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Some non-enveloped virus capsids assemble from multiple copies of a single

type of coat-protein (CP). The comparative energetics of the diverse CP-CP

interfaces present in such capsids likely govern virus assembly-disassembly

mechanisms. The T = 3 icosahedral capsids comprise 180 CP copies arranged

about two-, three-, five- and six-fold axes of (quasi-)rotation symmetry.

Structurally diverse CPs can assemble into T = 3 capsids. Specifically, the

Leviviridae CPs are structurally distinct from the Bromoviridae,

Tombusviridae and Tymoviridae CPs which fold into the classic “jelly-roll”

fold. However, capsids from across the four families are known to

disassemble into dimers. To understand whether the overall symmetry of the

capsid or the structural details of the CP determine virus assembly-disassembly

mechanisms, we analyze the different CP-CP interfaces that occur in the four

virus families. Previous work studied protein homodimer interfaces using

interface size (relative to the monomer) and hydrophobicity. Here, we

analyze all CP-CP interfaces using these two parameters and find that the

dimerization interface (present between twoCPs congruent through a two-fold

axis of rotation) has a larger relative size in the Leviviridae than in the other

viruses. The relative sizes of the other Leviviridae interfaces and all the jelly-roll

interfaces are similar. However, the dimerization interfaces across families have

slightly higher hydrophobicity, potentially making them stronger than other

interfaces. Finally, although the CP-monomers of the jelly-roll viruses are

structurally similar, differences in their dimerization interfaces leads to varied

dimer flexibility. Overall, differences in CP-structures may induce different

modes of swelling and assembly-disassembly in the T = 3 viruses.
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Introduction

Non-enveloped viruses enclose their genome in a shell composed exclusively of

proteins. In icosahedral viruses, this protein shell, also known as a capsid, has

icosahedral symmetry (Louten, 2016). The capsids of some icosahedral viruses are

assembled using a single type of protein, called the coat-protein (CP). Icosahedral

viruses are further classified based on their triangulation (T) number, which, for
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simple viruses, is generally equal to the number of unique CP

conformers that are present in the unit that is used to tile the

icosahedron (Caspar and Klug, 1962). Thus, a T =

3 icosahedral capsid, composed of 180 CPs (Figure 1), has

a CP trimer in each tiling unit (also known as the icosahedral

asymmetric unit: IAU). Other distinct CP-CP interactions

give rise to (quasi-)symmetric dimers, pentamers and

hexamers (Figures 1A,B). Henceforth, the interface between

the (quasi-)symmetric dimers (CP2) is called the dimerization

interface, the interface between any two CPs from an IAU is

called a trimerization interface and so on (Figures 1D–G).

The process of virus assembly is not completely understood

even in viruses whose capsids are made of a single type of CP.

Although proteins of the infected-host (HP) may affect virus

assembly-disassembly, multiple experimental studies have used

capsids expressed from bacterial expression systems, assembled

in the absence of HP-CP interactions (Zhao et al., 1995; Sastri

et al., 1999; Lokesh et al., 2002; Powell et al., 2012), or have

studied disassembly with purified virus particles (Pappachan

et al., 2009; Powell et al., 2012; Bond et al., 2020). In such

assembly-disassembly processes, the balance of energetic

interactions among CPs and between the CPs and the genome

will determine the order of events in assembly. Capsids can also

assemble around non-genome cargo (Ren et al., 2006; Sokullu

et al., 2019; Durán-Meza et al., 2020) indicating that CP-CP

interactions can by themselves direct capsid assembly. In order to

understand potential principles that govern such CP-CP

interface energetics, we analyzed the strength and nature of all

CP-CP interfaces (Figures 1D–G) in diverse T = 3 icosahedral

viruses.

