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ABSTRACT
Background There is limited capacity to assess the
comparative risks of medications after they enter the
market. For rare adverse events, the pooling of data
from multiple sources is necessary to have the power
and sufficient population heterogeneity to detect
differences in safety and effectiveness in genetic, ethnic
and clinically defined subpopulations. However,
combining datasets from different data custodians or
jurisdictions to perform an analysis on the pooled data
creates significant privacy concerns that would need to
be addressed. Existing protocols for addressing these
concerns can result in reduced analysis accuracy and can
allow sensitive information to leak.
Objective To develop a secure distributed multi-party
computation protocol for logistic regression that provides
strong privacy guarantees.
Methods We developed a secure distributed logistic
regression protocol using a single analysis center with
multiple sites providing data. A theoretical security
analysis demonstrates that the protocol is robust to
plausible collusion attacks and does not allow the
parties to gain new information from the data that are
exchanged among them. The computational performance
and accuracy of the protocol were evaluated on
simulated datasets.
Results The computational performance scales linearly
as the dataset sizes increase. The addition of sites results
in an exponential growth in computation time. However,
for up to five sites, the time is still short and would not
affect practical applications. The model parameters are
the same as the results on pooled raw data analyzed in
SAS, demonstrating high model accuracy.
Conclusion The proposed protocol and prototype
system would allow the development of logistic
regression models in a secure manner without requiring
the sharing of personal health information. This can
alleviate one of the key barriers to the establishment of
large-scale post-marketing surveillance programs. We
extended the secure protocol to account for correlations
among patients within sites through generalized
estimating equations, and to accommodate other link
functions by extending it to generalized linear models.

INTRODUCTION
Although US$500 billion is spent world wide on
drugs each year,1 there is limited capacity to assess
the comparative risks and effectiveness of medica-
tions after they enter the market.2–6 In Canada,
60% of people 18 years of age or older have taken
at least one prescription drug in the previous
6 months, and over one-third report experiencing
an adverse drug event (ADE).7 Even when safety
problems are identified, there is no timely or

effective method of communicating this information
to physicians to inform prescribing decisions.8–10

Most countries have established a formal regula-
tory process for drug approval that defines the
information required from the drug manufacturers
to demonstrate a drug’s safety and efficacy.
However, drugs are typically tested in randomized
controlled trials with a limited number of patients
selected carefully to optimize compliance and limit
comorbidity.11–13 This population of patients rarely
represents the typical patient treated with the drug
after approval. While pre-market studies uncover
commonly occurring ADEs, they are not designed
to detect rare but serious ADEs,12 nor to assess
safety and effectiveness in the broader population
of eventual users.14 15

The limitations of relying on safety assessments
from pre-market drug approval studies were high-
lighted in the 1950s with the thalidomide disaster,
where drugs prescribed for nausea in pregnancy
produced severe congenital anomalies. In response
to this problem, a voluntary system of adverse drug
reaction reporting was instituted, which continues
to be the cornerstone of post-market surveillance.11

However, 60 years later, there is worldwide consen-
sus that voluntary reporting is insufficient.12 16

Only 2–10% of ADEs are reported, there are sub-
stantial delays in ADE detection, and ADE case
reports lack accurate numerators and denominators
to estimate incidence.11 17–19 Moreover, voluntary
reporting does not allow identification of ADEs,
such as myocardial infarction, which also com-
monly occur in the general population. For
example, more than 9 million people took the now
infamous weight-loss drug fen-phen before it was
identified that the drug could result in cardiac valve
damage, a problem that also occurs in the general
population for non-drug-related causes.12 16

Traditional adverse event reporting has also been
widely criticized because it substantially underesti-
mates important patient-reported adverse effects
such as nausea, fatigue, appetite loss, and diar-
rhea.20 21 This underestimation can have profound
clinical implications because early detection and
response to suboptimal patient-reported treatment
outcomes can improve adherence to treatment as
well as reduce the risk of adverse events.22 However,
regular monitoring and follow-up is resource inten-
sive, and difficult to incorporate into regular practice
in a cash-strapped healthcare system. A number of
approaches have been used for post-marketing sur-
veillance to address these problems.
Prescription event monitoring is an active post-

market surveillance method that requires physicians
to respond to a follow-up questionnaire about a
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patients’ response to new drugs.23 In one study, 94% of events
detected by prescription event monitoring were not detected by
spontaneous ADE reporting.19 However, response rates of physi-
cians to follow-up questionnaires is poor, ranging from 35% to
65% and decreasing to 27.6% when information is sought for
more than 30 patients from a single physician.23 24 Moreover,
physicians who prescribe new drugs to more patients are gener-
ally poor responders.25 The labor-intensive nature of this
method makes it unsustainable for a nation-wide undertaking.23

Even if mandatory reporting of ADEs were to be instituted, such
as is the case for infectious disease reporting for public health,
response rates are notoriously poor.26 27 In the public health
context, authorities have addressed this limitation by increasing
their reliance on computerized information sources such as data
from the laboratory and medical service claims systems, as these
data are more timely and reliable, and the effort to document
information in a parallel reporting system is reduced.28–31

In Canada, population-level health administrative data (pre-
scriptions, medical services, hospitalizations, mortality) can be
linked to create longitudinal health histories for individual
patients, which has enabled a new generation of methods to
assess post-approval drug safety and effectiveness after their
approval.32–41 Unfortunately, administrative data cannot be used
alone for prospective surveillance because they lack important
clinical variables that are needed for assessing indications for
treatment, risk factors (eg, smoking), clinical (eg, blood pres-
sure, HbA1c), and health status outcomes (eg, functional status).
The increasing use of electronic health records in community-
and hospital-based care may, however, provide a means of
addressing both of these issues: systematic collection of import-
ant clinical variables to assess effectiveness and identification of
ADEs in a timely manner.42–45

Europe, Scandinavia, Australia, and England have led the
introduction of electronic health records in primary care.42–45

One byproduct of these early investments is the creation of new
information sources that can be used to conduct drug safety and
effectiveness evaluation. The General Practice Research
Database, the first of this new genre, collects information from
the electronic health records of 450 general practices in
England and approximately 3.6 million active patients. It has
been used to conduct over 800 studies including a sentinel
study on the safety of childhood vaccines in relationship to the
suspected link to the development of autism.46 Similar to paper
medical records, these electronic files include information on
prescribed therapy, consultations, morbidity events (diagnosis
and symptoms), and lifestyle (smoking, alcohol, height, and
weight).47 In the last 5 years, there has been a call to develop
the potential to use these new information-rich resources for
assessment of drug safety and effectiveness.2–4 6 48 Indeed, a
new generation of drug safety and effectiveness studies is begin-
ning to emerge from the electronic clinical data of large enter-
prise health-delivery networks.49–52

