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Simple Summary: Physicians routinely make individualized treatment decisions by accounting for
the joint effects of patient prognostic covariates and treatments on clinical outcomes. Ideally, this
is performed using historical randomized clinical trial (RCT) data. Randomization ensures that
unbiased estimates of causal treatment effect parameters can be obtained from the historical RCT data
and used to predict each new patient’s outcome based on the joint effect of their baseline covariates
and each treatment being considered. However, this process becomes problematic if a patient seen in
the clinic is very different from the patients who were enrolled in the RCT. That is, if a new patient
does not satisfy the entry criteria of the RCT, then the patient does not belong to the population
represented by the patients who were studied in the RCT. In such settings, it still may be possible to
utilize the RCT data to help choose a new patient’s treatment. This may be achieved by combining
the RCT data with data from other clinical trials, or possibly preclinical experiments, and using the
combined dataset to predict the patient’s expected outcome for each treatment being considered.
In such settings, combining data from multiple sources in a way that is statistically reliable is not
entirely straightforward, and correctly identifying and estimating the effects of treatments and patient
covariates on clinical outcomes can be complex. Causal diagrams provide a rational basis to guide
this process. The first step is to construct a causal diagram that reflects the plausible relationships
between treatment variables, patient covariates, and clinical outcomes. If the diagram is correct, it
can be used to determine what additional data may be needed, how to combine data from multiple
sources, how to formulate a statistical model for clinical outcomes as a function of treatment and
covariates, and how to compute an unbiased treatment effect estimate for each new patient. We use
adjuvant therapy of renal cell carcinoma to illustrate how causal diagrams may be used to guide
these steps.

Abstract: We discuss how causal diagrams can be used by clinicians to make better individualized
treatment decisions. Causal diagrams can distinguish between settings where clinical decisions can
rely on a conventional additive regression model fit to data from a historical randomized clinical
trial (RCT) to estimate treatment effects and settings where a different approach is needed. This may
be because a new patient does not meet the RCT’s entry criteria, or a treatment’s effect is modified
by biomarkers or other variables that act as mediators between treatment and outcome. In some
settings, the problem can be addressed simply by including treatment–covariate interaction terms in
the statistical regression model used to analyze the RCT dataset. However, if the RCT entry criteria
exclude a new patient seen in the clinic, it may be necessary to combine the RCT data with external
data from other RCTs, single-arm trials, or preclinical experiments evaluating biological treatment
effects. For example, external data may show that treatment effects differ between histological
subgroups not recorded in an RCT. A causal diagram may be used to decide whether external
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observational or experimental data should be obtained and combined with RCT data to compute
statistical estimates for making individualized treatment decisions. We use adjuvant treatment of
renal cell carcinoma as our motivating example to illustrate how to construct causal diagrams and
apply them to guide clinical decisions.

Keywords: adjuvant therapy; causal diagrams; individualized inferences; patient-specific decision-
making; precision medicine; prognostic biomarkers; predictive biomarkers

1. Introduction

Clinicians routinely make individualized treatment decisions for their patients based
on data that may come from multiple sources, including randomized clinical trials (RCTs),
observational studies, and preclinical experiments [1–3]. Combining such information
is a procedure known as data fusion [3–6]. Causal diagrams can be used to facilitate
patient-specific decision-making by showing what data should be used and by explicitly
representing the assumptions needed to combine data obtained from different sources.
To illustrate causal diagrams and data fusion and show how they may be used to guide
individualized treatment decisions, we will use adjuvant treatment for patients with renal
cell carcinoma (RCC) as our motivating example.

KEYNOTE-564 was a phase 3 RCT that randomized patients with clear cell RCC, the
most common RCC histology [7,8], to either adjuvant pembrolizumab or placebo following
nephrectomy with curative intent [9,10]. Eligible patients with stage M0, defined as no
history of radiologically visible metastases, were classified into either intermediate-to-
high or high risk of clear cell RCC recurrence, as shown in Table 1. Eligible patients
with metastasis to a distant organ or tissue (stage M1) who underwent nephrectomy and
complete resection of all metastatic disease were classified as “M1 with no evidence of
disease” (M1 NED) (Table 1). At the scheduled interim analysis after a median follow-up of
24.1 months, based on a stratified Cox proportional-hazards model, the estimated hazard
ratio (HR) of pembrolizumab versus placebo for the primary endpoint of disease-free
survival (DFS) time was 0.68 with a 95% confidence interval (CI) of 0.53 to 0.87. For overall
survival (OS) time, the trial’s key secondary endpoint, the estimated HR was 0.54 with
a 95% CI of 0.30 to 0.96. Several prespecified comparisons within subgroups did not
refute the assumption that the HR was the same across all subgroups examined. In the
pembrolizumab arm, no treatment-related deaths occurred, but grade ≥3 treatment-related
adverse events (AEs) occurred in 18.9% of patients, versus 1.2% of placebo patients [9].
These results led to the approval of adjuvant pembrolizumab by the United States Food
and Drug Administration (FDA) for patients with RCC. This led to a discussion of how
best to choose adjuvant therapies for RCC based on patient-level characteristics [10], which
is the focus of the present paper.

Utilizing observational and RCT datasets outside of KEYNOTE-564, fitted statistical
regression models have been developed to predict the DFS and OS probabilities of new
patients with RCC who did not receive adjuvant pembrolizumab [11]. One such example is
the Assure RCC prognostic nomogram, which is a freely available web-based computer pro-
gram (https://studies.fccc.edu/nomograms/492; accessed on 20 July 2022) that uses fitted
statistical regression models to risk stratify patients with RCC based on their age, pathologic
tumor size in centimeters (cm), RCC histology, Fuhrman nuclear grade, presence and extent
of vascular invasion, and presence or absence of coagulative necrosis, pathological lymph
node involvement, and sarcomatoid features [11]. Additionally, comprehensive molecular
characterization of clinical tissue samples, as well as experimental preclinical in vitro and
in vivo studies, have provided substantial insights into the biology of RCC [12–19]. This
biological knowledge can be represented by a causal diagram, which may shed light on the
transportability of treatment effect estimates obtained from RCTs to the population of RCC
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patients seen in the clinic and may facilitate the computation of nomograms for predicting
the clinical outcomes of these patients [3,5,20].

Table 1. Prespecified disease risk categories for each enrolled patient used by the KEYNOTE-564
randomized clinical trial of adjuvant pembrolizumab versus placebo control in patients with clear
cell renal cell carcinoma [9].

Intermediate-High
Risk High Risk

M1 with No
Evidence of

Disease

Pathologic primary tumor
(T) stage pT2 pT3 pT4 Any pT Any pT

Tumor nuclear grade Grade 4 or
sarcomatoid

Any
grade

Any
grade

Any
grade Any grade

Regional lymph node (N)
stage N0 N0 N0 N1 Any lymph

node stage

Metastatic stage M0 M0 M0 M0 M1

pT2: primary tumor >7 cm in greatest dimension, limited to the kidney
pT3: primary tumor extends into major veins or perinephric tissues, but not into the ipsilateral

adrenal gland and not beyond Gerota’s fascia
pT4: Tumor invades beyond Gerota’s fascia (including contiguous extension into the ipsilateral

adrenal gland)
N0: No regional lymph node metastasis

N1: Metastasis in regional lymph node(s)
M0: No history of radiologically visible distant metastasis

M1: History of radiologically visible distant metastasis

To illustrate how causal diagrams and properly formulated statistical regression
models can inform patient-specific inferences, we will focus on the clinical decision of
whether or not to recommend adjuvant pembrolizumab to patients with RCC based on their
individual characteristics. However, the concepts that we will discuss are generalizable
to any malignancy, more complex treatment options, and other clinical settings, such as
neoadjuvant treatment and metastatic disease.

2. Causal Diagrams

It is important to first distinguish between population parameters, a sample of ob-
served data, and statistical estimators. A parameter, which is easily understood but not
observed, is a population quantity such as median survival time, response probability, or
the effect of a covariate or treatment on a clinical outcome. We denote a clinical outcome
by Y, which may be survival time or a response indicator, and write y for an observed
value of Y, such as y = 12 months. The same convention will be used for other variables
that may take on different values in some random fashion, such as X for treatment and
x for a particular treatment x, for example, denoting X = 1 for pembrolizumab and X = 0
for placebo or standard of care. A statistic, which is anything that can be computed from
observed data using a formula or algorithm, may be used to estimate a parameter. For
example, to estimate a population median, a computed sample median may be 14.5 months
with a 95% CI of 9.4 to 18.7, keeping in mind that a second sample would give different
numbers because outcomes and samples are random. A Kaplan–Meier plot [21] is a sta-
tistical estimator of the survival function of the population represented by the sample
used to compute the plot, and here the population survival function is the parameter. The
underlying statistical principle is that, ideally, a sample of Y values should be obtained
in such a way that it represents the population of interest, and statistical sampling theory
provides a wide array of methods for ensuring this representation [22–24]. The design of
experiments such as clinical trials is distinct from sampling theory and can be facilitated by
the explicit representation of the causal relationships we wish to estimate.
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Relationships between patient covariates, treatments, and clinical outcomes can be
represented by causal diagrams, such as directed acyclic graphs (DAGs) [4,25,26]. The
simplest causal relationship occurs when a variable X, known as the “exposure” in epi-
demiology or “treatment” in clinical medicine, directly transmits its effect on an outcome Y
of interest (Figure 1A). In the RCC setting, the treatment, either adjuvant pembrolizumab
(X = 1) or placebo (X = 0), acts directly on the time to disease recurrence or death, defined
as Y = DFS time (Figure 1B). A prognostic variable Z may also directly affect DFS time
(Figure 1C,D), and in most settings, there is a vector of several prognostic variables. A
confounder C is a variable that influences both the outcome Y and treatment X (Figure 1E).
For example, the presence (C = 1) or absence (C = 0) of sarcomatoid features acts as a
confounding variable if it influences both DFS time and whether a physician chooses to
treat a patient with adjuvant pembrolizumab (Figure 1F).

Figure 1. Examples of causal relationships represented by DAGs: (A) A simple scenario whereby
the treatment choice X (also known as “exposure”) directly influences the outcome of interest Y;
(B) Corresponding simple clinical scenario whereby the treatment choice between adjuvant pem-
brolizumab or placebo directly influences the outcome of disease recurrence or death measured
by DFS; (C) Simple scenario whereby a prognostic variable Z directly influences the outcome Y;
(D) Corresponding clinical scenario whereby the presence or absence of pathologic lymph node
involvement directly influences DFS; (E) Scenario whereby a confounder C directly influences both
the treatment choice X and the outcome Y; (F) Corresponding clinical scenario whereby the presence
or absence of sarcomatoid features acts as a confounder by influencing treatment choice and DFS.

Another type of causal relationship occurs when the effect of treatment on the outcome
is not entirely direct, but rather is transmitted, at least in part, through a third variable,
known as a mediator, M (Figure 2A). For example, the effect of adjuvant pembrolizumab
compared with placebo on DFS time is mediated by the RCC immune microenvironment
(Figure 2B). The immune microenvironment of each RCC histologic subtype responds
differently to immune checkpoint therapies, such as pembrolizumab [8], and the microen-
vironment, in turn, affects DFS time. Consequently, the effect of a given treatment on DFS
time should vary with the immune microenvironment of each RCC histologic subtype
because the RCC immune microenvironment acts as a mediator.
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Figure 2. (A) Scenario whereby the effect of the treatment choice X on the outcome Y is transmitted
by a mediator M; (B) Corresponding clinical scenario whereby the effect of treatment choice on DFS
is transmitted by the renal cell carcinoma (RCC) immune microenvironment; (C) Another clinical
scenario whereby the effect of epithelial-mesenchymal transition (EMT) on DFS is transmitted by the
presence or absence of sarcomatoid features; (D) More detailed version whereby the effect of β-catenin
levels on DFS is mediated by EMT and the resultant presence or absence of sarcomatoid features.

As additional variables are included, causal diagrams become more complex. For
example, we can also include the influence of epithelial-mesenchymal transition (EMT) on
sarcomatoid dedifferentiation, as shown in Figure 2C. A more detailed causal diagram may
be obtained by including β-catenin levels that causally influence EMT (Figure 2D) [27]. As
more variables are added, a causal graph may become too complex to interpret usefully. An
important practical goal thus may be to reduce an overly complex causal graph to a more
coarse-grained causal description that can be used to deal with the problem at hand [28–31].
For example, the causal diagram in Figure 2C may be appropriate if a drug that modifies
EMT is being studied. Similarly, the more fine-grained causal diagram in Figure 2D may
be used in a study evaluating the prognostic role of assays measuring β-catenin levels.
Choosing the right level of granularity for a causal diagram is a subjective decision that
should be guided by the goal to use the diagram as a practical tool. This can be performed
by investigating how causal relationships may change when finer or coarser resolutions
are chosen.

