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Mitochondria are both the primary provider of ATP and the pivotal regulator of cell
death, which are essential for physiological muscle activities. Ca2+ plays a multifaceted
role in mitochondrial function. During muscle contraction, Ca2+ influx into mitochondria
activates multiple enzymes related to tricarboxylic acid (TCA) cycle and oxidative
phosphorylation, resulting in increased ATP synthesis to meet the energy demand.
Pathophysiological conditions such as skeletal muscle denervation or unloading also
lead to elevated Ca2+ levels inside mitochondria. However, the outcomes of this steady-
state elevation of mitochondrial Ca2+ level include exacerbated reactive oxygen species
(ROS) generation, sensitized opening of mitochondrial permeability transition pore
(mPTP), induction of programmed cell death, and ultimately muscle atrophy. Previously,
both acute and long-term endurance exercises have been reported to activate certain
signaling pathways to counteract ROS production. Meanwhile, electrical stimulation
is known to help prevent apoptosis and alleviate muscle atrophy in denervated
animal models and patients with motor impairment. There are various mechanistic
studies that focus on the excitation-transcription coupling framework to understand
the beneficial role of exercise and electrical stimulation. Interestingly, a recent study
has revealed an unexpected role of rapid mitochondrial Ca2+ transients in keeping
mPTP at a closed state with reduced mitochondrial ROS production. This discovery
motivated us to contribute this review article to inspire further discussion about the
potential mechanisms underlying differential outcomes of physiological mitochondrial
Ca2+ transients and pathological mitochondrial Ca2+ elevation in skeletal muscle
ROS production.

Keywords: skeletal muscle, mitochondrial ROS, mitoflash, mitochondrial Ca2+ homeostasis, transitory mPTP
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INTRODUCTION

Skeletal muscle carries out multiple critical functions of human
body such as locomotion, metabolism, and thermogenesis
(Block, 1994; Qiu et al., 2018). Thus, skeletal muscle atrophy,
characterized by loss of muscle mass and strength, could have
severe impact on daily living or even become life-threatening
(Jackman and Kandarian, 2004). Human and animal studies
revealed a variety of etiological factors for skeletal muscle
atrophy, including disuse (limb immobilization, unloading)
(Jackman and Kandarian, 2004), denervation (spinal motor
neuron lesion in patients or surgical transection of motor nerves
in animals) (Hoellwarth and Christian Hofer, 2005; Adhihetty
et al., 2007), fasting (Qiu et al., 2018), lack of gravity (Fitts
et al., 2001), aging (sarcopenia) (Dupont-Versteegden, 2005),
cancer (cachexia) (Tisdale, 2010), neuromuscular diseases such as
amyotrophic lateral sclerosis (ALS), and spinal muscular atrophy
(Fischer et al., 2004; Monani, 2005). Accumulating evidence
highlights programmed cell death (apoptosis) as a major cause
of muscle fiber loss in skeletal muscle atrophy (Borisov and
Carlson, 2000; Tews, 2002; Siu and Alway, 2005; Adhihetty et al.,
2007), potentially implicating mitochondrial abnormality as a
shared pathological feature underlying muscle atrophy induced
by different etiological factors.

Mitochondria take up around 10–15% volume of mammalian
skeletal muscle fibers (Eisenberg, 2010), with a certain degree
of compositional and function differences observed between the
subsarcolemmal, interfibrillar and peri-nuclear subpopulations
(Cogswell et al., 1993; Díaz-Vegas et al., 2019). Mitochondria,
especially the interfibrillar subpopulation, not only serve as the
primary energy provider but also are intimately involved in
apoptosis (Adhihetty et al., 2005; Siu and Alway, 2005; Chabi
et al., 2008; Wang and Youle, 2009). The connections between
mitochondria and apoptosis include:

1. Multiple proapoptotic proteins are located within
mitochondria, such as cytochrome c (Cyto c) (Liu et al., 1996),
apoptosis-inducing factor (AIF) (Susin et al., 1999), second
mitochondria-derived activator of caspase/direct IAP (inhibitor-
of apoptosis) binding protein (Smac/Diablo) (Du et al., 2000),