For rare adverse events, the pooling of data from multiple
sources is necessary to have the statistical power and sufficient
population heterogeneity to detect differences in safety and
effectiveness in genetic, ethnic and clinically defined subpopula-
tions.6 This is important because the effects of treatment may
vary by sex and ethnicity,47 51–55 probably because of subpopu-
lation differences in the prevalence of genetic polymorphisms
that influence the metabolism of medication and its efficacy and
toxicity.56 57

Combining data from different data custodians or jurisdic-
tions to perform an analysis on the pooled data creates signifi-
cant privacy concerns that would need to be addressed.58 It has

been argued that providers would be permitted to disclose iden-
tifiable health information to certain organizations performing
pharmacovigilance, such as the Food and Drug Administration
in the USA.59 However, not all organizations in the USA and
elsewhere that will be collecting data for the evaluation of drug,
medical device, and vaccine safety will have such public health
exemptions. For example, pharmaceutical companies that need
to perform post-marketing surveillance on conditionally
approved drugs or devices would still have to address privacy
issues, as they will not have the authority to collect potentially
identifiable patient information. In addition, in order to main-
tain public trust, even if the organization performing surveil-
lance is permitted to collect personal health information (PHI),
it may be prudent not to collect PHI on large numbers of indivi-
duals who do not experience adverse events (eg, controls).

Datasets that are distributed among multiple sites having the
same fields but different records in each site are called ‘horizon-
tally partitioned’ data. To address the privacy concerns noted
above, a number of data analysis protocols for secure computa-
tion on such horizontally partitioned data have been proposed,
but they all have important disadvantages. For example, the
sharing of deidentified data to create a pooled dataset60–62 will
result in a loss of precision of the data, meta-analytic methods
will result in a loss of precision and power,63 and the accuracy
of recently proposed propensity score methods were not com-
pared with an ideal analysis on the pooled data,64 65 therefore
any losses in precision and accuracy from that approach are not
known. Methods for multi-site regression would retain the pre-
cision and power.66 67 However, current multi-site regression
approaches are prone to inappropriate disclosure of personal
information from the information matrix,68 from indicator vari-
ables, disclosures from the covariance matrix,68–71 from the
iterations themselves,72 and from the information matrix across
multiple models.68 Secure multi-party computation methods
have been proposed for the construction of regression models
on horizontally partitioned data.73–77 However, as we demon-
strate in the online appendix, these methods can still leak per-
sonal information. Distributed aggregation architectures that
send queries to sites and combine their responses have been pro-
posed and deployed.78–81 These are prone to tracker queries at
various levels of sophistication that can reveal personal informa-
tion.82–88 A detailed review and critique of all these methods
and protocols that illustrates how they can potentially still leak
personal information is provided in the online appendix.

Our objective was therefore to develop a multi-site logistic
regression protocol using secure multi-party computation
methods, which does not disclose PHI by (1) not revealing the
individual site information matrix and score vectors, (2) avoid-
ing inference channels through multiple overlapping queries,
and (3) retaining the same precision as a raw data pooled ana-
lysis. We chose logistic regression because (1) it is a commonly
used analytical method for investigations of ADEs,89–93 and (2)
the link function for the logistic model is more complex than
for other generalized linear models (GLMs), which makes it a
good one to illustrate in detail. We then show how the logistic
regression protocol can be extended to generalized estimating
equations (GEEs) to account for correlations among patients
within a site, other GLMs such as Poisson regression and sur-
vival models.

METHODS
Logistic regression
Let Y=(Y1,…,YN)

0
be independent Bernoulli variables with

mean E(Y)=μ=(μ1,…,μN)0. Given an intercept and a set of
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covariates X=[1, X.1,…,X.v], where X.j=(x1j,…,xNj)0 contains
the values for covariate j, we define a logistic model with para-
meters β using the formula:

logitðmÞ ¼ logð m

1� m
Þ ¼ Xb

(we say that the logit function links the random component μ to
the systematic component Xβ). The log-likelihood l (β;y) of the
full model, which can be used to assess model fit (usually given
as −2 log-likelihood), equals:

lðb; yÞ ¼
XN

i¼1

½yiXi:b� Inð1þ expðXi:bÞÞ�;

where Xig is row i from the design matrix X.
For a set of observations y=(y1,…,yN), we can determine par-

ameter estimates b at which the log-likelihood l (β;y) of the
model is maximized using the Newton–Raphson method (or,
equivalently, the Fisher scoring method, since the estimated and
observed information matrices are the same for a logistic
model94). That is, we iteratively compute the estimates using
b (t+1)=b (t)−[I (t)]−1u (t), at iteration t, where u (t)=X

0
(y−p (t)) is

the estimated score vector with probability of success
p (t)=logit−1(Xb (t)), and I (t)=X ’W (t)X is the estimated informa-
tion matrix with weight matrix W (t)=diag[pi

(t)(1−pi
(t))]. This

fitting method can be used for any GLM (with new derivations
for the score vector and information matrix),95 and has been
shown to converge to a solution in fewer iterations than other
optimization algorithms applied to logistic models.96

SPARK protocol
Our protocol for the secure computation of logistic regression
models across horizontally partitioned data (SPARK: Secure
Pooled Analysis acRoss K-sites) assumes that there are k sites pro-
viding data on the same variables for different patients, and there
is a single analysis center (AC) as illustrated in figure 1 (for the
case of three sites). The AC would define the model that needs to
be constructed and initiate the distributed secure computation. In
some instances, the sites need to communicate directly with each
other. This direct communication capability that bypasses the AC
is important for maintaining the security of the protocol.

Secure building blocks
We use the additive homomorphic encryption system proposed by
Paillier.97 With the Paillier cryptosystem, it is possible to perform
mathematical operations on the encrypted values themselves, such
as addition and limited forms of multiplication. Formally, for any
two data elements, m1 and m2, and their encrypted values, E(m1)
and E(m2), the following equation is satisfied:

DðEðm1Þ � Eðm2Þmod p2Þ ¼ m1 þm2 mod p ð1Þ

where p is a product of two large prime numbers, and D is the
decryption function. In this type of cryptosystem, addition of the
plaintext is mapped to the multiplication of the corresponding
ciphertext. The Paillier cryptosystem also allows a limited form of
the product of an encrypted value:

DðEðm1Þm2 mod p2Þ ¼ m1 �m2 mod p ð2Þ

which allows an encrypted value to be multiplied with a plaintext
value to obtain their product.