2.1. Selection Diagrams

An important refinement of a causal diagram is to identify variables by which popula-
tions, or studies that are designed to represent them, may differ [5]. This is achieved by
including graphical objects called selection nodes that, while they are not variables them-
selves, use arrows to point to variables that have different sets of possible values between
populations [5,32]. If an arrow points from a selection node S to a variable Z (Figure 3A),
this says that the possible values of Z differ between populations. If no arrow points to Z,
then all populations of interest have the same set of possible Z values. A third scenario
occurs if an arrow points from a variable Z to a selection node S (Figure 3B), which in-
dicates the presence of selection bias, wherein there are differences that are not between
the populations but instead are between the datasets due to sampling artifacts. Selection
nodes with outgoing arrows are not mutually exclusive with selection nodes with incoming
arrows, and both types of arrows can appear in the same selection diagram if they represent
two distinct features of the data collection process [33,34]. In the present review, we will
focus only on transportability scenarios wherein the differences between populations are
inherent, which is denoted by selection nodes S having outgoing arrows toward variables
(Figure 3A).
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Figure 3. Examples of causal relationships represented by selection diagrams to guide transportability
of causal effects across populations: (A) Selection node S indicating shifts across populations in
the variable Z. In this scenario, the possible values of Z inherently differ between populations;
(B) Selection node S indicating selection bias for the variable Z. In this scenario, the differences in
Z between populations are due to sampling biases and not due to inherent variation; (C) Selection
node S indicating treatment shifts across populations; (D) Selection node S indicating mediator
shifts across populations; (E) Selection node S indicating shifts in the race of patients treated in a
randomized controlled trial (RCT) performed in the United States, compared with an RCT performed
in China. In this diagram, the variable “race” directly influences the outcome of interest and the
race of patients enrolled is different between the two RCTs; (F) Selection node S indicating shifts
in biomarker values across populations; (G) Selection node S indicating shifts in patient age across
populations; (H) Selection node S indicating shifts in the presence or absence of sarcomatoid features
across populations; (I) Selection node S indicating shifts in RCC histology across populations.

A selection diagram is a DAG that includes one or more selection nodes. A selection node
may be used to show where treatments (Figure 3C) or mediators (Figure 3D) are different
across populations. Whether or not a given variable has a selection node can be determined
from either external knowledge or the available dataset itself. A selection node identifies a
variable in a causal chain that may be affected by study differences. Selection nodes provide
an explicit way to determine whether inferences are transportable between populations
and, if not, what additional data are needed to ensure transportability [5,32,35,36]. A
major practical point is that a selection node may show that the data from an RCT are not
representative of a patient seen in the clinic. In this case, either the trial’s results cannot be
used to choose that patient’s treatment, or possibly additional data may be obtained and
combined with the RCT data to provide a basis for choosing a treatment.

A selection node can be used to show that the effects of treatments (Figure 3C) or
mediators (Figure 3D) are different between populations. For example, if an RCT of two
RCC treatments is performed in the United States and another RCT of the same treatments
is conducted in China, since the US trial will include African Americans and the Chinese
trial will not, a selection node should point to the variable “race” (Figure 3E). As another
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example, if one study includes a treatment given at dose levels 1, 2, and 3 and a second
study includes the same treatment at dose levels 3 and 4, then a selection node should
point toward treatment (Figure 3C). If, for a targeted biomarker, an “all-comers” population
includes patients who were either biomarker positive or negative, while a second study
population only includes biomarker-positive patients, then a selection node should point
toward the biomarker (Figure 3F). A selection node can indicate that patient age differs
between the population of patients being seen in the clinic, which includes patients older
than 65 years, and the population of a study that restricted patients to be younger than
65 years (Figure 3G). Because Figure 3G indicates that patient age influences outcome,
external data from studies that included patients older than 65 years are needed to obtain
valid inferences on the outcome for such patients seen in the clinic. A selection node may
also indicate that some studies included patients with sarcomatoid features whereas others
did not (Figure 3H), or that a study only included patients with clear cell RCC and no
other histologies (Figure 3I). The general practical point is that, if the variables denoted
by selection nodes are substantively different than those in a study population, then a
conclusion from that study alone cannot be transported to that patient.

In contrast, the range of a variable without a selection node does not change across
populations. For example, the lack of a selection node pointing toward “treatment” in
Figure 3D indicates that the treatment choices do not vary between populations. Such
assumed invariance in specific causal mechanisms allow inferences to be transported
from a study population to patients in a different population, e.g., a patient seen in the
clinic [5,20,36].

2.2. The Do-Calculus

The relationships represented by all types of DAGs, including selection diagrams,
can be used to guide a set of mathematical rules known as the do-calculus [25,37], which is
expressed using conditional probabilities. The central idea is to estimate causal effects by
distinguishing between two types of conditional probabilities. The first type conditions on
a variable, say X, that simply was observed and thus may have been confounded by other,
possibly unknown variables. The second type conditions on a known value x of X that was
determined by one’s action or intervention, represented by do(X = x), and thus, X is free of
confounding effects. The mathematical expression do(X = x) is known as the do() operator
and is used to denote a known intervention. For example, in an RCT, if a patient with
covariates Z and unknown confounders C (Figure 4A) was randomly assigned adjuvant
pembrolizumab (X = 1), then the do() operator may be used to replace the conditional
probability P(RCT)(Y | X, Z) with P(RCT)(Y | do(X = 1), Z). This ensures that there are no
confounding effects on X, so the causal effect of pembrolizumab versus a control treatment
(X = 0) for a patient with covariates Z may be obtained from statistical estimates of P(RCT)(Y
| do(X = 1), Z) and P(RCT)(Y | do(X = 0), Z). These estimates can be computed from the
RCT data under an assumed statistical regression model including the effects of X and Z on
Y. In contrast, if X is observed and not assigned, then the values of X in a dataset may have
been affected by known or unknown confounding variables, which can cause severe bias
and invalidate conventional statistical estimators.
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Figure 4. DAGs modified by the do() operator: (A) Treatment choice X influences the outcome Y
which is also influenced by covariates Z. Furthermore, unknown confounders C may influence both
treatment choice X and the outcome Y; (B) As indicated by the red crossmarks, the do() operator
expression do(X = x) removes all arrows entering X. This modification represents the physical effect
of an experimental intervention that sets the value X = x as constant while keeping the rest of the
causal model unchanged; (C) This yields a new DAG whereby the distribution P(Y | do(X = x), Z)
is the same as P(Y | X = x, Z); (D) In this DAG, treatment choice X influences the outcome Y and
another covariate W. The confounder C influences X, Y, and W; (E) The do() operator expression
do(X = x) removes all arrows entering X; (F) This yields a new DAG whereby the distribution P(Y |
do(X = x), C) is the same as P(Y | X = x, C); (G) The confounder C influences the treatment choice X
and the outcome Y; (H) Paths from X to Y that remain after removing all arrows pointing out of X are
called “backdoor” paths because they flow backward out of X into Y. Shown here is the backdoor
path from X to Y via the confounder C; (I) In this DAG, there are no forward-directed arrows pointing
out of X toward Y. Therefore, according to rule 3 of the do-calculus, P(Y | do(X = x, Z) = P(Y | Z).

In terms of causal diagrams, the expression P(RCT)(Y | do(X = x), Z) modifies the graph
in Figure 4A by removing all arrows going into X (Figure 4B). This results in a new causal
model (Figure 4C) wherein the distribution P(RCT)(Y | do(X = x), Z) is the same as P(RCT)(Y
| X = x, Z). This modification represents the physical effect of the experimental intervention
that sets the value X = x, while keeping the rest of the causal model unchanged.

To illustrate how the do() operator works in practice, a common example in the RCC
setting is one where a patient in an observational dataset (denoted as OBS), not obtained
from an RCT, has X = 1 recorded, indicating that the patient received pembrolizumab, but
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it is not known how the patient’s physician chose that treatment. In statistical language,
treatment selection was biased in the observational dataset. Consequently, in contrast with
what is widely believed, fitting a regression model for DFS time Y as a function of treatment
X and covariates Z to the observational dataset may not provide an unbiased statistical
estimator of the effect of pembrolizumab versus standard of care. From a causal viewpoint,
for a patient with covariates Z, the do() operator cannot be applied due to the treatment
assignment bias, so while P(OBS)(Y | X = x, Z) can be computed, P(OBS)(Y | do(X = x), Z)
cannot be computed for either X = 0 or X = 1. If, instead, the data came from an RCT
of pembrolizumab (X = 1) versus surveillance (X = 0), then one can estimate P(RCT)(Y |
do(X = x), Z) from the data for each x, since randomization removes any arrows into X.
This allows one to obtain an unbiased estimator of the causal effect E(Y | do(X = 1), Z)
- E(Y | do(X = 0), Z), which is the difference in expected DFS times for pembrolizumab
versus standard of care for a patient with covariates Z. This example illustrates the scien-
tific difference between recording data from medical practice, where physicians choose
treatments based on their knowledge and each patient’s baseline information, and data
from an RCT, where each patient’s treatment is chosen by randomization in order to obtain
a statistically unbiased treatment comparison for the benefit of future patients. That is, data
obtained from clinical practice are inherently biased due to each physician using available
information to choose the treatment that they think will be best for each patient, while data
from an RCT, where each patient’s treatment was chosen by flipping a coin, are unbiased.
The point is that randomization is a statistical device to obtain unbiased estimators in order
to maximize the benefit for future patients when choosing their treatments.

Three inferential rules, known as the do-calculus, have been derived to transform
conditional probability expressions involving the do() operator into other, more useful
conditional probability expressions. The first rule considers a DAG, such as the one shown
in Figure 4D, where we are interested in the probability distribution of the outcome Y
following treatment X conditioned on all patient covariates, which we denote by W and C.
As noted earlier, in an RCT, which sets do(X = x), all arrows into X are removed (Figure 4E),
resulting in the causal model shown in Figure 4F. Rule 1 of the do-calculus guides the
insertion and deletion of variables by stipulating that if, after deleting all paths into X, the
set of variables C and treatment choice X = x block all the paths from W to Y regardless
of the direction of the arrows on these paths (Figure 4F), then P(RCT)(Y | do(X = x), C, W)
= P(RCT)(Y | do(X = x), C). In probability language, the do() operator ensures that Y is
conditionally independent of the covariates W, given do(X = x) and the covariates C. The
practical implication of Rule 1 is that it allows us to simplify our regression model by
dropping the covariates W. For example, suppose that C is a prognostic score recorded
in an RCT of pembrolizumab versus surveillance, W is the frequency of monitoring for
treatment toxicity based on each patient’s prognosis and chosen treatment, and Y is DFS
time. The path from W to Y is blocked by conditioning on C, and therefore Y is conditionally
independent of W given C and do(X = x). Accordingly, in the RCT of pembrolizumab
versus surveillance, we should condition on the prognostic score but not on the frequency
of monitoring for treatment toxicity.

Before we move to Rule 2 of the do-calculus, we first need to define back-door path. A
back-door path is a non-causal path from the treatment X to the outcome Y. As shown in
Figure 4G,H, all paths from X to Y that remain after removing all arrows pointing out of X
(Figure 4H) are back-door paths because they flow backward out of X into Y through C. Rule
2 of the do-calculus describes a relationship between an outcome Y, an intervention X, and
a vector C of covariates by stipulating that, if the covariates in C block all back-door paths
from X to Y (as shown for example in Figure 4D,G), then P(Y | do(X = x), C) = P(Y | X = x,
C). This rule requires the strong, unverifiable assumption that there are no unknown
external confounders that affect both Y and X and do not belong to the observed vector C.
Under this assumption, the probability equality says that it is not necessary to randomize
patients between X = 1 and X = 0 because knowledge of C allows the do() operator to be
applied. The practical implication, however, is not that one may simply fit a regression
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model for P(Y | X, C) to observational data to estimate the covariate-adjusted treatment
effect in an unbiased way. This is because the assumption underlying Rule 2 cannot be
verified. In practice, statistical bias correction methods are applied, such as inverse probability
of treatment weighting (IPTW), described in Section 2.4 below, that use the available covariates
in C to provide an approximation to the strong assumption that a vector C of observed
covariates blocks all back-door paths from X to Y. Thus, Rule 2 formalizes the motivation
for applying statistical methods that correct for bias, or at least mitigate it, when analyzing
observational data. Such methods are discussed briefly in Section 3, below.