Abbreviations: AAV, adeno-associated virus; AIF, apoptosis-inducing factor;
ALS, amyotrophic lateral sclerosis; AMPK, AMP-activated protein kinase; ANT,
adenine nucleotide translocator; CaMK, Ca2+/calmodulin-dependent protein
kinase; CDK, cyclin-dependent kinase; CsA, Cyclosporin A; CypD, cyclophilin
D; Diablo, direct IAP (inhibitor-of apoptosis) binding protein with low pI;
EC-coupling, excitation contraction-coupling; EDL, extensor digitorum longus;
EMRE, essential MCU regulator; EndoG, endonuclease G; ERK, extracellular
signal-regulated kinase; FAK, focal adhesion kinase; FDB, flexor digitorum
brevis; GPDH, glycerol phosphate dehydrogenase; HtraA2, high temperature
requirement protein A2; ICDH, isocitrate dehydrogenase; ILK, integrin-linked
kinase; IMM, inner mitochondrial membrane; JNK, c-Jun N-terminal kinase;
MAPK, mitogen-activated protein kinase; mCa2, mitochondrial calcium channel
type 2; MCU, mitochondrial Ca2+ uniporter; MICU, mitochondrial Ca2+ uptake;
mPTP, mitochondrial permeability transition pore; mTOR, mammalian target
of rapamycin; NCLX, Na+/Ca2+/Li+ exchanger; OMM, outer mitochondrial
membrane; OSCP, oligomycin sensitivity-conferring protein; OXPHOS, oxidative
phosphorylation; PKA, protein kinase A; PKC, protein kinase C; PDH, pyruvate
dehydrogenase; RaM, rapid mode of mitochondrial Ca2+ uptake; PiC, phosphate
carrier; RaM, rapid mode of mitochondrial Ca2+ uptake; ROS, reactive oxygen
species; RYR, ryanodine receptor; SIRT, sirtuin; Smac, second mitochondria-
derived activator of caspase; SR, sarcoplasmic reticulum.

Endonuclease G (EndoG) (Li et al., 2001), and high temperature
requirement protein A2 (HtraA2) (Hegde et al., 2002).

2. Although healthy mitochondria are not the major
contributor to cytosolic ROS in skeletal muscle during contractile
activities (Sakellariou et al., 2013; Powers et al., 2016; Henríquez-
Olguin et al., 2019), they can significantly contribute to ROS
production under pathological conditions (Pottecher et al., 2013;
Lejay et al., 2014). Upon overwhelming the cellular antioxidants’
neutralizing capacity, ROS causes oxidative damages to lipids,
proteins, and DNA (Bandyopadhyay et al., 1999). Elevated ROS
production is frequently observed as an early event of the
apoptotic process (Fernandez et al., 2002).

3. Long-term elevation of mitochondrial matrix Ca2+

([Ca2+]mito) can induce cell apoptosis through increasing the
release of proapoptotic proteins and mitochondrial permeability
transition pore (mPTP) opening (Haworth and Hunter, 1979;
Hirsch et al., 1997; De Giorgi et al., 2002; Borutaite et al.,
2003). It is worth noticing that interfibrillar mitochondria
are more prone to release proapoptotic factors upon ROS
stimulation, potentially due to higher probability of mPTP
opening than subsarcolemmal mitochondria (Adhihetty et al.,
2005). The detailed mechanisms will be discussed later
in this review.

Although long-term [Ca2+]mito elevation is closely associated
with excessive ROS production (Adam-Vizi and Starkov, 2010;
Peng and Jou, 2010), we observed an interesting phenomenon
that mitochondrial Ca2+ transients induced by the electrical
stimulation can decrease ROS production in denervated skeletal
muscle fibers within a minute (Karam et al., 2017). This
phenomenon is different from the excitation–transcription
coupling events that help skeletal muscle cope with ROS during
exercise or electrical stimulation, which usually occur in the
time frame of hours or longer (Tsuboyama-Kasaoka et al., 1998;
Cortright et al., 1999; Pilegaard et al., 2003; Egan et al., 2010).
Although the underlying molecular mechanism of the instant
ROS suppression by the rapid mitochondrial Ca2+ influx remains
elusive, through this review we hope to inspire more thoughts
and discussion about how Ca2+ temporal profile differentially
influences mitochondrial ROS production and cell death.