Another property of Paillier encryption is that it is probabilis-
tic. This means that it uses randomness in its encryption algo-
rithm so that when encrypting the same message several times it
will, in general, yield different ciphertexts. This property is
important to ensure that an adversary would not be able to
compare an encrypted message with all possible counts from
zero onwards and determine what the encrypted value is.

The SPARK protocol uses a number of secure building blocks
that are needed for basic mathematical operations, such as addition,
multiplication, secure dot product, matrix multiplication, and
matrix inverse, which are combined to implement logistic regres-
sion. Secure dot product,98 secure multiparty multiplication,99

secure multiparty addition,99 secure matrix sum inverse for two
parties,100 and secure matrix multiplication100 are existing proto-
cols that we use in SPARK. In each of these building blocks, the
final result is privately shared among the parties involved.

We extended the secure matrix sum inverse sub-protocol,
which only exists for the two-party case, to the more general
multi-party case. The secure computation of 2-norm distance
and comparison are the other two building blocks that we use
in SPARK, and these are presented in the online appendix.

Based on these secure building blocks, we describe the com-
plete SPARK protocol in the online appendix. We also include a
detailed security analysis of the protocol to illustrate that it is
inherently secure and resilient to plausible collusion attacks.

Figure 1 Overview of set-up for implementing the SPARK protocol
when there are only three sites. This figure is only reproduced in colour
in the online version.
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Empirical evaluation
A theoretical complexity analysis of the SPARK protocol is pro-
vided in the online appendix. Our empirical evaluation of
SPARK, presented here, considered the computational perform-
ance of the protocol and its accuracy compared with the results
of using raw pooled datasets with SAS. For this empirical evalu-
ation, we created some simulated datasets.

Simulation datasets
A classic simulated dataset is one formed by a set of independ-
ent normally distributed variables (eg, see Hosmer–
Lemeshow101). The variables in this case could be thought of as
mean-centered and scaled.95 102 Datasets of this type have been
used repeatedly in the evaluation of statistical methods in
medical and health research.103 104 Similarly, we use a binomial
distribution to create binary variables, which could be seen as
simulating binary risk factors (as in Heinze and Schemper105).
Correlated variables are common, however, in health research
and often used in models (see the reviews by Bagley et al106 and
Mallett et al107). We therefore also created correlated data from
the normally distributed variables.

A common recommendation in biostatistics is to constrain the
number of covariates proportionally to the number of observa-
tions. Following Harrell,108 we therefore limited the number of
observations to 40 times the number of covariates to simulate
more realistic models. Harrell recommends a maximum of 10–
20 ‘equivalent’ observations per covariate to avoid overfitting,
where, for a logistic regression, the number of equivalent obser-
vations is the minimum number of binary outcomes at the same
level (eg, the minimum number of zeros or ones). We assumed
that the outcomes would be split evenly between their binary
values, which meant creating twice the number of observations
as the equivalent observations described by Harrell. The sizes of
the resulting datasets are summarized in table 1.

Moreover, we wished to test different variable types and
therefore created datasets with independent identically distribu-
ted (iid) continuous covariates, correlated covariates, and binary
indicators (thus resulting in 12 datasets when combined with
table 1). The iid variables were drawn randomly from a standard
normal distribution; the correlated variables were created using
a Cholesky decomposition on a correlation matrix with off-
diagonal entries of 0.75, applied to the iid matrix of variables
(preserving their marginal distributions)109; and the binary indi-
cators were drawn randomly from the binomial distribution,
with probability of success for each variable drawn randomly
from the uniform distribution (scaled so that the probability of
success was restricted to values from 0.3 to 0.7 in an effort to
avoid convergence problems in the estimated models).

In order to compare estimates between models with different
covariate types, we needed to use the same parameter values
for the 12 different logistic models. We therefore randomly
drew 21 fixed values for the parameters β (for models with an
intercept and up to 20 covariates) from a normal distribution
with mean 0 and variance 10. The resulting draw for the
first six parameters (common to each model) was the fixed
column vector β ’=(0.899,−5.944,1.534,−0.156,2.259,−1.868).
We included an intercept, β0, hence we also included a column

of ones in the design matrix X (which was otherwise exclusively
populated with one of iid, correlated, or indicator variables).
The outcome variable was drawn for each of the 12 models
from a binomial distribution with probability of success equal
to the mean response of the logistic model given by
μ=logit−1(Xiβ), since μ = E (Y).110

When the outcome is rare, as would be expected with some
ADEs, then the dataset would be quite unbalanced. There are
two common approaches for dealing with an unbalanced
dataset: (1) a down-sampling or prior correction approach
reduces the number of observations so that the two classes in
the logistic regression model are equal111–113; and (2) the use of
weights. It has been noted that the weighting approach suffers a
loss in efficiency compared with an unweighted approach when
the model is exact.114 Therefore after down-sampling, the
dataset would be rebalanced, which is consistent with our simu-
lated datasets.

Having created our 12 datasets, with outcomes, we then used
a simple bootstrap to generate 5000 replicates for each dataset
(with the same number of observations in each replicate). In all
of our evaluations, we randomly split the dataset into subsets of
equal size to the different sites for each iteration of the
simulation.

Computational performance evaluation
Two types of performance evaluation were performed. In the
first, we assumed two sites, and the focus was to evaluate the
computation time. This was calculated as the average across all
replicates for each dataset. In the second evaluation we mea-
sured the computation time as the number of sites, and records
in the dataset were systematically increased. We varied the
number of sites from two to five, and the number of records
from 100 000 to 1 million in 100 000 record increments. We
did not take advantage of parallelism in these evaluations, there-
fore the performance should be considered a lower bound. The
machine used was a commodity Windows XP platform with a
dual-core Intel 2.4 GHz processor and 3 GB of RAM.

The key bit-length size for this evaluation was 1024 bits. To
have a fast and accurate computation on big integer and floating
point numbers, the GNU Multiple Precision Arithmetic Library
was utilized inside the implementation of the protocol, and the
system was developed in the C# programming language.

Accuracy evaluation
It is necessary to perform accuracy evaluations because all
secure multi-party computation protocols operate only on inte-
gers. We therefore had to scale all of our real numbers into inte-
gers to perform the computations, and then scale them back
when presenting the results. This scaling causes a loss of preci-
sion. The accuracy evaluation was intended to determine the
extent to which the results differ from constructing models on
the original pooled datasets in SAS.

We fitted logistic models to all replicates individually with
SPARK and SAS using the Newton–Raphson method, without
any form of ridging, and with relative parameter convergence of
1e-4. We compared the maximum difference between estimates
for SPARK and SAS, including estimates for the intercept and
five covariates (we exclude the additional covariates for ease of
presentation).