Rule 3 of the do-calculus guides the insertion and deletion of interventions by stipulat-
ing that, if there is no path from X to Y with only forward-directed arrows (Figure 4I), then
P(Y | do(X = x), Z) = P(Y | Z). In this case, observing the covariates Z implies that treatment
(or exposure) X has no causal effect on outcome Y. An example from epidemiology is the
once common belief that soda pop consumption caused poliomyelitis, due to the observa-
tion that higher sales of soda pop (X) were positively associated with a higher incidence of
poliomyelitis (Y). However, once the season (Z) of the year was recorded, it was seen that
both soda pop consumption and poliomyelitis incidence were higher during the summer
months (Z = 1) and lower during the winter months (Z = 0). Thus, Y was conditionally inde-
pendent of X given Z. This phenomenon is commonly described by saying that association
does not imply causation, where an apparent effect of X on Y is due to the fact that Z drives
both X and Y. In this case, Z is sometimes called a “lurking variable” acting as a confounder,
and X is called an “innocent bystander.” For a therapeutic example, suppose that X = 1
corresponds to standard treatment combined with a completely ineffective experimental
agent and X = 0 is standard treatment alone, while Z = 1 denotes good prognosis and Z = 0
denotes poor prognosis. If X = 1 is more likely to be given to good-prognosis patients (Z = 1)
and less likely to be given to poor-prognosis patients (Z = 0), then the resulting data will
show that X and DFS time (Y) are positively associated, with estimates Ê[Y | X = 1] > Ê[Y
| X = 0] apparently implying that adding the experimental agent increases expected DFS
time. However, once one accounts for prognosis (Z) the estimates are the same, that is, Ê[Y
| X = 1, Z] = Ê[Y | X = 0, Z], aside from random variation in the data. This is because P(Y |
do(X = x), Z) = p(Y | Z). That is, DFS time (Y) is conditionally independent of the choice of
treatment (X) given prognosis (Z). While this example may seem somewhat contrived, the
practice of combining an active control with a new experimental agent and cherry-picking
patients with a better prognosis for evaluating the combination in a single-arm trial is not
uncommon in oncology [38,39].

2.3. Causal Hierarchy

Causal relationships represented by DAGs and expressed by conditional probabilities
involving the do() operator apply to one domain, such as the population represented by
patients enrolled in an RCT. To use a DAG to determine whether causal knowledge can be
transported to another domain, such as the population of patients a physician sees in the
clinic [5,36,37], it is useful to distinguish between three types of causal problems. These
comprise a hierarchy of increasing difficulty, called the ladder of causation (Table 2) [40].
The simplest type of causal problem, layer 1, is predicting an event in a population based
on association. A conditional probability, such as P(salmonella infection | diarrhea),
characterizes association and may be estimated statistically from data on salmonella and
diarrhea, but it is inadequate for addressing layer 2 or layer 3 causal problems without
additional experimental knowledge or assumptions. Layer 2 involves determining what
happens when an intervention, such as an RCT, is performed in a cohort of patients. The
do() operator can be used to denote such interventions, and the do-calculus rules can
be used to transform expressions by introducing do() operators in layer 2 conditional
probabilities. Layer 3 involves choosing between treatments for an individual patient, and
this class of queries requires the potential outcomes framework, which is described below.
We will give many examples of layer 3 problems in Section 5 because a central focus of
our paper is how to integrate observational data (layer 1) with experimental data (layer 2)
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to make individualized treatment decisions (layer 3). Toward this goal, we first need to
describe the potential outcomes approach, which is necessary to answer layer 3 questions.

Table 2. The ladder of causation [40]. Y is the outcome, DFS time; X is treatment, with X = 1 for
adjuvant pembrolizumab and X = 0 for placebo; Z is the baseline prognostic risk, with Z = 1 for high
risk of recurrence. ccRCC = clear cell renal carcinoma.

Layer Activity Analysis Unit Mathematical
Expression Example Query

One Observation Population P(Y | Z) What is the DFS time distribution in patients
at high risk for ccRCC recurrence?

Two Intervention Population P(Y | do(X = 1))
What is the DFS time distribution in patients

with ccRCC treated with adjuvant
pembrolizumab?

Three Potential outcomes Individual Patient E(YX = 1 | Z = 1) −
E(YX = 0 | Z = 1)

What would the expected DFS time be if I
treat a patient with high-risk ccRCC with

adjuvant pembrolizumab compared to
placebo?

2.4. Causal Inference and Potential Outcomes

To explain potential outcomes, we return to the setting where a physician wishes to
decide between adjuvant pembrolizumab (X = 1) and surveillance monitoring (X = 0) for a
patient with covariates Z. The physician may consider what the patient’s future outcomes
would be for each treatment, which we write as YX = 1 and YX = 0. These are called potential
outcomes [41–43] because only one treatment can be given and, thus, only one of YX = 1 or
YX = 0 can be observed. This thought experiment corresponds to an imaginary world where
one can make two identical copies of each patient, treat one with adjuvant pembrolizumab
and the other with surveillance monitoring, and observe both YX = 1 and YX = 0. Writing the
expected value of Y for the copy treated with adjuvant pembrolizumab as E(YX = 1 | Z) and
for the copy treated with standard of care as E(YX = 0 | Z), the difference

Ψ = E(YX = 1 | Z) − E(YX = 0 | Z) (1)

is the causal effect of treating the patient with adjuvant pembrolizumab rather than surveil-
lance monitoring.

Of course, in the real world one cannot make two copies of a patient. Only one of
the two treatments can be given to a patient, and thus only one of each patient’s potential
outcomes can be observed. If the patient is treated with pembrolizumab, then X = 1, and
the potential outcome YX = 0 for the treatment X = 0 is called a counterfactual. This thought
experiment has a very useful practical application because it provides a basis for computing
an unbiased statistical estimator of Ψ using data from either an RCT or an observational
study, under some reasonable assumptions. First, thinking about YX = 1 and YX = 0 only
makes sense if, for example, a patient actually treated with adjuvant pembrolizumab has an
observed outcome equal to the potential outcome for pembrolizumab, that is, if Y = YX = 1

when X = 1. Similarly, if the patient actually receives surveillance monitoring, X = 0, then
Y = YX = 0. This is called consistency [43–45]. Defining the propensity scores as treatment
assignment probabilities Pr(X = 1 | Z), both treatments must be possible for each Z, formally
0 < Pr(X = 1 | Z) < 1, called positivity. The potential outcomes YX = 1 and YX = 0 also must be
conditionally independent of X given Z. Defining the causal estimator as

Ψcausal =
Y ∗ X

Pr(X = 1 | Z) −
Y ∗ (1− X)

Pr(X = 0 | Z) ,

it follows from a simple probability calculation that E(Ψcausal) = Ψ under these assumptions.
That is, the causal estimator Ψcausal is an unbiased estimator of the causal effect Ψ. If the
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causal estimator is computed for each patient in a sample, assuming that the potential out-
comes of each patient are not affected by the treatments given to the other patients, known
as the Stable Unit Treatment Value Assumption (SUTVA) [43–45], then the sample mean of the
individual causal estimates is an unbiased estimator of Ψ, provided that each treatment
assignment probability Pr(X = 1 | Z) (propensity score) is known. If the values of Pr(X = 1 |
Z) are not known, as in an observational dataset, then they can be estimated from the data
by fitting a regression model for Pr(X = 1 | Z). These propensity score estimates quantify
how treatments were chosen based on individual patient covariates, and using them to
compute Ψcausal produces an approximately unbiased estimator of Ψ. This is called inverse
probability of treatment weighting (IPTW) estimation [46–48], a method often used when
analyzing observational data. In a fairly randomized trial, Pr(X = 1 | Z) = 1/2 regardless of
Z, and some simple algebra shows that the IPTW estimator equals the difference between
the sample means for the two treatments. This also holds for unbalanced randomization,
say with probabilities 2/3 for the experimental and 1/3 for the control treatment.

Under a statistical regression model for P(Y | X, Z), the causal treatment effect for a
patient with covariates Z is defined as the difference

Ψ(Z) = E(Y | do(X = 1), Z) − E(Y | do(X = 0), Z),

and an estimator of Ψ(Z) for each Z may be obtained by fitting the regression model to
RCT data. With observational data, IPTW or a variety of other statistical methods for bias
correction may be used [46,49,50]. If two or more datasets are combined based on a causal
diagram, then appropriate statistical methods for bias correction also must be used [51–54].

3. Causal Modeling of Treatment Effect Heterogeneity

The family of modern statistical regression models is quite rich and may accom-
modate a wide variety of relationships between treatments, prognostic covariates, and
outcomes [45,55–58]. In practice, a regression model should be chosen to accommodate the
data structure at hand, guided by model criticism, also known as goodness-of-fit analyses,
which is performed to ensure that the model provides a reasonable fit to the dataset at
hand [56,59–62]. For example, if goodness-of-fit analyses show that the proportional haz-
ards assumption is not valid for a survival-time dataset, then the Cox model should not be
used [63]. Bayesian nonparametric (BNP) regression models for P(Y | X, Z) are a family of
robust models that can accurately approximate any distribution, due to the property of “full
support” [55,64,65]. Moreover, BNP regression models can be used to correct for bias. An
example of this was provided by a computer simulation study in the context of estimating
mean survival times of several different multicycle adaptive treatment algorithms, known
as “dynamic treatment regimes,” for acute leukemia. The simulations showed that the
BNP regression model reliably corrects for bias in an observational dataset if the covariates
causing the bias are known and available [66]. Since details of BNP models and the array
of statistical methods for goodness-of-fit analyses are beyond the scope of this paper, for
simplicity, we will assume that model criticism has been performed, and that the regression
model includes a linear component, LIN, that is a parametric function of treatment X and
a vector Z of patient covariates. For example, if survival time (Y) follows a log-normal
distribution, then LIN = E[log(Y) | X, Z] and a larger LIN is more desirable because it
corresponds to a longer mean survival time. If, instead, Y follows a Weibull distribution,
then LIN is a component of the log hazard function and a smaller LIN is more desirable
because it corresponds to a lower risk of death.

3.1. Causal Diagrams and Interaction Parameters

The magnitude and direction of a treatment effect can vary depending on the char-
acteristics of each individual patient. This is called heterogeneity of treatment effect (HTE).
For example, the effect of adjuvant pembrolizumab on DFS is expected to be different
for patients with clear cell RCC compared to patients with other RCC histologies. The
Predictive Approaches to Treatment effect Heterogeneity (PATH) consensus statement was
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developed to provide physicians with guidance on how to account statistically for HTE
when computing patient-specific treatment effect estimates [67]. The PATH framework
distinguishes between additive (risk modeling) and interactive (effect modeling) forms of LIN
in regression models for computing these estimates [67,68]. To guide this choice, a causal
diagram may be used to decide whether a regression model should take the additive form
or interactive form. Let Z = (Z1, . . . ,Zp) denote a vector of patient covariates, and a = (a1,
. . . ,ap) and c = (c1, . . . ,cp) denote two corresponding vectors of parameters, and write the
linear combinations

aZ = a1Z1 + . . . +ap Zp and cZ = c1Z1 + . . . +cp Zp.

The additive (risk modeling) form of a treatment effect has linear term

LIN = b0 + b1X + aZ,

where b1 is the experimental-versus-control treatment effect regardless of Z, while the
interactive (effect modeling) form is given by

LIN = b0 + b1X + aZ + (cZ) X.

In this interactive model, the experimental-versus-control treatment effect depends on
the parameters b1 and c, and the patient covariates Z.

Causal diagrams can be used to represent additive cases (Figure 5A,B) or interactive
cases (Figure 5C,D), allowing users to determine which of the two modeling approaches is
more biologically plausible. Figure 5A represents a scenario wherein the treatment choice
X and patient covariates Z independently influence the outcome Y, which corresponds
to the additive regression model. In an additive risk model that includes only the main
effects, b1 X + aZ, the covariates Z often are called prognostic variables, corresponding to Z
in the causal diagram of Figure 5A. Figure 5C represents a scenario where the treatment
choice X and a single baseline biomarker B interact by jointly influencing the mediator M
that transmits the effect of X on the outcome Y. Here the biomarker B plays the role of Z,
and this corresponds to the interactive form, LIN = b0 + b1X + a B + c BX. The covariate B
shown in Figure 5C is called a predictive variable because it has a multiplicative interaction
effect [2]. The terms prognostic and predictive can be misleading, however, because, as
described above, prognostic variables can be used to estimate and predict patient-specific
outcomes [2,69]. For the purposes of the present paper, we will use these terms due to their
widespread use in the oncology literature [70].

