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Editorial 

Stretching the limits of antiarrhythmic drug therapy: The promise of small-conductance 
calcium-activated potassium channel blockers☆ 

Atrial fibrillation remains a major health burden, negatively 
affecting the morbidity and mortality of >55 million patients worldwide 
[1]. Although much has been learned about the molecular basis of AF, 
many challenges remain in the translation of basic discoveries to clinical 
application [2,3]. There is increasing evidence that safe and effective 
rhythm control therapy (i.e., restoration and maintenance of normal 
sinus rhythm) may improve clinical outcomes of AF patients, particu-
larly when initiated early, before AF-related remodeling renders the 
disease unresponsive to therapy [4]. Catheter ablation is more effective 
at maintaining normal sinus rhythm than currently available antiar-
rhythmic drugs (AADs) [1]. However, given the large number of AF 
patients, AADs will remain a cornerstone of AF therapy for many years 
to come [5]. Current AADs were developed in the absence of information 
on the heterogeneous mechanisms underlying AF initation and pro-
gression and are used in a one-size-fits-all manner, partially explaining 
their limited efficacy [5,6]. Moreover, these AADs do not discriminate 
between atrial and ventricular cardiomyocytes, resulting in a significant 
risk of ventricular proarrhythmia that, together with non-cardiac side 
effects, greatly limits their use in clinical practice [1,5]. Thus, there is a 
clear need for safer, more effective AADs for rhythm control of AF. 

Atrial-selective AADs, targeting ion channels primarily expressed in 
the atria or exploiting differences in channel gating due to differences in 
resting membrane potential between atrial and ventricular car-
diomyocytes, are expected to be devoid of ventricular proarrhythmic 
side effects [5,7]. Moreover, given the lower proarrhythmic proclivity of 
atrial-selective AADs, it may be possible to employ higher doses to in-
crease antiarrhythmic efficacy. Several targets have been explored, 
including a number of repolarizing potassium channels primarily 
expressed in the atria [6,7]. Inhibition of these channels prolongs the 
atrial effective refractory period (ERP), destabilizing AF-maintaining 
reentry. Blockers of the ultra-rapid delayed-rectifier potassium current 
(IKur) were the first prototypical atrial-selective AADs. Although IKur 
blockers showed promise in cellular and animal models, prolonging 
atrial ERP without significant effect on ventricular repolarization, their 
antiarrhythmic effects in clinical studies were disappointing [5,7]. 
Similarly, blockers of the acetylcholine-activated inward-rectifier po-
tassium current (IK,ACh), which develops calcium-dependent constitutive 
(receptor-independent) activity in AF [8–10], contributing to proar-
rhythmic shortening of atrial ERP, have shown antiarrhythmic effects in 
some animal models [7]. However, the compounds tested to date were 
either not effective in humans or were limited in their use because of 

adverse central nervous effects [7]. Thus, the antiarrhythmic potential 
of atrial-selective IK,ACh inhibition still requires direct clinical 
verification. 

More recently, small-conductance calcium-activated potassium (SK 
or KCa2.X) channels, encoded by the KCNN1-3 genes, have been pro-
posed as targets for atrial-predominant rhyhm-control therapy [7]. 
Indeed, common variants in both KCNN2 and KCNN3 have been asso-
ciated with AF in genome-wide association studies [11] and inhibition of 
SK channels prolongs atrial repolarization [12]. Besides the bee-venom 
toxin apamin, often used to identify ISK experimentally, several SK- 
channel inhibitors with different modes of action have significant anti-
arrhythmic effects in various animal models [6,7]. For example, SK- 
channel inhibitors prolong atrial ERP and reduce the duration of 
acutely induced AF in pigs subjected to 1 week of atrial tachycardia 
remodeling [7,13]. Moreover, SK-channel inhibition could terminate a 
more persistent, vernakalant-resistant form of AF obtained using long- 
lasting rapid atrial pacing protocols and could prevent reinduction of 
AF under these conditions in pigs [13], suggesting a potential future use 
for long-term rhythm-control therapy. However, in a horse model of 
persistent AF treatment with the SK-channel inhibitor NS8593 was un-
able to induce cardioversion [14], indicating that species differences 
and AF induction mechanism may play a critical role in SK-channel in-
hibitor efficacy. 

In the present issue of the International Journal of Cardiology Heart 
and Vasculature, Yan et al. [15] investigated the antiarrhythmic effects of 
the SK-channel inhibitor N-(pyridin-2-yl)-4-(pyridin-2-yl)thiazol-2- 
amine (ICA) in an ex-vivo rabbit atrial model with balloon-mediated 
atrial dilatation. The authors show that ICA prolongs atrial repolariza-
tion duration and reduces the stretch-induced shortening of atrial ERP. 
Moreover, total AF duration increased linearly with balloon pressure 
and SK-channel inhibition reduced the occurence of burst pacing- 
induced AF during stretch. As such, these data further support the 
notion that SK-channel inhibition may be an effective rhythm control 
strategy in AF patients. 