RESULTS
The evaluation results for performance and accuracy are shown
in this section.

Table 1 Size of simulated datasets (excluding intercept)

Number of covariates 5 10 15 20
Number of observations 200 400 600 800
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Computational performance
The computational performance results for the two sites are
shown in table 2. These show the actual time to perform the
computations at each site, and not the communication time
among sites. As expected, the computation time increases with
more covariates in the dataset. The variation in performance

among the datasets with the same number of covariates was not
dramatic. The results with large datasets and more sites are
shown in figure 2. The computation time scales linearly with
more records. As more sites are added, the computation time
grows exponentially. However, with five sites and 1 million
records, the computation is approximately 5 min, which makes
the implementation practical in realistic situations.

Accuracy
The accuracy results are shown in table 3. Note that differences
are given at a precision of 10e-6 (ie, all values in the table need
to be multiplied by 10e-6), and that estimates were originally
recorded at a precision of 10e-9. Mean absolute differences (not
shown) were so small, with narrow CIs, that we decided it
would be more meaningful to report maximum differences only.

Cases where complete or quasi-complete separation was
detected were excluded from the results in table 3, because of
potential differences in stopping criteria. Complete separation
occurs when a linear combination of the data produces perfect
predictions, with some observations always having a probability
of one and others always having a probability of zero (ie, there
exists a vector b such that Xib<0 when yi = 0, and Xib>0
when yi = 1, for all observations i); quasi-complete separation
occurs when a linear combination of the data produces perfect
predictions for some observations and uncertainty otherwise (ie,

Table 2 Computation time for different datasets assuming two
parties

No of covariates Type Time (min)

5 iid 0.0286
Correlated 0.0244
Binary 0.0238

10 iid 0.1836
Correlated 0.1395
Binary 0.1249

15 iid 0.6669
Correlated 0.4336
Binary 0.3935

20 iid 0.9804
Correlated 1.0159
Binary 1.0026

Time is the average across 5000 replicates.
iid, independent identically distributed.

Figure 2 Performance in seconds as the number of records increases from 100 000 to 1 million for two to five sites. This figure is only reproduced
in colour in the online version.
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there exists a vector b such that Xib≤0 when yi = 0, and Xib≥0
when yi = 1, and at least one case of equality in both).
Parameter estimates are infinite if the design matrix is com-
pletely or quasi-completely separable, which leads to conver-
gence failures. Formal details are given by Albert and
Anderson,115 and a more applied presentation is given by
Allison.116

This type of convergence failure is common in logistic regres-
sion, and occurred in less than 2.5% of replicates for all but the
dataset with 15 iid covariates, which suffered complete or quasi-
complete separation in 16.6% of replicates (according to the
detection criteria in SAS, as described by Allison116). We did not
modify the latter replicates because variables were created and
sampled using random draws, making such convergence failures
difficult to eliminate in advance. Also, the original dataset was
only one of our 12 test cases.

Absolute differences between SPARK and SAS estimates in
table 3 that exceeded 10e-6 were most likely due to undetected
quasi-complete separation. On inspection we found that repli-
cates where this occurred had parameter estimates that were
multiple times their simulated values. Therefore relative differ-
ences between SPARK and SAS were even more accurate than
suggested by the absolute differences reported.

DISCUSSION
To ensure sufficient statistical power and population heterogen-
eity in the detection of ADEs, data from multiple sites need to
be combined. A simple pooling of such horizontally partitioned
data presents serious privacy concerns. Our review of the litera-
ture found that existing architectures and methods for analyzing
horizontally partitioned data would allow the disclosure of PHI

under a variety of conditions. For the specific problem of detect-
ing ADEs, we have developed a secure distributed logistic
regression protocol which addresses known weaknesses of previ-
ous protocols and ensures that PHI cannot be disclosed. The
detailed security analysis in the online appendix demonstrates
that sites that follow the protocol cannot access raw data from
other sites and presents low risk from plausible collusion scen-
arios. Our empirical evaluation of the protocol has demon-
strated that its computational performance would be acceptable
for large datasets and for multiple sites, and that its accuracy (in
terms of model parameters and diagnostics) is equivalent to the
values that one would obtain from an analysis using SAS on the
pooled raw data.

This protocol should allow sites to contribute their patient
data to multi-site analyses of ADEs with assurances that their
patients’ personal information will not be disclosed or inferred,
but still allow the appropriate multi-site analytical models to be
constructed. Because one of the key privacy concerns would
be addressed, the SPARK protocol should allow analyses to
commence faster and with less need for negotiating complex
data-sharing agreements on PHI with each site (which can be a
time-consuming process, especially if it involves data crossing
jurisdictional boundaries).

Compared with other protocols that do not implement secure
computation (and hence do not provide the same level of assur-
ances), SPARK will have more communication overhead.
Therefore its overall performance will also be a function of this
communication overhead, which will be dependent on network
latency among the sites. Details on the number of messages
passed in the SPARK protocol are provided in the complexity
analysis in the online appendix. In general, communications can

Table 3 Absolute difference between SPARK and SAS estimates for intercept and five covariates, based on a simple bootstrap of 5000
replicates*, with a recorded precision of 10e-9 for estimates

No of covariates Type Estimate Maximum absolute difference between estimates (×10e-6)

Parameters b0 b1 b2 b3 b4 b5
5 iid 0.073 0.257 0.082 0.094 0.117 0.017

Correlated 0.060 0.229 0.133 0.061 0.084 0.158
Binary 0.071 0.447 0.110 0.079 0.233 0.126

10 iid 0.555 2.050 0.589 0.162 0.716 0.740
Correlated 0.025 0.089 0.032 0.017 0.036 0.059
Binary 0.023 0.072 0.025 0.024 0.027 0.027

15 iid* 0.930 4.340 0.980 0.807 1.850 1.510
Correlated 0.016 0.075 0.041 0.028 0.030 0.027
Binary 0.049 0.120 0.034 0.034 0.042 0.028

20 iid 0.021 0.093 0.026 0.040 0.033 0.028
Correlated 0.041 0.200 0.087 0.017 0.094 0.058
Binary 0.114 1.330 0.334 0.220 0.530 0.360

Std errors se0 se1 se2 se3 se4 se5
5 iid 0.017 0.069 0.020 0.023 0.031 0.024

Correlated 0.015 0.057 0.035 0.018 0.020 0.037
Binary 0.032 0.206 0.029 0.019 0.107 0.032

10 iid 0.376 1.504 0.429 0.142 0.524 0.533
Correlated 0.006 0.019 0.007 0.005 0.007 0.015
Binary 0.004 0.017 0.004 0.004 0.005 0.005

15 iid* 1.548 8.500 1.960 1.577 2.860 1.790
Correlated 0.002 0.018 0.005 0.003 0.005 0.004
Binary 0.005 0.009 0.003 0.002 0.004 0.003

20 iid 0.005 0.025 0.006 0.002 0.009 0.008
Correlated 0.009 0.052 0.023 0.005 0.026 0.019
Binary 0.073 1.239 0.301 0.205 0.514 0.340

*Replicates in which complete or quasi-complete separation was detected in SAS were excluded. This occurred in less than 2.5% of replicates for all but the dataset with 15 iid
covariates, in which separation was detected in 16.6% of replicates.
iid, independent identically distributed.