In the RCC clinical scenario illustrated in Figure 5B, the relative treatment effect,
typically measured on the HR scale, is stable and independent of the effect of prognostic
variables on the DFS outcome. The assumption that the relative treatment effect is stable
across different patients is called treatment effect homogeneity and is a fundamentally scale-
dependent concept, i.e., the estimated relative treatment effect may be stable using one
scale but variable using another scale [68,71]. For example, even in cases where the
relative treatment effect measured on the HR scale is the same between patients, the
treatment’s effect on median survival or absolute risk reduction probabilities can vary
widely between patients with different covariates [2,72]. Thus, a more accurate term
might be treatment effect homogeneity in the scale of interest [73]. Ongoing methodological
research is investigating situations with treatment effect homogeneity in distribution wherein
treatment effect homogeneity is noted across all standard scales [71,73]. In the present
paper, for simplicity, particularly in the illustrative examples discussed in Section 5, causal
diagrams such as those shown in Figure 5A,B will be used to represent treatment effect
homogeneity on the HR scale, which is the most commonly used scale for survival analyses
in medicine [74].
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Figure 5. DAGs representing the two modeling strategies recommended by the Predictive Approaches
to Treatment effect Heterogeneity (PATH) statement: (A) Additive (“risk modeling”) approach where
the outcome Y is independently influenced by a treatment X and baseline risk Z; (B) Additive
modeling scenario whereby DFS is independently influenced by the treatment choice between
adjuvant pembrolizumab or placebo and by each patient’s baseline risk as determined by renal
cell carcinoma (RCC) prognostic risk models such as the Assure nomogram; (C) Interactive “effect
modeling” approach where treatment X and baseline biomarker B interact by influencing together the
mediator M, transmitting the effect of X on the outcome Y; (D) Interactive modeling scenario whereby
RCC histology interacts with the treatment choice between adjuvant pembrolizumab or placebo by
influencing together the RCC immune microenvironment transmitting the effect of treatment choice
on DFS.

In some scenarios, the assumption of treatment effect homogeneity across patient
populations may be implausible based on contextual biological knowledge. This is the
situation represented by Figure 5C, where a biomarker B influences the relative treatment
effect. For example, the HR for the DFS outcome of pembrolizumab compared with
placebo may be different depending on RCC histology (B) (Figure 5D). The magnitude and
direction of the interactive histology–treatment effect b3BX depend on the value of B for
each patient, so different values of B may lead to different treatment choices. For example,
when analyzing data from an RCT of a targeted experimental treatment represented by
X = 1, suppose that it is desired to estimate the effect of a biomarker, represented by an
indicator variable B = 1 for biomarker positive and B = 0 for biomarker negative, on overall
survival time (Y). In this case, one should assume the interactive form for LIN, where b2
is the biomarker’s main effect and b3 is the additional treatment–biomarker interaction.
The overall experimental treatment effect is b1 + b2 + b3 in biomarker-positive patients
and b1 in biomarker-negative patients, so the experimental-versus-control treatment effects
are (b1 + b2 + b3) − b2 = b1 + b3 if B = 1 and b1 − 0 = b1 if B = 0. Accordingly, the effect
of adjuvant pembrolizumab on DFS is different for patients with clear cell RCC (B = 1)
versus other RCC histologies (B = 0), so here RCC histology plays the role of the biomarker.
Once a dataset is analyzed under an interaction model, the magnitudes and variances
of the parameter estimates play critical roles in deciding whether there are substantively
meaningful estimated experimental-versus-control effects in biomarker-positive patients,
in biomarker-negative patients, or overall. This is addressed statistically by estimating
survival probabilities or performing hypothesis tests within the biomarker subgroups,
based on the fitted regression model [75,76].
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The example in Figure 5D illustrates that, in many settings, the strong assumption
that there is one treatment effect, possibly defined as an HR, that is identical across all
patient subgroups may be clinically implausible or not supported by the data. In such
cases, the PATH statement recommends using models that include treatment–subgroup
interactions to account for HTE [67,68], if the subgroups are known. HTEs may take much
more complex forms than the treatment–covariate interactions in the LIN given above. In
such a case, more flexible statistical methods such as a regression tree [77,78], neural net [79],
or BNP regression model [64] may be applied to capture complicated patterns, such as high-
order interactions among X and elements of a vector (Z, B) of variables that includes both
patient prognostic covariates Z and a biomarker B. These models lack a uniform component
that can be called LIN. A fitted regression model still can be used to compute expected
or predicted values of Y, along with their distributions, for a given patient’s (Z, B) = (z, b)
and each treatment X = x, in order to choose an optimal treatment for that patient. This
was illustrated by a regression analysis of an observational dataset including 151 acute
leukemia patients who underwent allogeneic stem cell transplantation (allosct) [66]. A
BNP model was fit for Y = log survival time as a function of X = the delivered dose of
intravenous busulfan in the preparative regimen for allosct, Age, and the indicator AD of
whether the patient had active disease (AD = 1) or not (AD = 0) at transplant. The fitted
BNP model showed that the intravenous busulfan dose that maximized mean survival time
E(Y | X, Age, AD) varied substantively and nonlinearly with both Age and AD, illustrated
graphically by Figures 6 and 7 of Xu et al. [66]. The three-way (X, Age, AD) interaction
identified by the BNP model can be used to guide the choice of X by a physician based on
the joint causal effect on expected survival time. This would not have been detected by a
conventional survival time regression model that included only conventional AUC-Age
and AUC-AD interaction terms.

To summarize, there are several objects and actions to consider when using causal
ideas to guide one’s choice of data, statistical regression models, and inferential methods to
choose an individualized treatment. The first is the patient’s covariates, which may include
prognostic variables Z and biomarkers B, the possible treatments X, and the outcome Y that
one wishes to optimize. Next, based on clinical and biological knowledge, a causal diagram
that may include selection nodes should be constructed. Using the diagram, it should be
decided whether the currently available dataset is adequate, or if additional external data
or knowledge are needed to remove selection nodes. If necessary, an appropriate statistical
method for properly combining data from multiple sources should be applied. The next
step is considering possible statistical regression models for P(Y| X, Z, B), performing
goodness-of-fit analyses to choose an appropriate model, and fitting it to the data. The
causal graphs can help guide these choices, including the decision of whether treatment–
covariate interactions should be included in a model’s linear term, if it has one, to account
for HTE. If the fitted model shows that there is HTE, then, using each patient’s (Z,B), the
estimate of P(Y| X, Z = z, B = b) based on the fitted model for each possible treatment X = x
can be used to choose the best x for that patient.

When constructing a causal diagram, it is useful to distinguish between settings where
an external dataset is available and may be combined formally with RCT data and settings
where basic biological knowledge reliably motivates the belief that a particular agent
may only have an anti-disease effect in a particular subpopulation. This is the case, for
example, if it is well understood that a targeted agent can only affect a biologically targeted
biomarker B, such as a specific histology, cancer cell surface marker, or signaling pathway,
that activates the mediator pathway M (Figure 5C), and it is impossible to have a direct effect
X→ Y without the mediator. In such settings, it makes no sense to include patients who
are biomarker negative in an RCT. An example of this will be given in Section 3.4, where
the development of the targeted agent trastuzumab for patients with human epidermal
growth factor receptor 2 (HER2)-positive breast cancer is discussed.

When making such a determination, however, it must be kept in mind that some novel
agents have multiple effects, and an agent may improve patient outcomes by acting on an
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unknown or unidentified biomarker that is different from the particular biomarker B that
has been studied experimentally. In this case, excluding putatively biomarker-negative
patients is a mistake, since it deprives them of the new agent’s unanticipated anti-disease
effect. Examples of unexpected biological effects include the accidental discoveries of
penicillin as an antibiotic [80], sildenafil citrate as a treatment for erectile dysfunction [81],
and nitrogen mustard as an alkylating anticancer agent [82]. A recent example of an agent
showing efficacy in biomarker-negative patients is the phase 3 testing of the new HER2-
targeting antibody-drug conjugate trastuzumab deruxtecan, which substantially improved
outcomes in patients with breast cancer whose HER2 biomarker levels were too low to
justify treatment with conventional trastuzumab [83].

Figure 6. Selection diagrams representing the risk modeling approach recommended by the Predictive
Approaches to Treatment effect Heterogeneity (PATH) statement: (A) Risk modeling approach where
the outcome Y is determined by a randomized treatment X and baseline risk Z. The selection node S
indicates that baseline risk can shift across populations; (B) Risk modeling scenario whereby DFS is
influenced by the randomized treatment choice between adjuvant pembrolizumab or placebo and
by each patient’s baseline risk as determined by RCC prognostic risk models such as the Assure
nomogram. The selection node S indicates that baseline prognostic variables for DFS risk can shift
across populations; (C) Scenario where one or more confounders C may influence baseline risk Z
and treatment outcome Y. The selection nodes S1 and S2 indicate that baseline risk Z and confounder
C, respectively, can shift across populations; (D) Corresponding clinical scenario where geographic
location influences both the baseline prognostic risk and the survival outcomes of patients with RCC.
The selection nodes S1 and S2, respectively, indicate that baseline prognostic variables and geographic
location can shift across populations.



Cancers 2022, 14, 3923 17 of 38

Figure 7. Selection diagrams representing biological treatment effect modification: (A) Clinical sce-
nario of a randomized clinical trial comparing the survival outcomes of trastuzumab, an inhibitor
of human epidermal growth factor receptor 2 (HER2) signaling, in combination with chemotherapy
versus chemotherapy alone in patients with metastatic breast cancer. HER2 amplification status influ-
ences oncogenic HER2 signaling, mediating the treatment effect. The selection node S denotes that
HER2 amplification status can vary across populations; (B) Biological treatment effect modification
framework where the effect of a randomized treatment X on the outcome Y is mediated by M. The
mediator M is influenced by the biomarker B, which can vary across populations, as denoted by the
selection node S; (C) Clinical scenario whereby the effect of the randomized treatment choice between
adjuvant pembrolizumab or placebo on DFS is mediated by the RCC immune microenvironment,
which is influenced by RCC histology. The latter can vary across populations, as denoted by the
selection node S; (D) Clinical scenario where HER2 amplification status is both a predictive biomarker
(as shown by the arrow toward oncogenic HER2 signaling) and a prognostic biomarker (as shown by
the direct arrow toward overall survival). Covariate weighting for HER2 amplification status will
block both pathways (as indicated by the red crossmarks) from the selection node S to the overall
survival outcome.
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3.2. Transporting Information across Domains: General Principles

The process of combining data from one or more sources to make inferences about
treatment effects for a patient with covariates Z in the clinic relies on the statistical idea
that there is a population represented by the study data, and a second population to which
the patient belongs. In the causal analysis framework, populations are called domains, and
whether estimates of causal effects from one domain can be used to make causal inferences
about another domain is called transportability [5,32,37]. Central issues are whether or not
the inference obtained from the study can be transported to make a treatment decision
for the patient in the clinic and, if not, what external information can be used to make the
inference from the RCT transportable to the patient. The domain D(RCT) represents the
study population of an RCT comparing an experimental treatment (X = 1) and a control
(X = 0). Causal diagrams are used to determine whether it is necessary to combine external
data (denoted by EXT), obtained from observational or experimental studies or possibly
other RCTs, with the original RCT data in order to make the inference from the RCT
transportable to patients in the domain D(CLIN) in the clinic. A major practical problem is
that clinical trial eligibility criteria often restrict D(RCT) so severely that it does not include
a substantial portion of D(CLIN), and consequently the RCT data cannot be used to make
inferences for many patients seen in the clinic. Thus, the process requires rigorous causal,
statistical, and medical thinking.

For individualized treatment decision making, the conditional distributions of P(CLIN)(Y
| do(X = x), Z) for each possible treatment x are of central interest for making clinical
decisions for an individual patient with covariates Z. Practical examples will be described
in Section 5, below. These conditional distributions provide a basis for estimating the causal
effect Ψ(CLIN)(Z) = P(CLIN)(Y | do(X = 1), Z) − P(CLIN)(Y | do(X = 0), Z) in Equation (1),
and thus they answer layer 3 queries expressed using the potential outcomes framework.
To obtain estimates of Ψ(CLIN)(Z), one may use a causal diagram and a statistical model
and combine estimates from different sources, such as ψˆ from D(RCT) and P(EXT)(Y | Z)
from D(EXT).