FIGURE 1
The arrangement of coat-proteins in T = 3 icosahedral viruses. A typical icosahedron consists of 20 equivalent equilateral triangular faces and
12 vertices. Each of the 12 vertices are shared by five faces, resulting in 12 five-fold axes of rotation symmetry (C5). There are two-fold rotation
symmetry axes (C2) at the center of each of the 30 edges and a three-fold axis (C3) at the center of each of the five faces. In a T = 1 icosahedral capsid,
each of the 20 triangular icosahedron faces are tiled by three equivalent coat-proteins (CPs). Thus, a T = 1 capsid has one CP in its icosahedral
asymmetric unit (IAU), 20 × 3 = 60 CPs in total and exactly the same axes of rotation symmetry as the icosahedron. (A) A T = 3 capsid has three CP
conformers (A, B, C) in its IAU leading to a capsid with 60 × 3 = 180CPs. It is drawn here by placing a pentamer (three pentamers aremarked with dark
boundaries) around each C5 vertex (orange pentagon) of the original icosahedron. This pentamer is subdivided into 5 IAUs. The centers of the IAUs
form 12 × 5 = 60 axes of quasi-three-fold rotation symmetry (QC3; green triangles). There are 30 C2 axes (originating from the icosahedron and
between 2 C CPs; blue diamonds). Because there are three CPs per IAU, an additional 30 × 2 = 60 quasi-two-fold (QC2; blue diamonds) axes of
rotation symmetry are formed between the A and B CPs of two adjacent IAUs belonging to the same pentameric unit. Finally, the original 20 C3 axes
at the center of each face are converted into quasi-six-fold axes of rotation symmetry (QC6, red hexagons) due to the extra symmetry in the trimeric
IAU. Thus, the T = 3 capsid consists of 20QC6 (red hexagons), 12 C5 (orange pentagons), 60QC3 (green triangles), 30 C2 (blue diamonds) and 60QC2

(blue diamonds) axes. This representation scheme is preserved throughout the figures. (B) The three pentameric units marked with dark boundaries
in (A) are enlarged and shownwith all the axes of rotation symmetrymarked. The regionmarkedwith dark boundaries shows the 6CPs that form a tri-
dimeric unit. This unit contains a central IAU flanked by three additional CPs belonging to adjacent IAUs. These three CPs are related to the CPswithin
the central IAU by (quasi-)two-fold rotation symmetry. Such tri-dimeric units contain every type of CP-CP interface that can be present in a T =
3 capsid. (C) The tri-dimeric structure from the capsid of Cowpea Chlorotic Mottle Virus (CCMV, Bromoviridae) with an overlay of the tri-dimeric unit
from (B). The three CP conformers from CCMV, A, B and C are colored red, yellow and blue respectively. For tri-dimer structures of representatives
from all virus families, see Figure 2. (D–G) The various CP-CP interaction interfaces present in the tri-dimer. The two CPs which are part of the
interaction aremarked in red. The red line segment that is common to the two CPs represents the interaction interface. (D) The two CPs (CP2) which
form the dimerization interface. There are three such interfaces in the tri-dimer. (E) The two CPs which form the trimerization interface. There are
three such interfaces in the tri-dimer. (F) CPs which form the pentamerization interface (G) CPs which form the hexamerization interface. There are
two such interfaces in the tri-dimer.
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The Leviviridae, Bromoviridae, Tombusviridae and

Tymoviridae families have positive-sense single-stranded RNA

genomes enclosed in T = 3 icosahedral capsids (King et al., 2012).

However, while the bacteriophage Leviviridae CPs fold to an α+β
fold with two α-helices and seven β-strands (Fold d.85 in SCOPe

(Fox et al., 2014; Chandonia et al., 2022); Figure 2A), the

Bromoviridae, Tombusviridae and Tymoviridae are mostly

plant viruses whose CPs fold to the jelly-roll fold (SCOPe

classification: b.121.4; Figures 2B–D). The jelly-roll fold is

composed of two stacked four-stranded antiparallel β-sheets
and is present in diverse virus CPs (Rossmann and Johnson,

1989; Johnson and Chiu, 2000; Cheng and Brooks, 2013). Despite

the structural differences between the CPs, experimental

disassembly data is available for at least one virus from each

family which indicates that the viruses disassemble into dimers

(Adolph and Butler, 1974; Stockley et al., 2007; Pappachan et al.,

2009; Powell et al., 2012; Bond et al., 2020). The question that

arises then is, does the overall capsid symmetry rather than

interface energetics drive disassembly processes.

In the commonly studied Levivirus bacteriophage MS2, it is

known that the capsid assembly unit is not CP but CP2, the

homodimer composed of the two symmetry related CPs

interacting at the dimerization interface (Ni et al., 1995; Stockley

et al., 2007). Our earlier folding simulations (Prakash and Gosavi,

2021) showed that MS2-CP2 is an obligate dimer, i.e., it cannot fold

into two independent fully foldedmonomers.MS2-CP2 also folds in

a two-state manner, populating only the unfolded and dimeric

folded ensembles without populating either a dimeric or a two-

monomer intermediate ensemble. Using folding simulations, a

previous study (Levy et al., 2004b) classified diverse homodimers

into either two-state folding dimers or three-state folding dimers

populating a partially folded ensemble. The authors argued that

folding outcomes are probably determined by the nature of the

dimeric interface and constructed two interface dependent

parameters ad hoc. The first parameter (R), the ratio of the

number of inter-monomer contacts to the intra-monomer

contacts, is a proxy for the relative size of the interface. The

second parameter (H), the average hydrophobicity of the residues

in the interface, is a proxy for how buried (and not solvent exposed)

the interface residues want to be. It was found that H and R could

also classify homodimers into two-state (high H and R values) and

three-state folders (lower H and R values).