458 El Emam K, et al. J Am Med Inform Assoc 2013;20:453–461. doi:10.1136/amiajnl-2011-000735

Research and applications



be optimized through pipelining the data flow rather than com-
municating in bursts and by sending multiple messages together.

A multi-site analysis requires that all of the datasets are stan-
dardized, for example, by ensuring that coding schemes for
nominal or categorical variables are consistent. This standardiza-
tion effort would be required whether data are pooled for ana-
lysis or a distributed analysis is used, however.

While our primary use case has been the detection of ADEs
from data distributed across multiple sites, the SPARK protocol
can be used for other types of situations where the datasets are
distributed, such as genetic association studies. The main drivers
for using SPARK would be the need to expand the dataset that a
model is built upon to increase statistical power and enhance
population heterogeneity, and to deal with privacy concerns in
an expeditious manner that would still ensure accurate model
results.

Extensions to GEEs
In practice, one would expect that there would be stronger cor-
relations among the patients at a particular site than other sites.
For example, there may be treatment, lifestyle, or environmental
factors at one site that do not exist at other sites, leading to site-
specific effects on the probability of an ADE. This kind of cor-
relation can be accounted for by constructing GEEs. In the
online appendix, we provide a description of GEEs and extend
the SPARK protocol to implement GEEs for logistic regression.

Extensions to other GLMs
The basic protocol we have presented here can be extended to
other GLMs.94 The link functions for other GLMs are simpler
than the logit function, as illustrated in table 4. Secure computa-
tion of the link functions could be applied using the building
blocks in this paper. In the Poisson log function, for example,
we only need to compute the exponent of the product of regres-
sion vector and design matrix, which we already have in our
protocol.

Survival models
To model adverse events, another common modeling technique
is a time-to-event or Cox model. Time-to-event survival models
can be used to investigate hospitalization, infection, or death.
Survival analysis methods provide hazard rates and consider
various types of censoring, such as withdrawal from the study,
death from other causes, or loss to follow-up. Proportional
hazards models, in particular, are one of the most commonly
used methods in health research, and are a form of ordinal
model using the complementary log-log link function on
Bernoulli data.94 Therefore our extension of the secure protocol
to GLMs can include this form of survival modeling.

General limitations on remote analysis systems
A full implementation of the SPARK protocol would need to
address some of the concerns that exist with remote analysis
systems in general. In particular, if one considers the normal
equations, X’Xb=X’y, the left-hand system of equations has k
(k+1)/2 unknowns, and the right-hand system of equations has
k unknowns. One could therefore fit k(k+1)/2+k sub models to
determine these unknowns. This does not require the exposure
of the information matrix and can occur with the model results
only. To address concerns from the use of sub-models, it is
necessary to monitor the number of sub-models that are created
and limit their use accordingly.

An adversary may attempt to circumvent limits on the
number of sub-models by running multiple sub-models on
highly correlated outcomes. However, the uncertainty intro-
duced from using a different outcome may be enough to ensure
the data are not recoverable. Alternatively, the protocol may
instead use a different sub-sample of observations when building
sub-models. This is the preferred method discussed in Sparks
et al,68 although further investigation may be required to deter-
mine appropriate bounds on the desired level of uncertainty.

Other disclosure risks associated with allowing an analyst to
manipulate models through a remote analysis system can be
mitigated through a variety of means68 such as: variable trans-
formations would be limited to the most common (eg, log,
square root, etc), transformations of factors would not be
allowed, sparse factors or interactions would not be allowed,
estimates would be rounded, and samples would be used.

Contributors KEE designed the study, contributed to the literature review,
participated in interpreting the results, and contributed to writing the paper. SS
designed the study, contributed to the literature review, participated in interpreting
the results, and contributed to writing the paper. LA designed the study, contributed
to the literature review, participated in interpreting the results, and contributed to
writing the paper. RT defined the use case, contributed to the literature review,
participated in interpreting the results, and contributed to writing the paper. CE
defined the use case, participated in interpreting the results, and contributed to
writing the paper. MK designed the study, participated in interpreting the results,
and contributed to writing the paper.

Funding This work was supported by the Canada Research Chairs program, the
Ontario Institute for Cancer Research, the Canadian Institutes of Health Research,
National Institutes of Health Grant 1R01LM009989, National Science Foundation
(NSF) Grant Career-CNS-0845803, and NSF Grants CNS-0964350 and
CNS-1016343.

Competing interests None.

Provenance and peer review Not commissioned; externally peer reviewed.

Open Access This is an Open Access article distributed in accordance with the
Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which
permits others to distribute, remix, adapt, build upon this work non-commercially,
and license their derivative works on different terms, provided the original work is
properly cited and the use is non-commercial. See: http://creativecommons.org/
licenses/by-nc/3.0/

REFERENCES
1 Hoffman J, Doloresco F, Vermeulen L, et al. Projecting future drug expenditures.

Am J Health Syst Pharm 2010;67:919–28.
2 Couzin J. Gaps in the safety Net. Science 2005;307:196–8.
3 Weaver J, Willy M, Avigan M. Informatic tools and approaches in postmarketing

pharmacovigilance used by FDA. AAPS J 2008;10:35–41.
4 Gough S. Post-marketing surveillance: a UK/European perspective. Curr Med Res

Opin 2005;21:565–70.
5 Budnitz D, Pollock D, Weidenbach K, et al. National surveillance of emergency

department visits for outpatient adverse drug events. JAMA 2006;296:
1858–66.

6 Platt R, Wilson M, Chan K, et al. The new Sentinel Network–improving the
evidence of medical-product safety. N Engl J Med 2009;361:645–7.

7 Morgan S, McMahon M, Lam J, et al. The Canadian Rx Atlas. Vancouver: Centre
for Health Services and Policy Research, 2005.