Crucial Regulators of Ca2+ Homeostasis
in Mitochondria
This review does not intend to comprehensively cover all players
involved in mitochondrial Ca2+ handling. However, a brief
introduction is needed for meaningful discussions about the
connections between [Ca2+]mito, ROS, apoptosis, and muscle
atrophy (Figure 1).

Mitochondria are constantly involved in modulating
spatiotemporal profiles of cytosolic Ca2+ ([Ca2+]cyto) in
different types of cells under physiological and pathological
conditions (Gunter et al., 2004; Szabadkai and Duchen, 2008;
Demaurex and Guido, 2017), including cardiac and skeletal
muscle (Zhou et al., 1998;Maack et al., 2006; Rizzuto and
Pozzan, 2006; Sedova et al., 2006; Csordás and Hajnóczky,
2009; Yi et al., 2011). This is due to their abilities to uptake
and extrude Ca2+, as well as retain Ca2+ in their matrix
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FIGURE 1 | Crucial regulators of Ca2+ homeostasis in mitochondria. For mitochondrial Ca2+ uptake, the major routes include mitochondrial Ca2+ uniporter (MCU),
mitochondrial ryanodine receptor (mRYR), rapid mode of mitochondrial Ca2+ uptake (RaM), and mitochondrial calcium channel type 2 (mCa2). The most crucial
regulatory subunits of MCU include mitochondrial calcium uptake 1, 2 (MICU1, MICU2) and essential MCU regulator (EMRE). For mitochondrial Ca2+ extrusion, the
major routes include Na+/Ca2+/Li+ exchanger (NCLX), mitochondrial H+/Ca2+ exchanger (LETM1), and mitochondrial permeability transition pore (mPTP).
Voltage-dependent anion channel (VDAC) is suggested to be the outer mitochondrial membrane (OMM) component of mPTP. Recently, ATP synthase has been
confirmed to be the inner mitochondrial membrane (IMM) component of mPTP. There are still debates about whether mPTP is formed by ATP synthase dimer or
monomer. Cyclophilin (Cyp) D is a crucial regulator of mPTP opening and interacts with ATP synthase through the oligomycin sensitivity-conferring protein (OSCP)
subunit. As to Ca2+ retention in mitochondrial matrix, inorganic phosphate (Pi) helps sequester free Ca2+ in solid precipitates, which could serve as an MCU
independent source of mitochondrial Ca2+ upon matrix acidification.

(Szabadkai and Duchen, 2008). Indeed, mitochondrial Ca2+

uptake has been first observed in vivo during skeletal muscle
contraction induced by motor nerve stimulation (Rudolf et al.,
2004) and later quantified in isolated individual muscle fibers
during E-C coupling (Yi et al., 2011; Karam et al., 2017). The
Ca2+ uptake routes in mitochondria include mitochondrial Ca2+

uniporter (MCU), mitochondrial ryanodine receptor (mRYR), as
well as two other channels with unknown molecular nature: rapid
mode of mitochondrial Ca2+ uptake (RaM) and mitochondrial
calcium channel type 2 (mCa2) (Buntinas et al., 2001; Kirichok
et al., 2004; Altschafl et al., 2007; Michels et al., 2009; Hoppe,
2010). In skeletal muscle, the presence of uptake routes other
than MCU still waits to be confirmed. Overexpression of MCU
in adult mouse flexor digitorum brevis (FDB) muscle led to
notable enhancement in caffeine-induced mitochondrial Ca2+

influx as well as a moderate elevation of the resting [Ca2+]mito
level (Mammucari et al., 2015). In contrast, transfection of FDB
muscle with short hairpin (sh) RNA against MCU resulted in
marked reduction of both resting [Ca2+]mito level and caffeine-
induced mitochondrial Ca2+ influx (Mammucari et al., 2015).
Furthermore, extensor digitorum longus (EDL) muscle infected
by adeno-associated virus (AAV) carrying shRNA against MCU
exhibited decreased pyruvate dehydrogenase (PDH) activity
(Mammucari et al., 2015), which is known to be dependent on
[Ca2+]mito level (Wan et al., 1989; Denton, 2009). Consistently,
in skeletal muscles from MCU−/− mice, resting [Ca2+]mito level
seems reduced when compared to wild-type controls, while the
phosphorylation of PDH, which is negatively correlated with
the activity of Ca2+ sensitive phosphatase PDP1, significantly
increased (Pan et al., 2013).