We previously calculated the H and R for MS2-CP2 and these

values predicted two-state folding in agreement with simulations

(Prakash and Gosavi, 2021). Here, we hypothesize that H and R can

also be more generally used to understand how similar CP-CP

interaction interfaces are to each other. Accordingly, we calculatedH

and R for all the interfaces (dimerization, trimerization,

pentamerization and hexamerization) of viruses from the

four T = 3 families. We find that the dimerization interfaces of

the Leviviridae have higher H and R values than all other interfaces

indicating that these CP2 dimers are predicted to be two-state

folders. The H values of the jelly-roll fold dimerization interfaces

are generally marginally higher indicating that the interface residues

may be buried more strongly through dimerization possibly

enabling disassembly into CP2 dimers.

FIGURE 2
Symmetry elements in the tri-dimer structures of representatives
from the four virus families. The structures are labeledbyboth the virus
family and the virus name. All (quasi-)rotation symmetry axes can be
shownusing the dimers of the threemonomers, termedA, B and
C and approximately bounded by the dashed triangle, that form the
Icosahedral Asymmetric Unit. In all four viruses, chains A, B and C are
colored red, yellow and blue, respectively. The position of the axes of
rotation symmetry are marked. The green triangle at the center of the
IAU represents the QC3 symmetry axis and any pair of CPs within the
IAU form the trimerization interface (Figure 1E). Red hexagons and
orange pentagons represent QC6 and C5 symmetry axes respectively.
Five A conformers are present around the C5 axes (Figures 1A,B) of
which two are present in the tri-dimer and they form the
pentamerization interface (Figure 1F). Alternating B and C conformers
(three each) are present at the QC6 axes (Figures 1A,B) of which one B
and one C conformer can be seen at each of the two QC6 axes and
these form hexamerization interfaces (Figure 1G). A blue diamond
between the twoCCP chains (present in adjacent IAUs) indicates a C2

axis, while those between the A CP and B CP chains present in
adjacent IAUs, indicateQC2 symmetry axes. The interactions between
these dimers, termed CC CP2 and AB CP2 respectively, form the
dimerization interface (Figure 1D). (A) Bacteriophage MS2 (MS2), (B)
Cowpea Chlorotic Mottle Virus (CCMV; also see Figure 1C), (C)
Tobacco Necrosis Virus (TNV) and (D) Turnip Yellow Mosaic Virus
(TYMV). The chains (conformers) are named as in their PDB files. It
should be noted that the A and B names are flipped in MS2 as
compared to the jelly-roll viruses, with the B conformer being present
in the pentamer and the A conformer in the hexamer. Tri-dimeric
structures from each virus were used to calculate all the CP-CP
interactions. Structures generated using UCSF Chimera (Pettersen
et al., 2004).
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To further investigate the CP2 dimers, we performed molecular

dynamics (MD) simulations of coarse-grained structure-based

models (Clementi et al., 2000) of a representative CP2 from the

four virus families. The inter-monomer distance changes the least in

MS2-CP2 indicating a rigid interface while this distance varies the

most in the Bromoviridae representative. Overall, differences in the

structure of the dimerization interface give rise to distinct interface

dynamics in the three CP2 jelly-roll fold dimers and this is likely to

lead to different modes of assembly and disassembly.

Methods

Obtaining capsid structures for interface
analysis

PDB IDs for T = 3 capsids from Leviviridae, Bromoviridae,

Tymoviridae and Tombusviridae, were obtained from VIPERdb

(http://viperdb.scripps.edu) (Montiel-Garcia et al., 2021) and

filtered to eliminate redundant structures. Assembled capsid

structures for the selected PDB IDs were then downloaded

from RCSB PDB (Berman et al., 2000). From the complete

capsid structures, a tri-dimer structure was extracted

(Figure 2), which included one triangular IAU with A, B and

C chains and one chain each extracted from three adjacent IAUs,

such that these chains had a dimerization interface with the

chains from the original IAU. This tri-dimer is the minimal unit

containing all interactions between adjacent CPs in the T =

3 capsids (Figures 1C–G).