Table 4 Examples of link functions

Name Function

Identity μ

Reciprocal 1/μ
Reciprocal squared 1/μ2

Square root
ffiffiffiffi
m

p
Log ln (μ)
Complementary log-log ln (−ln (μ))
Logit ln (μ/(1−μ))

El Emam K, et al. J Am Med Inform Assoc 2013;20:453–461. doi:10.1136/amiajnl-2011-000735 459

Research and applications



8 Lasser K, Seger D, Yu D, et al. Adherence to black box warnings for prescription
medications in outpatients. Arch Intern Med 2006;166:338–44.

9 Ray W, Stein C. Reform of drug regulation–beyond an independent drug-safety
board. N Engl J Med 2006;354:194–201.

10 Waxman H. The lessons of Vioxx–drug safety and sales. N Engl J Med
2005;352:2576–8.

11 Wiholm B, Olsson S, Moore N, et al. Spontaneous Reporting Systems outside the
US, in Pharmacoepidemiology.Strom B, ed. 3rd edn. Chichester: Wiley,
2000:175–92.

12 Friedman MA, Woodcock J, Lumpkin MM, et al. The safety of newly approved
medicines: do recent market removals mean there is a problem? JAMA
1999;281:1728–34.

13 Rawlins M, Jefferys D. Study of United Kingdom product licence applications
containing new active substances, 1987–9. BMJ 1991;302:223–5.

14 Radley D, Finkelstein S, Stafford R. Off-label prescribing among office-based
physicians. Arch Intern Med 2006;166:1021–6.

15 Strom B, Melmon K, Miettinen O. Post-marketing studies of drug efficacy: why?
Am J Med 1985;78:475–80.

16 Blum M, Graham D, McCloskey C. Temafloxacin syndrome: review of 95 cases.
Clin Infect Dis 1994;18:946–50.

17 Carleton B. Active surveillance systems for pediatric adverse drug reactions: an
idea whose time has come. Curr Ther Res 2001;62:738–42.

18 Kennedy D, Goldman S, Lillie R. Spontaneous Reporting Systems in the US, in
Pharmacoepidemiology.Storm BL, ed. 3rd edn. Chichester: Wiley, 2000:
151–74.

19 Fletcher A. Spontaneous adverse drug reaction reporting vs event monitoring: a
comparison. J R Soc Med 1991;84:341–4.

20 Basch E. The missing voice of patients in drug-safety reporting. N Engl J Med
2010;362:865–9.

21 Grady D. In Reporting symptoms, Don’t patients Know Best? New York times.
2010.

22 Tamblyn R, Abrahamowicz M, Dauphinee D, et al. Influence of physicians’
management and communication ability on patients’ persistence with
antihypertensive medication. Arch Intern Med 2010;170:1064–72.

23 Mann R. Prescription-event Monitoring, in Pharmacoepidemiology. In: Strom B, ed.
3rd edn. Chichester: Wiley, 2000:231–46.

24 Key C, Layton D, Shakir S. Results of a postal survey of the reasons for
non-response by doctors in a Prescription Event Monitoring study of drug safety.
Pharmacoepidemiol Drug Saf 2002;11:143–8.

25 Martin R, Biswas P, Mann R. The incidence of adverse events and risk factors for
upper gastrointestinal disorders associated with meloxicam use amongst 19,087
patients in general practice in England: cohort study. Br J Clin Pharmacol
2000;50:35–42.

26 MacDougall L, Majowicz S, Dore K, et al. Under-reporting of infectious
gastrointestinal illness in British Columbia, Canada: who is counted in provincial
communicable disease statistics? Epidemiol Infect 2008;136:248–56.

27 El Emam K, Mercer J, Moreau K, et al. Physician privacy concerns when disclosing
patient data for public health Purposes during a pandemic influenza Outbreak.
BMC Public Health 2011;11:454.

28 Effler P, Ching-Lee M, Bogard A, et al. Statewide system of electronic notifiable
diseases reporting from clinical laboratories. JAMA 1999;282:1845–50.

29 Mandl K, Overhage J, Wagner M, et al. Implementing syndromic surveillance: a
practical guide informed by the early experience. J Am Med Inform Assoc
2004;11:141–50.

30 Muscatello D, Churches T, Kaldor J, et al. An automated, broad-based, near
real-time public health surveillance system using presentations to hospital
Emergency Departments in New South Wales, Australia. BMC Public Health
2005;5:141.

31 Overhage J, Grannis S, McDonald C. A comparison of the completeness and
timeliness of automated electronic laboratory reporting and spontaneous reporting
of notifiable conditions. Am J Public Health 2008;98:344–50.

32 Carleton B, Foerster V, Warren L, et al. Post-marketing Pharmacosurveillance In
Canada. Ottawa, ON: Health Canada, 2005.

33 Kozyrskyj A, Mustard C. Validation of an electronic, population-based prescription
database. Ann Pharmacother 1998;32:1152–7.

34 Levy A, O’Brien B, Sellors C, et al. Coding accuracy of administrative drug
claims in the Ontario Drug Benefit database. Can J Clin Pharmacol
2003;10:67–71.

35 Tamblyn R, Lavoie G, Petrella L, et al. The use of prescription claims databases in
pharmacoepidemiological research: the accuracy and comprehensiveness of the
prescription claims database in Quebec. J Clin Epidemiol, 1995;48:999–1009.

36 Wilchesky M, Tamblyn R, Huang A. Validation of diagnostic codes within medical
services claims. J Clin Epidemiol 2004;57:131–41.

37 Ray W, Griffin M, Downey W, et al. Long-term use of thiazide diuretics and risk of
hip fracture. Lancet 1989;1:687–90.

38 Guess H, West R, Strand L, et al. Fatal upper gastrointestinal hemorrhage or
perforation among users and nonusers of nonsteroidal anti-inflammatory drugs in
Saskatchewan, Canada 1983. J Clin Epidemiol 1988;41:35–45.

39 Park-Wyllie L, Juurlink D, Kopp A, et al. Outpatient gatifloxacin therapy and
dysglycemia in older adults. N Engl J Med 2006;354:1352–61.

40 Spitzer WO, Suissa S, Ernst P, et al. The use of beta-agonists and the risk of death
and near death from asthma. N Engl J Med 1992;326:501–6.

41 Paterson J, Laupacis A, Bassett K, et al. Using pharmacoepidemiology to inform
drug coverage policy: initial lessons from a two-province collaborative. Health Aff
(Millwood) 2006;25:1436–43.

42 Schoen C, Osborn R, Doty M, et al. A survey of primary care physicians in eleven
countries, 2009: perspectives on care, costs, and experiences. Health Aff
(Millwood) 2009;28:w1171–83.

43 Jha A, Doolan D, Grandt D, et al. The use of health information technology in
seven nations. Int J Med Inform 2008;77:848–54.

