations in these modules by resorting to clinical
genetics databases and functional pathway enrichment studies.

By looking at some of these modules, we were able to
notice how acute respiratory failure related to ischemic heart
diseases may complicate with encephalopathy due to their shared
molecular and physiological features. Also, how chronic kidney
disease share a common genetic background (and a functional
one at the level of immune deregulation) with common cough
and hydronephrosis. We could also probe on some examples
relevant to therapeutic designs, such as evaluating the possible
presence of early signs for epilepsy prior to administering β-
blockers or calcium channel inhibitors to childhood patients
with supraventricular tachycardia; checking for signs of pleural
effusion or chronic kidney disease while designing surgical and
chemotherapeutic procedures for adult patients with malignant
heart neoplasms.

However, aside from these few specific examples, an important
contribution of this work lies in the databases created in the
form of networked objects. Networks were built for significant
comorbidity relationships in cardiovascular and related diseases,
both in general and age-specific. These networks are indeed
relational databases that may be consulted by clinicians,
understood as aids in differential diagnostics or, more commonly
to prepare for complications.

Of course, many of these comorbidities are well-known
to the practising clinician, perhaps even expected. Other
however, may pass unnoticed even to an experienced
medical team. It is in those cases that the vast wealth
of systematized information, gathered in over almost
a decade of treatment on a third-level plus specialized
research hospital gains relevance as a data-intensive tool
for the clinical practice. Let us recall that the NIC-ICh is
a reference institution in cardiovascular diseases, one of
Mexico’s National Institutes of Health. These databases
(networks are included as Supplementary Datasheet 1 in
the form of searchable tables) are aimed at constituting
a main contribution of this work. On the one hand, this
information comes directly from large-scale empirical data,
on the other it has been organized in the form of curated,
easily-searchable databases.

Large scale, semi-automated databases are not free from
limitations: reporting errors, missing data and so on. In the
present case an additional limitation lies in the fact that it is based
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on mining electronic health records from hospital administrative
databases. Such databases are built by using the international
disease codes. ICD-10 codes are systematic and easy to code and
record, however, they do not always capture completely or even
accurately the actual complexities of disease and comorbidity.

In the work presented here, cases were from patients
discharged from a single health institution specialized in
cardiology. This may limit the generalization of our results
to other medical specialties. Information from retrospective
data on diagnoses of hospital discharges may be also subject
to residual bias: The network and community-based analysis
of comorbidities conducted in this study is limited to the
hospital setting.

The generalizability of the method is indeed relatively
straightforward, both for other types of diseases and for regional,
national and even international settings provided that:

1. Coding is performed and registered following similar
stringent and validated criteria.

2. The number of instances (patient records and comorbidities)
is large enough for statistical analysis (hypergeometric tests)
to hold.

These are conditions that a medium-to-large, second to third
level (and higher) hospital may fulfill but perhaps a small clinic
may not. However, the generalization of some of the actual
comorbidity relations in different hospital settings may not
fully hold since discovery has been made in a quite large but
somewhat specialized hospital. By applying similar methodology
in local, regional, national and international settings, we
envision that even specific comorbidity relationships may
be generalizable.

Despite relying on good coding practice for administrative
databases, we are aware that it may be subject error
sources, as has been reported in other studies using ICD-
10. As a cautionary note we have included a full appendix
describing the scope and limitations of ICD-10 coding in the
Supplementary Document 1. Hence, as valuable a tool as the
present work may be it needs to be properly assessed and taken
with a lot of caution.

4.5. Final Considerations
Cardiovascular diseases are the leading causes of death
worldwide, and have been for decades. One source of mortality
is the fact that cardiac diseases are often systemic with complex
multimorbidity patterns. Analyzing these patterns may advance
our own understanding of these illnesses not as a series of isolated
events, but as different manifestations of many concurrent
causes, both genetic and environmental. Here we have analyzed
comorbidity patterns as they have been occurring and reported
over 6 years of the full set of admissions to the country-level
reference institution for cardiovascular diseases in Mexico, the
National Institute of Cardiology “Ignacio Chávez”.

The detailed statistical analysis of almost 35,000 electronic
health records allowed us to infer a cardiovascular comorbidity

network. We performed modularity analysis of such network
to unveil an intricate interconnectedness structure. Choosing
a small number of these modules, to exemplify. We analyzed
the common genetic background of comorbidity disease
pairs as well as their clinical associations and probable
risk factors. By continued and consistent analysis of these
types of patterns, we envisaged that it may be possible
to acquire, strong clinical and basic insights that may
further our advance toward a better understanding of
cardiovascular diseases as a whole. Hopefully these may
in turn lead to further development of better, integrated
therapeutic strategies.
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