3.3. Transporting Information across Domains: Additive Models

Assuming the causal relationships shown in Figure 6A, we can use the do-calculus
syntax to estimate the distribution of the outcome Y given that treatment do(X = x) is
administered to a patient seen in the clinic. The survival time distribution of a patient
with covariates Z treated with X = x in an RCT is P(RCT)(Y | do(x), Z) since randomization
ensures that the do() operator can be applied to remove any arrows that might point to
X. The parameters in the regression model are estimated using the RCT data, and the
fitted model provides a causal basis for subsequently choosing a treatment for a patient
in the clinic with the given covariates. Figure 6B illustrates the clinical scenario where
adjuvant pembrolizumab is considered for a patient with RCC based on the results of
the KEYNOTE-564 RCT. The advantage of using selection diagrams such as those in
Figure 6A,B to determine whether knowledge from different domains can be transported to
the domain of patients a physician sees in the clinic (D(CLIN)) is a graphical criterion called
S-admissibility [84]. Denoting all selection nodes in a causal diagram by S and the set of
baseline (pre-treatment) covariates by Z, S-admissibility is defined mathematically using
the do-calculus syntax as:

P (Y | do(X = x), Z) = P (Y | do(X = x), Z, S).

This formalizes how the selection nodes S influence the outcome Y. The S-admissibility
criterion states that, if we remove all incoming arrows toward the treatment X from the
selection diagram and statistically account for all values of Z across populations, then we
can transport knowledge from D(RCT) to D(CLIN) by using the distribution of the covariates
Z. Intuitively, this means that a treatment effect can be transported across populations if
we can model all relevant mechanisms that influence the outcome of interest. Figure 6A,B
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show S-admissible examples where we need to model the effect of Z on Y, i.e., P(Y | Z),
across populations (Figure 6A) or the effect of prognostic variables on DFS (Figure 6B) to
obtain P (Y | do(X = x), Z).

To date, the dataset in KEYNOTE-564 has not been used to generate prognostic risk
tools to estimate DFS or OS time distributions of patients with RCC in the adjuvant setting.
The Assure RCC prognostic nomogram is an externally developed tool for this purpose
using data from the ECOG-ACRIN 2805 (Assure) RCT, which evaluated the efficacy of
the tyrosine kinase inhibitors sunitinib or sorafenib versus placebo as adjuvant therapies
for RCC [11,85]. The prospective data from this RCT were used, as suggested by the
PATH statement [67], to generate a prognostic nomogram that does not include a term
for treatment assignment between sunitinib, sorafenib, or placebo [11]. The advantage of
using highly annotated prospective rather than retrospective data in observational data
analyses is that retrospective data collection is more prone to biases from many sources,
including variations in data collection and reporting [86]. The use of such external data
to estimate the effect of Z on Y when no treatment is given, i.e., P(EXT)(Y | do(X = 0), Z),
is quite common [2,68]. These external datasets take advantage of their large sample size
and representativeness to provide external validity. In contrast, RCTs often have restrictive
entry criteria in order to achieve high internal validity when estimating the effect of each
do(x) on Y [3,87–89]. Knowledge gained from external and RCT studies may be considered
complementary, and both may be needed for making reliable patient-specific decisions for
the patients in D(CLIN) when the assumptions shown in Figure 6A hold.

Figure 6C illustrates an example where a confounding variable, C, may influence
both Z and Y, and this confounder varies across populations, as indicated by the selection
node S2. In this scenario, accounting only for Z is not S-admissible and combining causal
information from D(RCT) and D(EXT) cannot be legitimized unless we also weight for C to
shield the outcome Y from the source of disparity S2 [37]. A corresponding clinical example
is shown in Figure 6D, where GL = geographic location may act as a confounder because
it influences both baseline prognostic variables and survival outcomes of patients with
RCC treated with adjuvant pembrolizumab versus placebo [90]. In this scenario, if each
patient’s GL is known, then a regression model may be parameterized to account for GL,
which improves the external validity of prognostic nomograms for RCC recurrence and
legitimizes their use on a global scale. This is consistent with the literature on the value
of causal knowledge in developing clinical risk prediction models and transporting them
across different populations [20,91,92]. In any case, when transporting knowledge from
different sources to a target population, one must make the strong assumption that there
are no unknown external variables that cause confounding between Z and Y since such a
confounder can invalidate the estimate of the effect of treatment X on Y.

In general, the S-admissibility criterion shows what data are needed to estimate P(Y
| do(X=x), Z) in a particular domain, such as the domain D(CLIN), which refers to the
population of patients seen in the clinic. Whether or not the data needed are available
shows whether there is sufficient information for making clinical decisions for the patients
in D(CLIN). If we cannot model all relevant mechanisms that influence the outcome of
interest using available data, then there is not enough information to make well-informed
decisions between treatments X = 0 and X = 1 in the clinic.

3.4. Transporting Information across Domains: Interactive Models

Most regression models used to analyze the primary endpoints of RCTs do not include
interaction terms and are formulated assuming that no patient subgroups will have an
interactive effect with treatment. As noted earlier, more elaborate statistical models are
available that facilitate data-driven effect modeling of HTE [93–96]. Forest plots are a
crude graphical approach to represent point estimates and confidence intervals for each of
many selected subgroups, so called because such a graph resembles a forest of horizontal
lines [2,97,98]. Although originally developed for meta-analysis of multiple RCTs, forest
plots are used increasingly for exploratory analyses to search for signals of treatment in-
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teractions with specified subgroups, using data from one RCT [98,99]. Because accurately
estimating treatment–subgroup interactions requires larger sample sizes than needed to
estimate the main treatment effect of an RCT [56,100], many of the computed confidence
intervals in forest plots are quite wide [99]. For example, all forest plot subgroup compar-
isons looking for outcome differences on the HR scale in KEYNOTE-564 were inconclusive
at the 0.05 significance level [9]. Using this p value cutoff for each of many tests is very
misleading, however, since the overall type I error rate is much larger than 0.05 due to
multiple testing. This severely limits the usefulness and interpretability of forest plots,
since the type I error rates of each individual subgroup comparison should be adjusted
downward to maintain an overall type I error rate of 0.05. This adjustment produces wider
confidence intervals in the forest plot. For a large number of subgroup comparisons, the
adjusted type I error rates should be very small. It is well known that if one examines
enough subgroups in an RCT dataset using the type I error rate of 0.05 for each subgroup,
then seemingly “statistically significant” treatment–subgroup interactions will emerge even
when such interactions do not exist [2,101–103]. The process of testing for treatment effects
in many selected subgroups, without any scientific rationale for why such effects should
exist, is quite common in the published medical literature and often is referred to as data
dredging. For these reasons, efforts to identify treatment–subgroup interactions should be
based on a pre-existing biological or clinical rationale for how particular subgroups, such
as those defined by biomarkers, may mediate the effect of treatment [2,67,68,101–103].

We illustrate how causal diagrams and effect modification can be informed by bio-
logical knowledge derived from preclinical experiments using HER2 signaling in breast
cancer. This is one of the most well-established predictive biomarkers in oncology [104,105].
Analyses of observational data on tissues from breast cancer patients showed that the gene
encoding HER2 is amplified in 25% to 30% of breast cancers [106,107]. Studies in cell line
and animal models showed that HER2 amplification, identified as a biomarker B, drives
the growth of breast cancer cells via the upregulation of oncogenic HER2 signaling, which
acts as a mediator M [104,108–111]. This motivated the development of the monoclonal
antibody trastuzumab, which is targeted to inhibit this signaling in HER2-amplified breast
cancer [112]. The key point is that, if the biomarker variable B indicates cell surface up-
regulation of oncogenic HER2 signaling M after treatment, then trastuzumab can only
affect a clinical outcome Y by acting on M. This is the same causal path as that expressed
in Figure 5C, whereby the upregulation of the biomarker B activates the pathway M that
mediates the effect of trastuzumab on Y. For simplicity, denote the value of the upreg-
ulation biomarker recorded at enrollment by B = 0 for absence or 1 for presence. This
motivated designers of the pivotal phase 3 RCT that led to the approval of trastuzumab for
the treatment of metastatic breast cancer to only allow enrollment of patients with baseline
HER2 amplification (B = 1), which is called enrichment, and to test the efficacy of combining
trastuzumab with chemotherapy versus chemotherapy alone in those patients [113]. If
an all-comers trial had been conducted, also including metastatic breast cancer patients
without baseline HER2 amplification (B = 0), whose tumors were not driven by oncogenic
HER2 signaling, it would have exposed those patients to harm from trastuzumab toxicity
without any chance of benefit. Additionally, because only 25% to 30% of patients would
have been expected to respond to trastuzumab, a hypothetical HER2-naïve trial utilizing
an interactive effect modeling approach would require a substantially larger sample size
to detect trastuzumab efficacy for each of the patient subgroups, with and without HER2
amplification. The biologically informed enrichment strategy in the actual trial provided
a reliable estimate of the main effect of trastuzumab in patients with HER2 amplification
and facilitated the identification of a treatment interaction signal between the degree of
HER2 overexpression and trastuzumab efficacy [111]. Figure 7A illustrates the biological
assumptions underlying the RCT, where trastuzumab acts on oncogenic HER2 signaling to
impact the survival outcome. The selection node S shows that oncogenic HER2 signaling
differs between the patient population enrolled in the RCT, which has HER2 amplifications,
and the population of patients seen in the clinic (domain D(CLIN)), which may or may
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not have HER2 amplifications. The general form of the diagram is shown in Figure 7B,
where the effect of a treatment X on outcome Y is mediated by a variable M influenced
by a biomarker B that differs between patient subpopulations. This causal framework for
biological treatment effect modification subsumes the approach of the PATH statement,
which focuses exclusively on identifying treatment–subgroup interactions without incor-
porating prior causal knowledge from external sources, such as preclinical experimental
studies [67,68]. Furthermore, as we will show below, similar to the approach under the
additive modeling framework, the structural causal relationships represented in Figure 7B
allow us to determine whether inferences can be transported from different domains to the
domain D(CLIN) of patients seen in the clinic.

We next provide a causal rationale for enrichment in any setting similar to that of the
trastuzumab trial, which only enrolled patients with a biomarker for HER2 overexpression.
Suppose that preclinical data show on fundamental grounds that a new targeted agent
(X = 1) can only affect Y through M as a mediator pathway influenced by a biomarker B.
First, as a comparator, consider an all-comers RCT, and denote the value of B recorded
at enrollment by B = 0 or 1. This trial’s data can be used, as usual, to estimate the effects
of X on Y by including the terms b1X + b2B + b3XB in the statistical regression model’s
linear term. The following considerations provide a rationale for why an enrichment trial
enrolling only patients with B = 1 should be conducted instead.

Suppose that experimental studies to determine the effect of X via a mediator M influ-
enced by biomarker B are conducted in an external domain D(EXT) that includes D(CLIN).
The experimental studies of M can include preclinical research, as was performed with
trastuzumab, or additional RCTs focused on specific biological contexts. The first require-
ment is that preclinical laboratory experiments, with domain D(LAB), must be designed
with a randomized 2 × 2 factorial form including all four combinations of B = 0 or 1 and
X = 0 or 1. This ensures that these preclinical experiments can show that the targeted agent
and control treatment have identical effects on all outcomes when the biomarker is absent.
This is expressed by the do-calculus equation

P(LAB)(Y(LAB) | do(X = 1), B = 0) = P(LAB)(Y(LAB) | do(X = 0), B = 0), (2)

where Y(LAB) represents a preclinical laboratory experiment outcome variable. This ensures
that excluding biomarker-negative patients from the planned RCT will not deprive them of
an unanticipated anti-disease effect from the targeted agent.

Based on the selection diagram shown in Figure 7B, modeling the effect of the covariate
B on the outcome Y fulfills the S-admissibility criterion. While an all-comers RCT would
provide estimators of P(RCT)(Y | do(X = x), B = b) for all four combinations of x = 0 or 1 and
b = 0 or 1, the following causal argument implies that an RCT with enrollment restricted to
patients with B = 1 can be conducted and an estimator of P(RCT)(Y | do(X = x), B = b) can
still be obtained.