Atrial stretch and associated dilatation are well-accepted risk factors 
for AF, with AF itself promoting further atrial dilatation. In the chronic 
setting, atrial stretch induces reentry-promoting structural remodeling 
and dilated atria provide a larger substrate that can sustain more drivers, 
making arrhythmia termination less likely. Moreover, acute stretch, 
which may be clinically relevant in postoperative AF [16], shortens 
atrial ERP and slows conduction via stretch-activated and stretch- 
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modulated ion channels, acutely promoting atrial arrhythmogenesis. In 
addition, acute stretch is associated with alterations in intracellular 
calcium through calcium influx via stretch-activated channels (e.g., 
transient-receptor potential channels), stretch-dependent modulation of 
voltage-dependent calcium channels (including Cav1.2), or increased 
calcium leak from the sarcoplasmic reticulum via ryanodine receptor 
channels [17]. Subsequent activation of SK channels, which are located 
in the immediate vicinity of Cav1.2 and ryanodine receptor channels 
[18], may therefore directly contribute to proarrhythmic stretch- 
induced ERP shortening, potentially explaining the antiarrhythmic ef-
ficacy of SK-channel inhibition under these conditions. However, direct 
proof is still lacking and the significant prolongation of baseline ERP (in 
the absence of stretch) may already be sufficient to modulate the 
arrhythmogenic risk. Of note, the atrial burst-pacing used to induce AF 
in the current study [15] would also be expected to promote calcium 
loading and subsequent activation of SK-currents. In agreement, previ-
ous work has identified a role for SK-channels in the reinduction of 
ventricular tachyarrhythmias after cardioversion by creating a 
mismatch between short repolarization duration and large, long calcium 
transients [18]. These factors may contribute to an overestimation of the 
importance of SK channels in the work by Yan et al. [15]. 

Despite the promising results in various animal models with clini-
cally relevant risk factors such as atrial stretch, the antiarrhythmic po-
tential of SK-channel inhibition in patients remains uncertain. This may 
be in part due to the incomplete understanding of the complexity of SK- 
channel remodeling and its effects on atrial electrophysiology and 
arrhythmogenesis. ISK is upregulated in different animal models with 
atrial tachypacing [18], but results in humans are variable. A number of 
studies have reported downregulation of some of the KCNN genes in AF 
patients [19,20], but results may depend on the atrial chamber of in-
terest (with KCNN1 expression increased in the left atrium of patients 
with AF and heart failure, but decreased in the right atrium [21]), and 
presence of systemic modulators [22]. For example, in HL-1 mouse atrial 
cardiomyocytes, stretch and β-adrenergic stimulation decreased KCNN1 
mRNA levels, whereas tachypacing and hypoxia suppressed KCNN3 
expression. On the other hand, expression of KCNN2, the most abundant 
isoform in human atria, was specifically enhanced by hypoxia [22]. 
Importantly, mRNA levels may be poor indicators of functional SK- 
channel remodeling since experimental studies have indicated an 
important role for SK-channel trafficking in the AF-associated increase 
in ISK [18]. Both increased and decreased ISK have been reported in atrial 
cardiomyocytes from Chinese AF populations [23,24], but results in 
individuals with European ancestry are scarse, although one study re-
ported a reduced repolarization prolonging effect of the SK-channel 
inhibitors NS8593 and ICAGEN in atrial cardiomyocytes from AF pa-
tients compared to sinus rhythm controls [19]. 

Taken together, the development of atrial-selective AADs remains a 
promising avenue for improving AF management. SK-channels are an 
interesting target, with numerous promising studies in a wide range of 
different animal models, including the data in the presence of acute 
atrial stretch presented by Yan et al. [15]. However, mechanisms of SK- 
channel remodeling, as well as antiarrhythmic efficacy and safety of SK- 
channel inhibition will need to be investigated in human atrial samples 
and appropriately designed clinical trials. Safety is a particular concern 
in light of the upregulation of KCNN expression in ventricular samples of 
heart failure patients [20] and ventricular proarrhythmic effects of SK- 
channel inhibition observed in animal models [18]. Furthermore, the 
metabolic relevance of SK2 and SK3 expression in mitochondria has to 
be evaluated in human samples to assess potential safety issues in pa-
tients with e.g., ischemic heart disease [25]. Results of initial ongoing (e. 
g., NCT04571385) and future clinical trials are eagerly awaited to see if 
the current boundaries of AAD therapy for AF can be stretched and the 
management of AF patients can be improved. 
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