Calculating normalized interface size and
hydrophobicity

The H and R parameters (Figure 3) were calculated as done

previously for diverse homodimers (Levy et al., 2004a; Levy et al.,

2004b). When two residues are “close” in structure, they are said

to be in contact. Here, interatomic intra-CP and inter-CP

contacts were calculated using the CSU software (Sobolev

et al., 1999) for every pair of adjacent CPs in the tri-dimer

structure. These contacts were then projected onto their

corresponding residues. For CPs labeled x and y, the number

of intra-CP contacts are Nintra(x) and Nintra(y) respectively, while

the inter-CP contacts are Ninter(xy). The ratio of the number of

inter-CP to the intra-CP contacts is then

R(xy) �
Ninter(xy)

0.5(Nintra(x) +Nintra(y))
(1)

Inter-CP interface hydrophobicity was calculated by

averaging over the hydrophobicity factor, hi (Pacios, 2001), for

every residue i, which participated in an inter-CP contact. Thus,

H(xy) � ∑
n

i

hi
2Ninter(xy)

(2)

where n = 2×Ninter(xy). It should be noted that if a residue

participates in two different inter-CP contacts, then it is

counted twice. hi (and H) ranges from 0 to 1, with hi = 1 for

the most hydrophobic residue and hi = 0 for the least

hydrophobic residue. We calculate the hydrophobicity factors

using a scale that was used in the original H parameter

calculations for homodimers (Levy et al., 2004b).

Multiple structure alignment of jelly-roll
fold CPs

Two ‘C’ CP monomers connected by a two-fold rotation

symmetry (CC-CP2) were extracted from the tri-dimer

structures of representative viruses (Figure 2): Bromoviridae:

FIGURE 3
A plot of the normalized interface hydrophobicity (H) vs. the
ratio of interface contacts tomonomer contacts (R). (A) Leviviridae,
(B) Bromoviridae, (C) Tombusviridae and (D) Tymoviridae. A three-
state folding dimer (+) folds to an intermediate ensemble
(either two monomers or a partially folded dimer) from two
unfolded monomers before folding to the final dimeric state. A
two-state folding dimer (+) folds directly to the dimeric state from
two unfolded monomers. These datasets of homodimers are from
a previous study on homodimer interfaces (Levy et al., 2004b) and
are shown in all panels. An arbitrary line (y/0.5 + x/1.8 = 1),
separating the two-state and the three-state dimers, is drawn to
provide visual guidance (and does not represent an actual
boundary between the two regions). The interfaces between two
CPs related through the (quasi-)two-fold rotation symmetry
(dimerization interface in CP2; blue diamonds), the quasi-three-
fold rotation symmetry (trimerization interface; green triangles),
the five-fold rotation symmetry (pentamerization interface;
orange pentagons) and the quasi-six-fold rotation symmetry
(hexamerization interface; red hexagons) are shown.
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Cowpea Chlorotic Mottle Virus: CCMV (PDB ID: 1CWP);

Tombusviridae: Tobacco Necrosis Virus: TNV (PDB ID:

1C8N); and Tymoviridae: Turnip Yellow Mosaic Virus:

TYMV (PDB ID: 1AUY). For one monomer from each of the

CP2s, we performed a multiple structure alignment using the

STAMP algorithm (Russell and Barton, 1992) as implemented in

the Multiseq extension (Roberts et al., 2006) of the VMD package

(Humphrey et al., 1996). The aligned CPs (Figures 4B–D left

chains) were colored based on their alignment from blue through

white to red, with well-aligned regions in blue and unaligned

regions in red. The second chains (Figures 4B–D right chains) of

the dimers were not aligned. These jelly-roll CP2s and the MS2-

CP2 (also extracted from the bacteriophage MS2 tri-dimer; PDB

ID: 2MS2, Figure 4A) were used to understand dimer dynamics.