Under some key assumptions, data from the three domains D(CLIN), D(RCT), and D(EXT)

can be used to estimate the probability distribution P(CLIN) of the outcome Y, given that a
treatment X = 1 or X = 0 is administered to a patient seen in the clinic. The first step is to
use the results of a 2 × 2 factorial laboratory experiment based on the strong assumption
that equation (2) with preclinical outcome Y(LAB) in laboratory animals implies

P(RCT)(Y | do(X = 1), B = 0) = P(RCT)(Y | do(X = 0), B = 0)

for the corresponding clinical outcome Y in the RCT in humans. This assumption says that,
for biomarker-negative patients, the preclinical result that there is no difference between
the effects of the targeted agent and the control on Y(LAB) in animals with B = 0 implies
that this also holds for the clinical outcome Y in humans with B = 0. Since an RCT that
does not include biomarker-negative patients does not provide data for estimating E(Y
| do(X = x), B = 0) for either x = 0 or 1, an estimate for x = 0 might be obtained using
external data from another human trial, either randomized or single-arm, that included
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the control treatment x = 0 and evaluated the biomarker for each patient at enrollment.
This external data for biomarker-negative patients would provide an estimate of P(EXT)(Y
| do(X = 0), B = 0), which then might be used to estimate P(RCT)(Y | do(X = 0), B = 0),
with appropriate statistical correction for bias due to between-study effects. Next, the
“mouse-to-man” assumption that biological knowledge from preclinical experiments in
mice implies that treatments X = 1 and X = 0 must have the same effect in biomarker-
negative humans in turn implies that the estimate of P(EXT)(Y | do(X = 0), B = 0) also can
be used to estimate P(RCT)(Y | do(X = 1), B = 0). Finally, this inferential process may be
elaborated by including additional covariates Z additively in the regression model to help
personalize treatment decisions and improve precision, which will be further discussed in
Section 3.5. The enriched RCT data thus can be used to estimate P(RCT)(Y | do(X = x), B = 1,
Z) for both X = 0 and X = 1 as the basis for making clinical decisions in biomarker-positive
patients while also accounting for the effects of Z.

Figure 7C illustrates a clinical scenario in which adjuvant pembrolizumab is being
considered based on the results of the KEYNOTE-564 RCT for a patient with a different
RCC histology, and thus a different effect of pembrolizumab (X = 1) on the post-treatment
tumor immune microenvironment status M [8], rather than the clear cell RCC subtype
that was exclusively enrolled in KEYNOTE-564. For simplicity, we will assume that all
datasets in domain D(LAB) are experimental. While in Figure 6A we fused experimental
with observational data from D(EXT), the information sources used in Figure 7B can be a
mixture of the experimental results from D(RCT) and the preclinical experimental results
in D(LAB).

Notably, the S-admissibility criterion would be satisfied even in the scenario where
HER2 amplification status acts as both a prognostic and predictive biomarker for overall
survival time [114]. As shown in Figure 7D, covariate weighting for HER2 amplification
status would block both the predictive biomarker path toward oncogenic HER2 signaling
and the prognostic direct path toward overall survival. Intuitively, this means that if we
have enough data to estimate the predictive effect of HER2 amplification status (i.e., the
interactive term of treatment × HER2 amplification status), then we have enough data
to also account for the prognostic additive effect of HER2 amplification status on overall
survival time.

3.5. Transporting Information across Domains: General Framework

The causal relationships illustrated in Figures 6A and 7B inform the study designs
needed to predict outcomes for patients seen in the clinical domain, D(CLIN), under the ad-
ditive effect model (Figure 6A) and the biological treatment effect modification (Figure 7B)
frameworks. In practice, clinicians should always consider both an additive effect model
and the possibility of biological treatment effect modification when making patient-specific
decisions involving knowledge transferred from different domains to D(CLIN). This corre-
sponds to the structural causal relationships represented in Figure 8A. Using the causal
relationships of Figure 8A, assume that an RCT of treatment X is conducted in the do-
main D(RCT), observational studies representative of all baseline prognostic variables Z are
conducted in the domain D(EXT), and experimental studies to estimate the influence of a
biomarker (represented by B at baseline) on the mediating pathway M for the effect of X are
conducted in domain D(LAB), to yield PLAB(M | (do(X = x), B). The S-admissibility criterion
would be fulfilled because with this information we can model the effects of both B and Z
on the outcome Y.
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Figure 8. Selection diagrams representing a general framework for treatment effect heterogeneity
modeling: (A) Selection diagram combining both risk modeling and biological treatment effect
modification. Patient populations may differ in baseline risk, denoted by the selection node S1,
and/or biomarkers B that affect biological mediators M of the treatment effect, as denoted by the
selection node S2; (B) Corresponding clinical scenario where risk and effect modeling may be used
alone or in combination depending on the characteristics of each patient seen in the clinic. Patient
populations may differ in baseline DFS risk, denoted by the selection node S1, and/or RCC histology,
as denoted by the selection node S2. The S-admissibility criterion for this scenario remains the same
even in the more complex scenario whereby the RCC histology also directly influences DFS as shown
in (C) and the prognostic variables as shown in (D).
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Figure 8B illustrates the corresponding clinical scenario where adjuvant pembrolizumab
is considered based on the results of the KEYNOTE-564 RCT for patients who may have a
prognostic risk or RCC histology different from those of patients enrolled in KEYNOTE-564.
Using this diagram, we can determine whether we possess sufficient knowledge to make
such cross-population predictions for patients seen in clinical practice. Note also that the
S-admissibility criterion would be fulfilled even in more complex scenarios whereby RCC
histology also directly influences DFS (Figure 8C) and the prognostic variables (Figure 8D).

For individual patients seen in the clinic, the structural causal model represented by
Figure 8A corresponds to a potential outcomes formula that conditions both the patient’s
prognostic risk factors Z and the biological effect modifier B to determine the individualized
causal treatment effect,

Ψ (Z, B) = E(YX = 1 | Z, B) - E(YX = 0 | Z, B). (3)

This general formula is reduced to the additive, effect modeling Equation (1) in patients
for whom a treatment effect modification is not expected biologically.

3.6. Transporting Information across Domains: More Complex Scenarios

The S-admissibility criterion can help us determine algorithmically whether we possess
sufficient knowledge to make decisions for patients seen in the clinic in scenarios that are
more complex than the adjuvant pembrolizumab scenarios we are focusing on in this
paper. For example, as illustrated in Figure 9A, the effect of the treatment choice X on the
outcome Y may be mediated by two distinct mediators, M1 and M2, which are influenced
by respective biomarkers B1 and B2, which also directly influence the treatment choice X.
Furthermore, prognostic variables Z may also independently influence the outcome Y. The
populations of patients studied may differ in B1 (denoted by the selection node S1), B2
(denoted by S2), and Z (denoted by S3). In this situation, after removing all arrows pointing
into X (Figure 9B), the targeted quantity Y can only be separated from S1, S2, and S3 if we
statistically weight for B1, B2, and Z. Accounting for each of these variables alone will not
be enough. After obtaining the necessary knowledge from each available domain, we can
use the potential outcomes formula: Ψ (Z, B1, B2) = E(YX = 1 | Z, B1, B2) – E(YX = 0 | Z, B1,
B2) to determine the expected individualized causal treatment effect for each patient seen
in the clinic.

A corresponding clinical scenario is shown in Figure 9C, wherein a clinician is called
to choose between either immunotherapy or anti-angiogenic targeted therapy for patients
seen in the clinic with metastatic RCC. The effect of choosing between immunotherapy
or anti-angiogenic targeted therapy is mediated by the RCC immune microenvironment,
which is influenced by the baseline immune signature of the RCC tumors. Furthermore,
the effect of choosing between the two treatments is also mediated by the RCC angiogenic
microenvironment, which is influenced by the baseline angiogenic signature of the RCC
tumors. The immune and angiogenic signatures also influence treatment choice in the
studied populations. In addition, the survival outcome is independently influenced by
baseline prognostic covariates. As shown in Figure 9D, after removing all arrows pointing
into the variable “treatment choice,” the pathways from S1, S2, and S3 toward the survival
outcome can only be blocked if we covariate weight for shifts in prognostic variables and
in immune and angiogenic signatures.
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Figure 9. Selection diagrams representing more complex scenarios of treatment effect heterogeneity:
(A) The effect of treatment choice X on the outcome Y is mediated by two mediators, M1 and M2,
which are influenced by biomarkers B1 and B2, respectively. Prognostic variables Z also independently
influence the outcome Y. B1 and B2 also influence the treatment choice X. Patient populations may
differ in B1 (denoted by S1), B2 (denoted by S2) and in Z (denoted by S3); (B) The same selection
diagram modified to illustrate the considerations behind the S-admissibility criterion licensing the
transportation of knowledge toward the population of patients seen in the clinic. S-admissibility states
that once all arrows pointing to the treatment variable X are removed, we need to covariate weight
for all variables needed to block all causal pathways that transmit effects from each selection node S
toward the outcome Y. In this example, covariate weighting for B1, B2, and Z, respectively, blocks the
pathways (as indicated by the red crossmarks) from S1 to Y, S2 to Y, and S3 to Y; (C) Corresponding
clinical scenario where patients with metastatic RCC may be treated with either immunotherapy
or anti-angiogenic targeted therapy. The effect of choosing between immunotherapy or targeted
therapy is mediated by the RCC immune microenvironment, influenced by a baseline biological
immune signature, which shifts across studied populations as denoted by S1. The effect of choosing
between the two treatments is also mediated by the RCC angiogenic microenvironment, influenced
by a baseline angiogenic signature, which shifts across studied populations as denoted by S2. The
two signatures also influence the treatment choice in the studied populations. The survival outcome
is also independently influenced by prognostic variables which shift across populations as denoted by
S3; (D) The S-admissibility criterion licenses the transportation of knowledge toward the population
of patients seen in the clinic if we properly covariate weight for shifts in prognostic variables and in
immune and angiogenic signatures.
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4. Treatment Effect Calculator

To illustrate the clinical utility of the causal relationships expressed in Figure 8, along
with the potential outcomes formula of Equation (3), we provide a simple calculator (Sup-
plementary File S1) that can be used by clinicians to estimate survival probabilities when
choosing between treatments. The calculator assumes an exponential distribution for sur-
vival times, which implies that the hazard of death for each patient is constant over time.
This is the simplest time-to-event distribution for modeling survival times [115–117], and it
is also the distribution implicitly assumed by the statistical models used for the primary and
key secondary endpoint analyses of KEYNOTE-564 [9]. More complex regression models
with less restrictive assumptions can be used, as appropriate, in scenarios where the expo-
nential distribution does not provide an adequate fit to the data [118,119]. These models
require specialized but widely available statistical software to perform data analyses.

An exponential distribution for Y = DFS time is characterized by one parameter, its
hazard (failure rate) parameter, h [2]. The mean DFS time is µ = 1/h, and median DFS time is
ln(2) µ, where ln denotes the natural logarithm. The probability of DFS beyond a given time
t is P(Y > t) = e−ht, where e = 2.718 is Euler’s number, so ln(e) = 1. For example, if the hazard
rate is h = 0.04 per month, then mean survival time is µ = 25 months, median survival time
is 17.3 months, and the 12-month survival probability is P(Y > 12) = e−(0.04 · 12) = 0.619. In
most settings, the hazard rate varies with a patient’s prognosis Z, treatment X, and possibly
a treatment effect modifier, such as a biomarker B. This may be accommodated by an
exponential regression model, where, for example, an additive model’s hazard function
might take the form h(X, Z, B) = exp(LIN) with LIN = b0 + b1X + b2Z + b3B, and treatment–
covariate interaction terms may be added to LIN as appropriate. The experimental-versus-
control HR for given Z and B is

HR(Z, B) = h(1, Z, B)/h(0, Z, B).

Under the above additive model, HR(Z, B) = exp(b1) for all Z and B, and it is the
treatment effect on h for all patients. This is the same HR as that under the simplest
exponential model without effects for Z or B, so if one HR is reported then it may be
unclear whether an additive regression model was assumed. Alternatively, for example,
the interactive model with

LIN = b0 + b1X + b2Z+ b3B + b4 XB

can be assumed, and HR(Z, B) = exp(b1 + b4B) is obtained. The HR varies with B due to its
interaction with X, and the treatment effect is now a function of B rather than a constant.

The way that an exponential regression model accounts for treatment and covariate
effects is similar to that of a Cox regression model, which is defined in terms of the well-
known hazard function h(t) = h0(t) · exp(LIN), with no parametric form specified for the
baseline hazard h0(t) and no intercept term included in LIN. One may think of h0(t) in
the Cox model as a more general, time-varying form of eb0 in an exponential regression
model. The exponential and Cox models thus have the same form for HR(Z, B), and both
provide a basis for estimating hazards that vary with (X, Z, B) to use for optimizing each
individual patient’s treatment. If, for example, a published paper reports a single control
arm 12-month DFS probability for all patients, such as 30%, this implies that a Cox or
exponential model with only b1X in the linear term has been assumed since otherwise, the
estimated 12-month probabilities would vary with Z and B.