44 Schoen C, Osborn R, Huynh P, et al. On the front lines of care: primary care
doctors’ office systems, experiences, and views in seven countries. Health Aff
(Millwood) 2006;25:w555–71.

45 Eggertson L. Canada lags US in adoption of e-prescribing. CMAJ 2009;180:
E25–6.

46 Kaye J, del Mar Melero-Montes M, Jick H. Mumps, measles, and rubella vaccine
and the incidence of autism recorded by general practitioners: a time trend
analysis. BMJ 2001;322:460–3.

47 Hippisley-Cox J, Coupland C. Unintended effects of statins in men and women in
England and Wales: population based cohort study using the QResearch database.
BMJ 2010;340:c2197.

48 Gottlieb S. Opening Pandora’s pillbox: using modern information tools to improve
drug safety. Health Aff (Millwood) 2005;24:938–48.

49 Nichols G, Conner C, Brown J. Initial nonadherence, primary failure and
therapeutic success of metformin monotherapy in clinical practice. Curr Med Res
Opin 2010;26:2127–35.

50 Hershman D, Kushi L, Shao T, et al. Early discontinuation and nonadherence to
adjuvant hormonal therapy in a cohort of 8,769 early-stage breast cancer patients.
J Clin Oncol 2010;28:4120–8.

51 Kim H, Zivin K, Ganoczy D, et al. Predictors of alternative antidepressant agent
initiation among U. S. veterans diagnosed with depression. Pharmacoepidemiol
Drug Saf 2010;19:1049–56.

52 Mikuls T, Fay B, Michaud K, et al. Associations of disease activity and treatments
with mortality in men with rheumatoid arthritis: results from the VARA registry.
Rheumatology 2010;50:101–9.

53 Hoffman C, Rice D, Sung H. Persons with chronic conditions. Their prevalence and
costs. JAMA 1996;276:1473–9.

54 Bansard C, Lequerre T, Daveau M, et al. Can rheumatoid arthritis responsiveness
to methotrexate and biologics be predicted? Rheumatology (Oxford)
2009;48:1021–8.

55 Hippisley-Cox J, Coupland C. Individualising the risks of statins in men and
women in England and Wales: population-based cohort study. Heart
2010;96:939–47.

56 Evans W, Relling M. Pharmacogenomics: translating functional genomics into
rational therapeutics. Science 1999;286:487–91.

57 Malhotra A, Murphy GJ, Kennedy J. Pharmacogenetics of psychotropic drug
response. Am J Psychiatry 2004;161:780–96.

58 Moore K, Duddy A, Braun M, et al. Potential population-based electronic data
sources for rapid pandemic influenza vaccine adverse event detection: a survey of
health plans. Pharmacoepidemiol Drug Saf 2008;17:1137–41.

59 Rosati K. Using electronic health information for pharmacovigilance: the promise
and the pitfalls. J Health Life Sci Law 2009;2:171–239.

60 Coloma P, Schuemie M, Trifiro G, et al. Combining electronic healthcare databases
in Europe to allow for large-scale drug safety monitoring: the EU-ADR project.
Pharmacoepidemiol Drug Saf 2011;20:1–11.

61 Velentgas P, Bohn R, Brown J, et al. A distributed research network model for
post-marketing safety studies: the Meningococcal Vaccine Study.
Pharmacoepidemiol Drug Saf 2008;17:1226–34.

62 Magid D, Gurwitz J, Rumsfeld J, et al. Creating a research data network for
cardiovascular disease: the CVRN. Expert Rev Cardiovasc Ther 2008;6:1043–5.

63 Lambert PC, Sutton AJ, Abrams KR, et al. A comparison of Summary patient-level
covariates in meta-regression with individual patient data meta-analysis. J Clin
Epidemiol 2002;55:86–94.

64 Rassen J, Avorn J, Schneeweiss S. Multivariate-adjusted pharmacoepidemiologic
analyses of confidential information pooled from multiple health care utilization
databases. Pharmacoepidemiol Drug Saf 2010;19:848–57.

65 Rassen J, Solomon D, Curtis J, et al. Privacy-maintaining propensity score-based
pooling of multiple databases applied to a study of biologics. Med Care 2010;48
(6 Suppl):S83–9.

66 Du W, Han Y, Chen S. Privacy-Preserving Multivariate Statistical Analysis: Linear
Regression and Classification. Proceedings of the Fourth SIAM International
Conference on Data Mining. Philidelphia, PA: Society for Industrial and Applied
Mathematics, 2004:222–33.

67 Wolfson M, Wallace S, Masca N, et al. DataSHIELD: resolving a conflict in
contemporary bioscience—performing a pooled analysis of individual-level data
without sharing the data. Int J Epidemiol 2010;39:1372–82.

460 El Emam K, et al. J Am Med Inform Assoc 2013;20:453–461. doi:10.1136/amiajnl-2011-000735

Research and applications



68 Sparks R, Carter C, Donnelly J, et al. Remote access methods for exploratory data
analysis and statistical modelling: privacy-preserving analytics. Comput Methods
Programs Biomed 2008;91:208–22.

69 Reiter J. New approaches to data dissemination: a glimpse into the future. Chance
2004;17:12–16.

70 Reiter J, Kohnen C. Categorical data regression diagnostics for remote access
servers. J Stat Comput Simulation 2005;75:889–903.

71 O’Keefe C, Good N. Regression Output from a remote Server. Data Knowledge
Eng 2009;68:1175–86.

72 Fienberg S, Nardi Y, Slavković A. Valid Statistical Analysis for Logistic Regression
with Multiple Sources. In: Cecilia G, Kantor P, Lesk M, eds. Protecting Persons
while Protecting the People. Berlin: Springer-Verlag, 2009:82–94.

73 Karr A, Lin X, Sanil A, et al. Analysis of integrated data without data integration.
Chance 2004;17:27–30.

74 Karr A, Feng J, Lin X, et al. Secure analysis of distributed chemical databases
without data integration. J Comput Aided Mol Des 2005;19:739–47.

75 Fienberg SE, Fulp WJ, Slavkovic AB, et al. “Secure” Log-linear and Logistic
Regression Analysis of Distributed Databases. PSD 2006.Domingo-Ferrer J,
Franconi L, ed. Heidelberg: Springer, 2006:277–90.

76 Karr AF, Fulp WJ, Vera F, et al. Secure, privacy-preserving analysis of distributed
databases. Technometrics 2007;49:335–45.

77 Karr AF. Secure statistical analysis of distributed databases, emphasizing what we
don’t know. J Privacy Confidentiality 2009;1:197–211.

78 Brown J, Holmes J, Shah K, et al. Distributed health networks: a practical and
preferred approach to multi-institutional evaluations of comparative effectiveness,
safety, and quality of care. 2010;48(6 Suppl 1):S45–51.