The activity of MCU is regulated by MICU1-MICU2
heterodimer, which senses [Ca2+]cyto level (Mallilankaraman
et al., 2012; Csordás et al., 2013; Kamer and Mootha, 2014;
Patron et al., 2014; Wang et al., 2014). MICU1 is suggested to
function as the cooperative activator of MCU, while MICU2 is
believed to keep MCU closed at low [Ca2+]cyto level (Patron
et al., 2014). Skeletal muscle expresses a unique alternative splice
isoform of MICU1, which is more sensitive to Ca2+ than the
isoform expressed in other tissues and hence allows activation
of MCU at a lower [Ca2+]cyto level (Reane et al., 2016). This
is likely an evolutionary adaption to the astounding amount of
ATP consumed during muscle contraction since the activities of
multiple enzymes involved in ATP synthesis are stimulated by
Ca2+ (Wan et al., 1989; Das and Harris, 1990; Murphy et al., 1990;
Denton, 2009; Glancy et al., 2013). Indeed, [Ca2+]mito transients
in skeletal muscle are larger than those measured in other tissues
based on mitoplast patch clamp results (Fieni et al., 2012). Other
MCU regulatory subunits include EMRE and MCUb. EMRE
helps tether MICU1 and MICU2 to the transmembrane region
of MCU, while MCUb is a paralog of MCU that is suggested to
negatively regulate MCU complex in a direct manner (Raffaello
et al., 2013; Tsai et al., 2016).

The Ca2+ extrusion routes include Na+/Ca2+/Li+ exchanger
(NCLX), mPTP and arguably mitochondrial H+/Ca2+ exchanger
(LETM1) (Jiang et al., 2009; Hoppe, 2010; Palty et al., 2010;
Nowikovsky et al., 2012). NCLX is more intensively expressed in
skeletal muscle compared to many other tissues such as cardiac
muscle (Palty et al., 2004, 2010). This is accompanied by an
ultrafast Ca2+ efflux rate of skeletal muscle mitochondria, which
is 2-3 orders faster than cardiac muscle (Rudolf et al., 2004;
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Palty et al., 2010). mPTP is a nonselective, large conductance
megachannel mediating solute (<1.5 kDa) exchange between
mitochondrial matrix and the outside milieu (Haworth and
Hunter, 1979; Hunter and Haworth, 1979a,b; Kinnally et al.,
1992; Szabó and Zoratti, 1992). The opening of mPTP is
sensitive to Ca2+, cyclophilin (Cyp) D, oxidizing agents, thiol
reagents, depletion of ADP, while its inhibitors include Mg2+,
ADP, NADH, antioxidants, and cyclosporin (Cs) A (through
interacting with CypD) (Haworth and Hunter, 1979; Hunter
and Haworth, 1979a,b; Kinnally et al., 1992; Szabó and Zoratti,
1992). mPTP opening is widely known for its central role
in cell death induction under multiple pathological conditions
(Bonora et al., 2020). Osmotic influx of water into mitochondrial
matrix through these pores results in swollen matrix, dissipated
IMM potential and ceased ATP production. ATP dependent
ion exchangers/pumps fail to maintain cellular ion homeostasis
and finally lead to necrosis (Bonora et al., 2015). Additionally,
mPTP opening has also been implied to facilitate the release
of intermembrane space factors activating apoptotic pathway
(Hirsch et al., 1997; De Giorgi et al., 2002; Borutaite et al.,
2003). While the irreversible, high conductance mPTP opening
upon [Ca2+]mito overload is detrimental (Ichas et al., 1997;
Hoppe, 2010; Karch and Molkentin, 2018), the transient and low
conductance mPTP opening is considered a Ca2+ extrusion route
that may carry out physiological functions (Ichas and Mazat,
1998; Elrod et al., 2010; Elrod and Molkentin, 2013).