Simulating CP2 dynamics

We used a structure-based model coarse-grained to a single

Cα-bead per residue (Cα-SBM) (Clementi et al., 2000) to

simulate one CC-CP2 dimer (see previous section) of a

representative virus from each family. This Cα-SBM was

previously used to simulate the folding of MS2-CP2 and its

variants using MD simulations (Prakash and Gosavi, 2021).
FIGURE 4
A comparison of the structure and the dynamics of the

(Continued )

FIGURE 4 (Continued)
CP2 dimerization interfaces. (A–D) Structures of the two
monomers related through two-fold rotation symmetry
(dimerization interface). The dimerization interfaces aremarked by
a black rectangle. The approximate position of the center of
mass of each protein chain is indicated using a filled black circle.
The dashed-double sided arrow indicates the distance between
these centers of mass (COM distance). The COM distance
distribution is plotted in (E). (A)MS2 (monomers in grey and red) (B)
CCMV (graded and orange), (C) TNV (graded and blue) and (D)
TYMV (graded and green). Themonomers on the left in (B–D)were
structurally aligned using the STAMP algorithm (Russell and Barton,
1992) within the Multiseq extension (Roberts et al., 2006) of the
VMDpackage (Humphrey et al., 1996) and are shown in the aligned
position. They are colored from blue through white to red based
on how good the alignment is with blue indicating a good
alignment and red indicating no alignment. The core β-sheet jelly-
roll fold (pale blue towhite) aligns well across the three viruses. The
change in orientation in the right monomer (orange, blue and
green) is due to the distinct dimer interfaces in the three viruses. (E)
Histograms of the COM distance calculated from equal time
coarse-grained simulations of the dimers. The vertical dashed line
(colored like the histogram) shows the COM distance in the native
folded structure. MS2-CP2: mean COM distance = 1.67 nm,
standard deviation = 0.03 nm. TNV-CP2: mean = 4.42 nm,
standard deviation = 0.08 nm. TYMV-CP2: mean = 4.43 nm,
standard deviation = 0.06 nm. CCMV-CP2: mean = 3.35 nm,
standard deviation = 0.23 nm. A broader histogram such as that
seen in CCMV indicates amore flexible dimer interface. For each of
these CP2 dimers, the alignment of the native structure with
sampled structures whose COM distances are the mean, and
mean ± 2×(standard deviation) are shown in Supplementary
Figure S4.
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Details of the Cα-SBM and simulations are described in the

supplementary information. The distance between the centers of

mass (COM) of the two chains in the dimer was calculated for

structures sampled during a simulation. These COM distance

values were then binned (bin width 0.01 nm) into a histogram

(distribution) which gives the normalized number of structures

present in the bin with a given COM distance value.

Results and discussion

The Leviviridae CPs are obligate dimers

As stated in the introduction, two parameters, R, the ratio of

interface to monomer contacts, and H, the average interface

hydrophobicity, were previously shown to be able to classify a set

of diverse homodimers as being two-state or three-state folding

in simulations (Levy et al., 2004b). Since R and H are physically

intuitive interface properties with R being a proxy for interface

size and H for its “stickiness”, we use these parameters more

generally to understand the strength and nature of CP-CP

interfaces.

We first calculated the H and R values of the set of

homodimers used previously (Levy et al., 2004b) and drew an

arbitrary line in the H-R space such that homodimers which lie

on one side of the line are two-state folders while those on the

other side are three state folders (Figure 3). However, it should be

underlined that this division is arbitrary and there are insufficient

data points to demarcate the boundary exactly. So, homodimers

that lie near the boundary-line, on either side, could either be

two-state with a small folding barrier or three-state with a weakly

populated intermediate. Since we intend to use H and R more

generally here, we assume that homodimers that lie in the two-

state region have stronger interfaces than homodimers that lie

near the boundary which in turn have stronger interfaces than

homodimers that lie in the three-state folding region.

Our previous folding simulations of the Levivirus MS2-CP2

agreed with the H and R values and showed that MS2-CP2 was a

two-state dimer indicating that MS2-CP2 has an extensive

interface which couples the folding of the two CPs (Prakash

and Gosavi, 2021). Other Leviviridae CP2 also have high H and R

values (Figure 3A) indicating that CP2 is the capsid assembly unit

in the entire family. In contrast, all other Leviviridae CP-CP

interfaces (the trimerization, pentamerization and

hexamerization interfaces) have lower R values. Further,

trimerization interfaces are the least hydrophobic (Figure 3A).

An examination of MS2-CP2 shows a two-layer interface

(Figure 4A). The inner layer is formed by the anti-parallel β-β
hydrogen bonding interactions between the edge β-strands
(named βG in MS2) of the two extended β-sheets, one from

each CP. The outer layer comprises the C-terminal α-helices of
each CP stacked over the β-sheet of the partner CP. The CP

helices are also sandwiched between the partner CP’s N-terminal

β-hairpin and C-terminal α-helices, creating an interdigitated

topology (Figure 4A). This two-layer structure gives rise to an

extensive interface area with R varying between 0.95–1.50.