79 Behrman R, Benner J, Brown J, et al. Developing the sentinel system: a national
resource for evidence development. N Engl J Med 2011;364:498–9.

80 Platt R, Wilson M, Chan K, et al. The new sentinel network: improving the
evidence of medical-product safety. N Engl J Med 2009;361:645–7.

81 Platt R, Davis R, Finkelstein J, et al. Multicenter epidemiologic and health services
research on therapeutics in the HMO Research Network Center for Education and
Research on Therapeutics. Pharmacoepidemiol Drug Saf 2001;10:373–7.

82 Adam N, Wortman J. Security-control methods for statistical databases: a
comparative study. ACM Comput Surv 1989;21:515–56.

83 Muralidhar K, Sarathy R. Privacy Violations in Accountability Data Released to the
Public by State Educational Agencies. Federal Committee on Statistical
Methodology Research Conference. Washington, DC: Federal Committee on
Statistical Methodology, 2009.

84 Algranati D, Kadane J. Extracting confidential information from public documents:
the 2000 department of justice report on the federal use of the death penalty in
the United States. J Official Stat 2004;20:97–113.

85 Chin F. Security problems on inference control for SUM, MAX, and MIN queries.
ACM 1986;33:451–64.

86 Chin FY, GZSOYO∼LU G. Auditing and inference control in statistical databases.
IEEE Trans Softw Eng 1982;8:574–82.

87 Denning DE, Denning PJ, Schwartz MD. The tracker: a threat to statistical
database security. ACM Trans on Database Syst (TODS) 1979;4:76–96.

88 Domingo-Ferrer J. Inference Control in Statistical Databases: From Theory to
Practice. Lecture Notes in Computer Science, Vol 2316. Berlin: Springer-Verlag,
2002.

89 Marcum ZA, Amuan ME, Hanlon JT, et al. Prevalence of unplanned
hospitalizations caused by adverse drug reactions in older veterans. J Am Geriatr
Soc 2012;60:34–41.

90 Gibbons RD, Amatya AK, Brown CH, et al. Post-approval drug safety surveillance.
Annu Rev Public Health 2010;31:419–37.

91 Shepherd G, Mohorn P, Yacoub K, et al. Adverse drug reaction deaths reported
in United States vital statistics, 1999–2006. Ann Pharmacother 2012;46:
169–75.

92 Seynaeve S, Verbrugghe W, Claes B, et al. Adverse drug events in intensive care
units: a cross-sectional study of prevalence and risk factors. Am J Crit Care
2011;20:e131–40.

93 Forster AJ, Murff HJ, Peterson JF, et al. Adverse drug events occurring following
hospital discharge. J Gen Intern Med 2005;20:317–23.

94 Agresti A. Categorical Data Analysis. 2nd edn. New York: Wiley, 2002.
95 Agresti A. Categorical Data Analysis. Wiley Series in Probability and Statistics.

Hoboken, New Jersey: Wiley, 2002.
96 Aman Goel JJ. Comparing Various Optimization Algorithms for Binary Logistic

Regression. Machine Learning Course Project Paper. Los Angeles: University of
Southern California, 2010:5.

97 Paillier P. Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. The International Conference on the Theory and Application of
Cryptographic Techniques (EUROCRYPT). Prague, Czech Republic: International
Association for Cryptologic Research, 1999:223–38.

98 Goethals B, Laur S, Lipmaa H, et al. On Private Scalar Product Computation for
Privacy-Preserving Data Mining. Lecture Notes in Computer Science, Vol. 3506.
Berlin: Springer-Verlag, 2004:104–20.

99 Samet S, Miri A. Privacy-Preserving Bayesian Network for Horizontally Partitioned
Data. The 2009 IEEE International Conference on Information Privacy, Security,
Risk and Trust (PASSAT2009). Los Alamitos, CA: IEEE Computer Society’s
Conference Publishing Services, 2009:9–16.

100 Han S, Ng WK, Yu PS. Privacy-preserving Linear Fisher Discriminant Analysis. The
12th Pacific-Asia Conference on Advances in Knowledge Discovery and Data
Mining. Osaka, Japan: Springer-Verlag, 2008:136–47.

101 Hosmer DW, Lemshow S. Goodness of fit tests for the multiple logistic regression
model. Comm Stat Theory Methods 1980;9:1043–69.

102 Geladi P, Kowalski BR. Partial least-squares regression: a tutorial. Analytica Chim
Acta 1986;185:1–17.

103 Rosner B, Willett WC, Speigelman D. Correction of logistic regression relative risk
estimates and confidence intervals for systematic within-person measurement error.
Stat Med 1989;8:1051–69.

104 Gaudart J, Giusiano B, Huiart L. Comparison of the performance of multi-layer
perceptron and linear regression for epidemiological data. Comput Stat Data Anal
2004;44:547–70.

105 Heinze G, Schemper M. A solution to the problem of separation in logistic
regression. Stat Med 2002;21:2409–19.

106 Bagley SC, White H, Golomb BA. Logistic regression in the medical literature:
standards for use and reporting, with particular attention to one medical domain.
J Clin Epidemiol 2001;54:979–85.

107 Mallett S, Royston P, Dutton S, et al. Reporting methods in studies developing
prognostic models in cancer: a review. BMC Med 2010;8:1–11.

108 Harrell F. Regression Modeling Strategies. New York: Springer, 2001.
109 Iman R, Conover W. A distribution-free approach to inducing rank

correlation among input variables. Commun Stat Simulation Comput 1982;11:
311–34.

110 Kleinman K, Horton N. Using SAS for Data Management, Statistical analysis, and
Graphics. Boca Raton, FL: CRC Press, 2010.

111 King G, Zeng L. Logistic regression in rare events data. Polit Anal 2001;9:137–63.
112 Lowe W. Rare Events Research, in Encyclopedia of Social Measurement.

Kempf-Leonard K, ed. Cambridge: Academic Press, 2004:293–7.
113 Ruiz-Gazen A, Villa N. Storms prediction: logistic regression vs. random forests for

unbalanced data. Case Studies in Business, Industry and Government Statistics.
2007;1:91–101.

114 Scott A, Wild C. Fitting logistic models under case-control or choice based
sampling. J R Stat Soc 1986;48:170–82.

115 Albert A, Anderson J. On the existence of maximum likelihood estimates in logistic
regression models. Biometrika 1984;71:1–10.

116 Allison P. Convergence failures in logistic regression. SAS Global Forum. 2008.

El Emam K, et al. J Am Med Inform Assoc 2013;20:453–461. doi:10.1136/amiajnl-2011-000735 461

Research and applications