Risk prediction nomograms, such as the Assure nomogram, typically provide point
estimates of probabilities such as P(Y > t | X = 0, Z = z, B = b). Table 3 shows that our simple
treatment effect calculator, under the exponential model, closely predicts, with less than 5%
error, the point estimates for the milestone survival probabilities with adjuvant treatment in
recent phase 3 RCTs of adjuvant therapies, including KEYNOTE-564 [9,120–123]. Although
we have used DFS in our examples, the treatment effect calculator can be used for any
time-to-event endpoint, including DFS, OS, recurrence-free survival, and progression-free
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survival time. The Assure nomogram does not provide uncertainty quantification for its
estimates of survival probabilities. It would be more desirable for such uncertainty in
estimating P(Y > t | X, Z, B) to also be incorporated into the individualized treatment
decision making procedure that we propose below.

Table 3. Estimated and reported milestone survival probabilities using the treatment effect calculator
(Supplementary File S1) assuming an exponential survival distribution in adjuvant therapy trials.
DFS = disease-free survival, HR = hazard ratio.

Type of Adjuvant
Therapy

Milestone
Time

(Months)

Reported
Milestone

DFS
Probability
in Control

Group

Estimated
HR and CIs

for DFS

Estimated
Milestone

DFS
Probability

in Treatment
Group

Reported
Milestone

DFS
Probability

in Treatment
Group

Difference
between

Estimated
Versus

Reported
Milestone

DFS
Probability

Reference

Immune checkpoint
therapy vs. placebo 12 76.2% 0.68 83.1% 85.7% −2.6% [9]

Immune checkpoint
therapy vs. placebo 24 68.1% 0.68 77% 77.3% −0.3% [9]

Immune checkpoint
therapy vs. placebo 6 60.3% 0.70 70.2% 74.9% −4.7% [120]

Chemotherapy vs.
placebo 36 46% 0.45 70.5% 71% −0.5% [121]

Targeted therapy vs.
placebo 24 52% 0.20 87.7% 89% −1.3% [122]

Targeted therapy vs.
placebo 36 80.4% 0.57 88.3% 87.5% +0.8% [123]

5. Clinical Scenarios

In this section, we will illustrate how to use selection diagrams (Figure 8) and potential
outcomes in Equation (3) to make adjuvant treatment decisions in RCC patients with partic-
ular covariates. This will be performed using the treatment effect calculator (Supplementary
File S1), statistical estimators computed from the KEYNOTE-564 RCT and the Assure RCC
prognostic nomogram, and contextual causal knowledge of RCC biology [9,11–19]. While
our treatment effect calculator relies on a very simple assumed model, in other clinical
settings similar decisions may be made using more complex statistical regression models,
provided that appropriate computer software is available [45,118,119]. This is because
the selection diagrams, the do-calculus, and potential outcomes equations encode struc-
tural causal constraints, but they do not depend on particular assumptions underlying the
statistical regression models used to provide patient-specific estimates [25,26,45].

In the illustrative examples, we will use DFS time as the clinical outcome because
this was the primary endpoint of KEYNOTE-564 [9] and because surveys of RCC patients
suggest that they value DFS and OS equally in the adjuvant setting [124]. An important
causal issue is that a frontline adjuvant treatment’s effect on OS time is confounded by
mediating effects of a salvage therapy given later at disease recurrence [10]. This would
impact the effects of frontline adjuvant treatment on OS time in KEYNOTE-564, as well as
baseline prognosis computed from the Assure nomogram. To use OS time as the primary
outcome, the approach illustrated below might be applied more generally by accounting
for the joint effects on OS time of (frontline, salvage) therapy pairs as two-stage dynamic
treatment regimes, rather than ignoring salvage therapy. This requires more complex
statistical models and methods but can provide much greater insights [45,66,125].
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For illustration, we will assume that an absolute risk reduction (ARR) ≥ 5% in 24-
month DFS probability is considered to be sufficient to offset the risk of toxicity and financial
costs of adjuvant pembrolizumab versus surveillance. The 24-month cutoff corresponds
to the published median follow-up time of 24.1 months in KEYNOTE-564 patients [9].
All patients described below are assumed to be otherwise healthy with no history of
autoimmune diseases that would increase the risk of immune-related AEs due to adjuvant
pembrolizumab. While many prognostic algorithms and nomograms have been developed
to predict RCC outcomes following nephrectomy [11,126–134], in the examples below, we
will use the Assure RCC prognostic nomogram due to its more contemporary validation
and use of prospective data [11]. In the future, the accuracy of prognostic nomograms may
be improved by incorporating observational and experimental knowledge from molecular
biomarkers, such as circulating tumor DNA and cell-free methylated DNA [10,135,136].

5.1. Patient I

Our first example is a patient who would have been eligible for enrollment in KEYNOTE-
564. Patient I is a 48-year-old man who underwent nephrectomy for a 10.6-cm clear cell
RCC, pT3a, Fuhrman nuclear grade 4 with sarcomatoid features and coagulative necrosis,
invading the renal vein with no pathological lymph node involvement or distant metastatic
disease. These features would place Patient I in the intermediate-high risk category using
the KEYNOTE-564 criteria shown in Table 1. Using the Assure nomogram, his estimated
two-year DFS probability is 41.4%. There is no biological reason to assume effect modifica-
tion of the HR estimate of KEYNOTE-564 for this patient. The statistical model used for the
primary endpoint analysis of KEYNOTE-564 did not include interaction terms between any
patient covariates and treatment [9]. It thus is assumed implicitly that the effect of treatment
on the HR scale is stable across all patients enrolled with no differences due to a mediating
effect of the RCC immune microenvironment. Therefore, Figure 8B can be reduced to the
additive risk model shown in Figure 6B. Assuming an exponential or Cox regression model
with LIN = loge(h) = b0 + b1·X + b2·Z implies that loge{h(0, Z)} = b0 + b2·Z when X = 0
(adjuvant pembrolizumab is not administered) and loge{h(1, Z)} = b0 + b1 + b2·Z when X = 1
(adjuvant pembrolizumab is administered), so HR = eb1 regardless of Z. Using the Assure
nomogram estimate of 41.4% for the DFS probability at 24 months with surveillance (X = 0),
since P(Y > 24 | X = 0, Z) = exp{−24·h(0, Z) }, this corresponds to the estimated hazard h(0,
Z) =− loge(0.414)/24 = 0.03675. We next use the treatment effect calculator (Supplementary
File S1) to obtain an estimate of the hazard h(1, Z) of the patient if he were treated with
adjuvant pembrolizumab, based on the estimated pembrolizumab-versus-surveillance
HR = 0.680 obtained from KEYNOTE-564. Since HR = h(1, Z)/h(0, Z), the estimated hazard
with adjuvant pembrolizumab is h(1, Z) = HR h(0, Z) = 0.680·0.03675 = 0.02499, which gives
estimated 24-month DFS probability e−(0.02499·24) = 0.549, or 54.9%. These computations
give estimated ARR = 54.9% − 41.4% = 13.5% in 24-month DFS probability if adjuvant
pembrolizumab is administered (Table 4). Given this substantial, expected clinical benefit,
adjuvant pembrolizumab would appear to be a very reasonable choice for Patient I. Note
that these numerical computations mimic the theoretical derivation, given earlier, of an un-
biased causal effect estimate based on a patient’s two potential outcomes when comparing
treatments. An important general point is that being able to compute a 95% CI, or a 95%
credible interval under a Bayesian model [58,64], around the estimated ARR to account
for uncertainty would make it much more useful. For example, the estimate 13.5% with
95% CI [−2.0%, 28.0%] would be far less reliable than if the 95% CI were [10.0%, 16.0%].
This underscores the need for more extensive software that can account for variability
of estimates.
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Table 4. Patient-specific inferences and research design recommendations in eight clinical scenarios
where adjuvant pembrolizumab is considered, based on KEYNOTE-564 (KN-564) [9] in patients
harboring one of the three most common renal cell carcinomas (RCC). All patients are otherwise
healthy and are interested in an absolute risk reduction (ARR) of at least 5% in two-year DFS
probability with adjuvant pembrolizumab as estimated using the Assure prognostic nomogram [11].

Patient
RCC

Histol-
ogy

Eligible
for

KN-564
Age Tumor

Stage

Tumor
Size
(cm)

Fuhrman
Nuclear

grade
Necrosis

Renal
Vein

Invasion

Sarcomatoid
features

Predicted
2-Year DFS

with
Surveil-

lance

Predicted
2-Year DFS
with Pem-

brolizumab

ARR

Recommend
Adjuvant

Pem-
brolizumab

External
Observa-

tional
Studies
Needed

External
Experi-
mental
Studies
Needed

I Clear cell Yes 48 pT3a
pN0 M0 10.6 4 Yes Yes Yes 41.1% 54.9% 13.5% Yes No No

II Clear cell Yes 48 pT3a
pN0 M0 7.0 2 No Yes No 87.2% 91.1% 3.9% No No No

III Clear cell No 55 pT2b
pN0 M0 10.3 3 Yes No No 68% 76.9% 8.9% Yes No No

IV Clear cell Yes 52
pT3a

pN0 M1
NED

10.2 3 No Yes No Not
estimable Not estimable Not es-

timable
Not

estimable Yes No

V Papillary
type I No 54 pT3a

pN0 M0 13.9 2 No Yes No 94.6%

Not formally
estimable but

would be 97.3%
even if HR = 0.5

Not
formally

es-
timable

but
would be

2.7%
even if

HR = 0.5

No No Yes

VI Papillary
type II No 49 pT3 pN0

M0 10.4 4 Yes Yes Yes 41.4%

Not formally
estimable but

would be 47.7%
even if hazard
ratio (HR) =

0.84

Not
formally

es-
timable

but
would be

6.3%
even if
HR =
0.84

Not
formally
estimable

but is a
plausible

recommen-
dation
under

current state
of

knowledge

No Yes

VII Chromo-
phobe No 56 pT2a

pN0 M0 9.5 Low
grade No No No 97.9%

Not formally
estimable but

would be 98.9%
even if HR = 0.5

Not
formally

es-
timable

but
would be
1% even
if HR =

0.5

No No Yes

VIII Chromo-
phobe No 52 pT2b

pN0 M0 11.4 High
grade No No Yes Not

estimable Not estimable Not es-
timable

Not
estimable Yes Yes

pT2a: primary tumor >7 cm but ≤10cm in greatest dimension, limited to the kidney
pT2b: primary tumor >10 cm in greatest dimension, limited to the kidney

pT3a: primary tumor extends into the renal vein or its segmental (muscle containing) branches, or tumor invades perirenal and/or renal sinus fat (ie, perinephric fat), but not into the ipsilateral adrenal gland and not beyond Gerota’s
fascia

pN0: No regional lymph node metastasis
M0: No history of radiologically visible distant metastasis

M1 NED: History of radiologically visible distant metastasis with currently no evidence of disease

The above computations require one to assume that the relative treatment effect
should not differ between the patient and the population enrolled in KEYNOTE-564 due
to a different RCC histology. Because Patient I has clear cell RCC histology and perfectly
fulfills the enrollment criteria of KEYNOTE-564 [9], we can make this assumption regarding
the stability of the HR, which allows us to input the estimated KEYNOTE-564 HR for DFS
of 0.68 in our treatment effect calculator (Supplementary File S1).

5.2. Patient II

Patient II is a 48-year-old woman who underwent nephrectomy for a 7.0-cm clear
cell RCC, pT3a, Fuhrman nuclear grade 2 without sarcomatoid features or coagulative
necrosis, invading the renal vein with no pathological lymph node involvement or distant
metastatic disease. These features place Patient II in the intermediate-high risk category
of KEYNOTE-564 (Table 1), the same risk category as Patient I. However, her predicted
two-year DFS probability by the Assure nomogram is 87.2%, since the nomogram accounts
for her favorable prognostic covariates. She perfectly fulfills the enrollment criteria of
KEYNOTE-564 and again we can use the HR for DFS estimated by this phase 3 RCT
using the additive effect model represented by Figure 6B. Her predicted 24-month DFS
probability with adjuvant pembrolizumab is 91.1%, and following the same computational
steps as given above for Patient I, this gives an ARR of only 3.9% (Table 4). Considering the
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risk of toxicity, adjuvant pembrolizumab is much less attractive for Patient II compared
with Patient I, even though both patients would be classified as intermediate-high risk by
KEYNOTE-564. This example underscores the importance of estimating the amount of
potential benefit for each patient using their individual covariates.