Moreover, 50–70% residues participating in interface contacts

are non-polar, giving rise to large H values of 0.35–0.45

(Supplementary Table S1). Previously (Prakash and Gosavi,

2021), we had computationally designed two MS2-CP2

variants, each having reduced interactions in one of the

interface layers. One variant was a pseudo-circular permutant

(CiP) CP2 which had the C-terminal helices from each monomer

excised and linked to the N-terminus of the partner monomer

(Supplementary Figure S1A). This preserved all dimer contacts

but converted inter-CP β-sheet-helix contacts into intra-CP

contacts. The H and R values of CiP-CP2 lie close to the line

dividing the two-state and three-state folders (Supplementary

Figure S1B). In agreement, CiP-CP2 is a two-state folder with a

barrier much smaller than that of wild type (WT) MS2-CP2.

Further unlike WT-MS2-CP, CiP-CP monomers can fold

completely (Prakash and Gosavi, 2021). A similar effect (two-

state folding with a low barrier and high H values with lower R

values) was seen in the other variant of MS2-CP2 (termed MS2-

ΔβG:βG-CP2) in which the interactions between the two

antiparallel βG edge strands were deleted.

In summary, for each of the CP-CP interfaces (dimerization,

trimerization, pentamerization and hexamerization), the H and

R values are similar across Leviviridae. Additionally, the

Leviviridae have intertwined dimerization interfaces which

lead to higher R values and two-state folding of MS2-CP2.

We next analyze the CP-CP interfaces of the other three

families and compare these with those of MS2-CP2.

The CP2 interfaces of the jelly-roll fold
viruses are similar to their other interfaces

The sizes of the dimerization interfaces (CP2; Figures 2B–D)

of the CPs from the three jelly-roll virus families are similar to

their corresponding pentamerization and hexamerization

interfaces with R ranging from 0.07 to 0.50 (Supplementary

Tables S2–S4). However, except in Bromoviridae (Figure 3B,

Supplementary Table S2), the dimerization interface is generally

marginally more hydrophobic than the pentamerization and

hexamerization interfaces (Figures 3C,D, Supplementary

Tables S3, S4). The trimerization interface in Bromoviridae

and Tombusviridae is the least hydrophobic (Figures 3B,C)

while in Tymoviridae, the trimerization interface is closer in

hydrophobicity to the pentamerization and hexamerization

interfaces (Figure 3D, Supplementary Table S4). Overall the H

and R values of all the CP-CP interfaces of the jelly-roll viruses

are also similar to the non-CP2 (non-dimerization) interfaces of

the Leviviridae.

What then could be the reason for CP2 either forming first or

persisting after capsid disassembly in disassembly/reassembly
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experiments with jelly-roll fold viruses (Adolph and Butler, 1974;

Zhao et al., 1995; Sastri et al., 1999; Zlotnick et al., 2000; Tang

et al., 2006; Powell et al., 2012) as well as in experiments involving

assembly defective mutants (Tang et al., 2006; Pappachan et al.,

2009)? We find that although the H and R values for all the CP-

CP interfaces of the jelly-roll fold families lie in the three-state

folding region, the dimerization interfaces lie close to the

arbitrary line (dashed-line in Figures 3A–D) separating this

region from the two-state folders. Thus, the interface of

CP2 is likely to be stronger than interfaces that lie in the

three-state folding region and is likely to remain intact in

conditions where the other interfaces break, leading to early

formation of and late dissociation of CP2 dimers in assembly/

disassembly experiments. Consequently, we focus on the CP2

interfaces and examine them in detail.

Despite having structurally-similar
monomers, the dimerization interfaces of
the jelly-roll fold viruses are distinct

Since the three jelly-roll fold virus families have structurally

similar CPs, we performed a multiple structure alignment on one

monomer from the CP2 of one representative virus from each of

the three families (see Methods; Figures 4B–D). The core β-sheet
region forming the jelly-roll fold is fairly well-aligned in all three

virus CPs, but each CP has additional secondary structure

elements and a completely different dimerization interface

(Figures 4B–D). The TNV and TYMV CP2s have an interface

involving side-by-side interactions between the edge β-strands of
the two CPs (Figures 4C,D), reminiscent of the antiparallel β-
sheet inner layer of MS2-CP2 (Figure 4A). In addition to these β-
β interactions, the TNV-CP2 interface also contains small α-
helices from each monomer stacked over its own β-sheet that are
also packed against each other (Figure 4C). This makes the

interface similar to that of MS2-CiP-CP2 (Supplementary

Figure S1A) and as expected, their H and R values are also

similar (Supplementary Figure S1B).

The CCMV-CP2 interface is distinct from the TYMV and

TNV CP2 interfaces and lacks β-β interactions. Each monomer

has a C-terminal tail which reaches out and interacts with the β-
sheet of the core jelly-roll fold of the partner monomer

(Figure 4B). This is similar to the variant, MS2-ΔβG:βG-CP2,
in which the interchain β-β contacts were deleted (Prakash and

Gosavi, 2021). The role of the swapped C-terminal helices in

MS2-ΔβG:βG-CP2 is played by the swapped C-terminal tails in

CCMV. The lack of β-β contacts and the length of the C-terminal

tails creates a space or a cavity between the two CPs of the

CCMV-CP2 (Supplementary Figure S2B) and this gap should

make the CCMV-CP2 interface (and that of other Bromoviridae)

more flexible.

To test this hypothesis, we simulated the CP2s from MS2,

CCMV, TNV and TYMV using Cα-SBMs and calculated the

distributions of the distance between the centers of mass of the

two monomers (COM distance) from the simulation trajectory

(see Methods). As expected, the two-layer MS2-CP2 interface has

the most sharply peaked distribution (Figure 4E, Supplementary

Figure S3) with the least standard deviation from the mean COM

distance. The stiffness of this interface is pictorially depicted in

Supplementary Figure S4A. TNV-CP2 and TYMV-CP2 have

distributions which are more similar to each other (Figure 4E,

Supplementary Figures S4C,D) than they are to CCMV-CP2.

CCMV-CP2 (Figure 4E) has a broad COM distance distribution

with the highest standard deviation. This flexibility in the

CCMV-CP2 dimerization interface (Supplementary Figure

S4B) has been shown experimentally and computationally

(Tama and Brooks, 2002; Elrad and Hagan, 2008) to allow

capsids with varying sizes. Capsids from Bromoviridae have

also been shown to swell at neutral pH = 7.0 and at low

divalent metal ion (Ca2+ or Mg2+) concentrations (Speir et al.,

1995). The modelled pseudoatomic structure of the swollen

capsid (Tama and Brooks, 2002) retains the pentamerization

and hexamerization interfaces but a change in conformation at

the dimerization interface expands the pore at the trimerization

axis (QC3, Figure 2). Thus, Bromoviridae CP2 flexibility may be

responsible for the ability of the capsid to swell. An additional

role of the capsid flexibly could be to allow it to package genomes

of slightly varying sizes. Unlike Tymoviridae and Tombusviridae,

viruses belonging to Bromoviridae have their genome divided in

four parts that are packaged separately in three different capsids

(tripartite genomes) (Chaturvedi and Rao, 2018; Chakravarty

and Rao, 2021). It was also shown that the C-terminal tail which

forms the dimerization interface in Bromoviridae may be

important for cell-to-cell movement of the viral capsids

(Okinaka et al., 2001). In fact, Bromoviridae reassembly

studies have shown aggregates other than regular T = 3 or

T = 1 capsids (Bancroft et al., 1967; Adolph and Butler, 1974;

Tang et al., 2006).

Capsid asssembly and disassembly for
understanding infections and in protein
engineering

Due to the size and strength of the Leviviridae dimerization

interfaces, they are expected to be stronger than the trimerization,

hexamerization and pentamerization interfaces, implying that

during disassembly, CP2-CP2 interactions will break before

interactions within a CP2 dimer (intra-CP2), as was shown in

previous acid disassembly experiments (Stockley et al., 2007). In

contrast, because of the relative chemical similarity between the

dimerization, pentamerization and hexamerization interfaces in

jelly-roll viruses, these interactions are likely to break at similar

denaturant conditions, while the trimerization interfaces may break

in milder conditions (Szoverfi and Fejer, 2022). The swelling of the

CCMV capsid by increasing the size of the pore at the trimerization
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axis (Speir et al., 1995; Tama and Brooks, 2002) is in accordance with

this observation. A previous computational study (Polles et al., 2013)

determining the rigid mechanical units in virus capsids, showed that

while CP2 was the mechanically stable unit in MS2, pentamers and

hexamers were stable in CCMV. Although the pentamers and

hexamers are mechanically rigid units, the swapped C-terminal

tails in CCMV-CP2 link hexamers to both adjacent hexamers and

pentamers potentially buffering the breaking apart of viruses during

disassembly.