5.3. Patient III

Patient III is a 55-year-old man whose nephrectomy revealed a 10.3-cm clear cell RCC,
pT2b, Fuhrman nuclear grade 3 with coagulative necrosis but no sarcomatoid features, and
no vascular invasion, pathological lymph node involvement, or metastatic disease. This
patient would not be eligible for enrollment in KEYNOTE-564 because his disease would
not be deemed sufficiently high risk using the criteria summarized in Table 1. However,
the predicted 24-month DFS probability from the Assure nomogram is 68%, which is much
worse than that of Patient II. This is because the eligibility criteria of clinical trials are not
designed to have the discriminative performance of validated prognostic risk prediction
models such as the Assure nomogram. Although Patient III would not be eligible for
KEYNOTE-564, it is plausible that the treatment effect of adjuvant pembrolizumab on the
HR scale would be similar to that of Patients I and II, who had the same RCC histology
as Patient III, based on medical knowledge. Using the additive modeling framework of
Figure 6B, the treatment effect calculator yields a predicted 24-month DFS probability of
76.9%, and ARR = 76.9% − 68% = 8.9% with adjuvant pembrolizumab (Table 4). Therefore,
adjuvant pembrolizumab would be a reasonable choice for Patient III, certainly more so
than for Patient II, despite the fact that Patient III would have been ineligible for enrollment
in KEYNOTE-564. This example illustrates how personalized treatment decisions can be
guided by combining causal, statistical, and medical thinking applicable to each patient,
and not simply by considering clinical trial eligibility status.

5.4. Patient IV

Patient IV is a 52-year-old woman who underwent surgery to remove a solitary right
upper lobe lung metastasis 6 months after nephrectomy for a 10.2-cm clear cell RCC,
pT3a, Fuhrman nuclear grade 3 without sarcomatoid features or coagulative necrosis,
invading the renal vein with no pathological lymph node involvement. She would have
been eligible for KEYNOTE-564 per the criteria outlined in Table 1 given her M1 NED
status following removal of the lung metastasis. Accordingly, the additive modeling
framework represented in Figure 6B can be used. However, the statistical regression model
underlying the Assure nomogram did not include M1 NED status as a covariate [11].
For example, patients with metachronous RCC metastasis occurring many years after the
nephrectomy and successfully treated with surgery or radiation therapy may have a lower
probability of subsequent recurrence than patients whose solitary metastasis occurred early
after nephrectomy [137–139]. None of the currently available prognostic algorithms or
nomograms can discriminate between such scenarios. Consequently, estimates of DFS
probabilities for Patient IV that account for M1 NED status are not available [11,126–134].
In this situation, Figure 6 tells us what data are needed and how to develop statistical
regression models using observations from large datasets that are representative of Patient
IV (Table 4). What we currently lack to make inferences for this patient is not predictive
biomarkers generated from interactive models, but rather simple prognostic risk models
that can risk stratify different M1 NED scenarios. Large multi-institutional observational
datasets of the recurrence risk of M1 NED patients not treated with any adjuvant therapy
would suffice to develop such M1 NED nomograms.

5.5. Patient V

Patient V is a 54-year-old woman who underwent nephrectomy for a 13.9-cm papillary
type I RCC, pT3a, Fuhrman nuclear grade 2, without sarcomatoid features or coagulative
necrosis, invading the renal vein with no pathological lymph node involvement or distant
metastatic disease. Other than the different histology, all other features would render this
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patient eligible for KEYNOTE-564 in the intermediate-high risk group (Table 1). Given
that the FDA approval of adjuvant pembrolizumab was not restricted to a specific RCC
histology, a clinician might be tempted to recommend adjuvant pembrolizumab for Patient
V. However, the estimated 24-month DFS probability from the Assure nomogram for Patient
V is 94.6% with surveillance. Papillary type I RCC is a histology with a different immune
microenvironment that is less likely than that of clear cell RCC to produce responses
to immune checkpoint therapies such as pembrolizumab [8,16,140]. Therefore, for this
patient, Figure 8B cannot be reduced to Figure 6B. Even if we assume the unlikely best case
scenario where the effect of adjuvant pembrolizumab is even better in papillary type I RCC
than in clear cell RCC, corresponding for example to HR = 0.5 for pembrolizumab versus
placebo, the predicted 24-month DFS probability with adjuvant pembrolizumab would be
97.3%, corresponding to ARR = 2.7%. Thus, it is very unlikely that the benefit of adjuvant
pembrolizumab would be clinically meaningful for this patient.

5.6. Patient VI

Patient VI is a 49-year-old man whose nephrectomy revealed a 10.4-cm papillary type
II RCC, pT3a, Fuhrman nuclear grade 4, with coagulative necrosis and sarcomatoid features,
invading the renal vein with no pathological lymph node involvement or distant metastatic
disease. Similar to the papillary type I RCC found in Patient V, papillary type II RCC harbors
a distinct immune microenvironment that is less likely than that of clear cell RCC to respond
to pembrolizumab [8,16,140]. Because KEYNOTE-564 did not enroll patients with papillary
type II RCC, Figure 8B instructs us to obtain experimental data on the effect of adjuvant
pembrolizumab in the immune microenvironment of papillary type II RCC. Clinical trial
results of adjuvant pembrolizumab in this setting are not available. However, it is known
that the efficacy of immune checkpoint therapies such as pembrolizumab is reduced by
~50% in patients with metastatic papillary type II RCC compared with metastatic clear cell
RCC [8]. Using the Assure nomogram, the predicted 24-month DFS probability of Patient
VI is only 41.4%. Even if we assume that the HR for DFS is only 0.84 [i.e., equal to 0.68 +
(1–0.68)/2] in patients with papillary type II RCC, the predicted 24-month DFS probability
with adjuvant pembrolizumab for Patient VI would be 47.7%, corresponding to an ARR
of 6.3%. Thus, adjuvant pembrolizumab would not be an unreasonable option for this
patient. If desired, this computation could be repeated for each of a set of hypothetical
HR values, such as 0.68, 0.72, 0.76, 0.80, and 0.84, as a sensitivity analysis using our
treatment effect calculator (Supplementary File S1). By making additional assumptions
here, we have approximated the potential effect modification due to the interaction between
adjuvant pembrolizumab and RCC histology in papillary type II RCC, despite the lack of
experimental studies of adjuvant pembrolizumab in papillary type II RCC.

5.7. Patient VII

Patient VII is a 56-year-old woman who underwent nephrectomy for a 9.5-cm chromo-
phobe RCC, pT2a, without coagulative necrosis, sarcomatoid features, vascular invasion,
pathological lymph node involvement, or distant metastatic disease. Due to its inherent
nuclear atypia, chromophobe RCC is not normally assigned a Fuhrman nuclear grade,
but the lack of sarcomatoid features or necrosis is compatible with a low-grade chromo-
phobe RCC [141,142]. A low nuclear grade thus can be selected in the Assure nomogram.
KEYNOTE-564 did not enroll patients with chromophobe RCC, which has a very different
immune microenvironment from clear cell RCC and typically responds very poorly to
immune checkpoint therapies such as pembrolizumab [8,16,140]. Figure 8B tells us that
we need experimental data to properly estimate the treatment effect of adjuvant pem-
brolizumab on the distinct immune microenvironment of chromophobe RCC. No such data
are currently available. However, the predicted 24-month DFS probability from the Assure
nomogram for Patient VII is 97.9%. Even if we assume the unlikely scenario whereby the
treatment effect of adjuvant pembrolizumab for chromophobe RCC is even higher than
that for clear cell RCC, corresponding for example to HR = 0.5 for pembrolizumab versus



Cancers 2022, 14, 3923 32 of 38

placebo, the predicted 24-month DFS probability with adjuvant pembrolizumab would be
98.9% corresponding to an ARR of only 1.0%. Thus, adjuvant pembrolizumab is not an
appropriate option for Patient VII under any treatment effect scenario.

5.8. Patient VIII

The final patient is a 52-year-old man whose nephrectomy revealed an 11.4-cm chro-
mophobe RCC, pT2b, with sarcomatoid features but without coagulative necrosis, vascular
invasion, pathological lymph node involvement, or distant metastatic disease. The pres-
ence of sarcomatoid features is compatible with a high-grade chromophobe RCC [141,142],
and thus a high nuclear grade can be selected in the Assure nomogram. As with Patient
VII, we are instructed by Figure 8B that we lack the necessary experimental knowledge
to properly estimate the treatment effect of adjuvant pembrolizumab for a patient with
chromophobe RCC. Furthermore, the 24-month DFS probability estimated by the Assure
nomogram is 91.3%, which is unusually favorable for chromophobe RCC with sarcomatoid
features. Additional observational studies focusing on chromophobe RCC suggest that
the rare situations where sarcomatoid features are present, as in Patient VIII, can decrease
24-month DFS probability to less than 50%, particularly in a pT2b tumor [143]. The Assure
dataset did not include enough cases of chromophobe RCC with sarcomatoid features to
discriminate between such scenarios [11]. This serves as an example of how a structured
causal framework can facilitate model checking. The Assure nomogram yielded an implau-
sible DFS probability, pointing to the need for additional observational studies to generate
prognostic risk scores capable of discriminating between rare attributes of chromophobe
RCC, such as the presence of sarcomatoid features.

6. Conclusions

We have described how structural causal considerations can inform both patient-
centered inferences and study design and illustrated how this may be performed with
several practical clinical examples. As summarized in Table 4, this framework allowed us
to integrate the complementary features of the KEYNOTE-564 phase 3 RCT, observational
data from the Assure prognostic risk nomogram, and corollary biological knowledge on
the immune microenvironment of different RCC histologies. Using causal diagrams and
the corresponding do-calculus syntax, we were able to decide whether the transportability
of knowledge from different domains to each patient scenario was plausible. In cases
where complete domain knowledge was not available to allow unbiased estimation of the
treatment effect for a specific patient, we were able to identify the pertinent knowledge gaps
and the types of studies, observational or experimental, that would be needed to license the
desired transport. The generation of patient-specific estimates in each scenario was based on
the potential outcomes framework expressed in Equations (1) and (3), along with statistical
regression modeling assumptions. In Figure 8B, we assumed that the only mediator for the
treatment effect of adjuvant pembrolizumab is the RCC immune microenvironment. As our
knowledge of the relevant biological events evolves, the causal chain may become more
complex, possibly including new mediators and biomarkers. In such a case, the choice of
whether the S-admissibility criterion is fulfilled for adjuvant RCC will again depend on the
causal context in which population differences are embedded [35–37].

Clear cell is the most common RCC histology, representing approximately 75% of all
cases. Using available knowledge to determine and represent plausible causal relation-
ships allowed us to identify clear cell RCC patients for whom adjuvant pembrolizumab
would be warranted despite their not fulfilling the eligibility criteria of the KEYNOTE-564
trial (Patient III) or, conversely, would not be warranted despite their classification as
intermediate-high risk by KEYNOTE-564 (Patient II). Since FDA approval of adjuvant pem-
brolizumab was not limited to clear cell RCC, clinicians also will be tasked with deciding
whether to recommend adjuvant pembrolizumab in other RCC histologies. These include
papillary RCC (approximately 10%–20% of cases) and chromophobe RCC (approximately
5% of cases), the second and third most common RCCs, respectively [8].
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Practicing clinicians must regularly make treatment decisions using each patient’s
covariates along with information from diverse sources, including clinical trials, laboratory
experiments, observational data, and biological knowledge. Causal diagrams are intuitive
tools that can be used by clinicians to incorporate such domain knowledge to inform their
decisions. Using the selection diagram in Figure 8B, we exploited established knowledge of
biological commonalities and differences between RCC histologies learned from designed
experiments and observational data, to provide recommendations for a variety of differ-
ent RCC patients. These included patients with papillary RCC (patients V and VI) and
chromophobe RCC (patient VII).

The proposed framework describes the causal assumptions necessary to utilize the
additive or interactive effect modeling approaches recommended by the PATH statement
to generate patient-specific predictions of treatment effects obtained from RCTs [67,68].
The general framework is not restricted to RCC and can be applied in a wide variety
of different medical contexts, as intended by PATH [67,68]. While the interactive effect
modeling approach used by PATH requires the use of statistical treatment–subgroup
interactions, our causal framework can accommodate more general scenarios, such as
making treatment decisions involving HER2-targeted agents for breast cancer (Figure 7A)
based on preclinical research.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14163923/s1, Supplementary File S1: Treatment Effect
Calculator.
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