The difference in the protein interfaces may also enable

different infection mechanisms. Leviviridae infection is

believed to involve disassociation of the maturation protein

(which replaces one CC-CP2 in the WT virus) along with the

genomic RNA from the capsid (Meng et al., 2019). In contrast,

for Bromoviridae, infection is hypothesized to follow co-

translational disassembly, where the genomic RNA is exposed

for translation due to swelling of the capsid at the neutral pH of

the host cell (Roenhorst et al., 1989; Speir et al., 1995; Tama and

Brooks, 2002; Bond et al., 2020). Interestingly, similar swelling is

also observed in both Tombusviridae (Aramayo et al., 2005;

Llauró et al., 2015) and Tymoviridae (Virudachalam et al.,

1985; Sastri et al., 1999), which do not have flexible

CP2 interfaces. Thus, although it is assumed that they too co-

translationally disassemble like Bromoviridae, the rates of

swelling and infection could be very different.

Overall, even coarse-grained parameters and models which do

not contain atomic details of the interfaces can be used to both

understand and propose hypotheses in assembly-disassembly

mechanisms especially when such mechanisms are studied

in vitro. However, it is important to note that the present coarse-

grained approaches do not include metal ions, virus RNA or host

proteins and RNA. For instance, ordered genomic RNA such as is

present in Leviviridae (Koning et al., 2016; Rolfsson et al., 2016;

Chang et al., 2022) can also modulate the mechanism of viral

assembly by coding specific sites for RNA-protein interactions

called packaging signals (ElSawy et al., 2010; Stockley et al., 2016;

Martín Garrido et al., 2020). Packaging signals are also present in

Bromoviridae (Choi et al., 2002; Choi and Rao, 2003; Chakraborty

et al., 2018),Tombusviridae (Qu andMorris, 1997) andTymoviridae

(Bink et al., 2003; Larson et al., 2005) although it is known that the

RNA in Bromoviridae is much less ordered (Beren et al., 2020). We

do not consider the effect of these signals here.

Finally, we discuss possible applications of understanding

CP-CP interactions for capsid engineering. MS2 (Leviviridae)

capsids have been used to design vessels for delivering

therapeutic molecules (Wu et al., 1995; Brown et al., 2002;

Wu et al., 2005; Galaway and Stockley, 2013; Yan et al., 2014;

Pumpens et al., 2016) and for antigen presentation in vaccines

(Mastico et al., 1993; Wu et al., 1995; Peabody, 1997; Tumban

et al., 2015; Frietze et al., 2016; Pumpens et al., 2016). Similar

studies have also been performed with T = 3 jelly-roll capsids

(Ren et al., 2006; Barnhill et al., 2007; Lockney et al., 2011; Yildiz

et al., 2012; Zeng et al., 2013; Sokullu et al., 2019; Durán-Meza

et al., 2020). Understanding protein-protein interactions is an

important step in improvising such systems, as was shown in a

recent study on MS2 (Biela et al., 2022), where insertions were

made to tweak the dimerization interface, allowing the formation

of larger capsid structures.

Conclusions

The capsids of the Leviviridae, Bromoviridae, Tymoviridae and

Tombusviridae families have T = 3 icosahedral structures made up,

almost completely, of a single type of coat-protein (CP). However, the

structures of the Leviviridae CPs are distinct from those of the CPs of

the other three virus families which fold into the jelly-roll fold. We

examined the average hydrophobicity (H) and relative size (R) of all

the CP-CP interfaces (dimerization, trimerization, pentamerization

and hexamerization) and found that the dimerization interface of the

Leviviridae CPs is distinctly different from all other interfaces with

high H and R values indicating that these CPs are likely to be present

as CP2 dimers. On an average, H values of the dimerization interfaces

of the other three families (Bromoviridae, Tymoviridae and

Tombusviridae) are also higher than that of the other interfaces

potentially making this interface stronger. This could be the reason

for capsid disassembly into CP2 in in vitro experiments. Although the

CPmonomers from these three virus families are structurally similar,

differences in dimer interface structure make the dynamics of the

dimerization interfaces distinct across the three families. Thus, even in

viruses with the same overall capsid symmetry, a diversity in CP

structure and interactions may lead to diverse assembly-disassembly

mechanisms.
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