The molecular composition of mPTP has remained elusive
for over 60 years (Urbani et al., 2019). Previously mPTP
was suggested to form from adenine nucleotide translocator
(ANT) or phosphate carrier (PiC) on IMM, as well as voltage-
dependent anion channel (VDAC) on OMM (Halestrap and
Davidson, 1990; Szabó et al., 1993; Baines, 2009; Halestrap, 2009).
However, further researches indicate that they are not the pore
forming unit of mPTP, but could be regulatory components
(Kokoszka et al., 2004; Krauskopf et al., 2006; Baines et al.,
2007). In recent decades, CypD was reported to physically
interact with oligomycin sensitivity-conferring protein (OSCP)
within ATP synthase (complex V of OXPHOS) (Giorgio et al.,
2009) and ATP synthase increases the permeability of IMM
to different solutes upon [Ca2+]mito overload (Giorgio et al.,
2013, 2017; Alavian et al., 2014). However, the argument about
whether it is the monomer or dimer of ATP synthase that
carries out the megachannel function has not been settled yet
(Mnatsakanyan et al., 2019).

The Ca2+ retention capacity of mitochondrial matrix is
believed to heavily rely on the inorganic phosphate (Pi)
entered mainly through mitochondrial phosphate carrier (PiC)
(Szabadkai and Duchen, 2008; Seifert et al., 2015). Pi can
buffer Ca2+ through the formation of osmotically neutral
precipitates such as hydroxyapatite and whitlockite (Carafoli,
2010; Chinopoulos and Adam-Vizi, 2010), which theoretically
should enable additional Ca2+ uptake through MCU, suppress
Ca2+ efflux through NCLX and desensitize mPTP (Zoccarato
and Nicholls, 1982; Szabadkai and Duchen, 2008; Seifert
et al., 2015). However, these assumptions were challenged
as opposite results were observed in PiC knockdown cells
and PiC knockout mice (Varanyuwatana and Halestrap, 2012;

Kwong et al., 2014). Meanwhile Pi is a long known sensitizer
of mPTP (Zoratti and Szabò, 1995). Thus the precise role of
the PiC in [Ca2+]mito regulation still waits to be addressed.
In addition, Ca–Pi precipitates can dissolve upon acidification
and IMM potential disruption, enabling MCU-independent
elevation of [Ca2+]mito (Greenawalt et al., 1964; Wolf et al.,
2017; Hernansanz-Agustín et al., 2020). For example, in
cells experiencing acute hypoxia, complex I of OXPHOS in
mitochondria undergoes conformational changes that lead to
proton accumulation inside the matrix, dissolution of Ca–Pi
precipitates, elevation of [Ca2+]mito and activation of NCLX
(Hernansanz-Agustín et al., 2020).

Associations Between Steady-State
Elevation of Mitochondrial Ca2+ Level
and ROS Production
Elevation of [Ca2+]mito level could result in enhanced ROS
production through multiple mechanisms (Figure 2):

1. Elevation of [Ca2+]mito stimulates Ca2+ sensitive
dehydrogenases, including glycerol phosphate dehydrogenase
(GPDH), PDH, isocitrate dehydrogenase (ICDH), and
α-ketoglutarate dehydrogenase (α-KGDH) (Wan et al., 1989;
Denton, 2009). There is also evidence that Ca2+ increases
activities of complexes I, III, IV, and V of OXPHOS (Das and
Harris, 1990; Glancy et al., 2013). The faster O2 consumption rate
results in increased ROS production under certain circumstances,
although the opposite situation also exists (Barja, 2007; Neretti
et al., 2009; Silva et al., 2009).

2. Elevation of [Ca2+]mito stimulates mitochondrial nitric
oxide synthase (NOS) to produce more nitric oxide (NO).
NO can compete with O2 for binding sites on cytochrome c
oxidase (complex IV of OXPHOS), which hinders the electron
flow and decreases mitochondrial O2 consumption (Giulivi,
2003; Ghafourifar and Cadenas, 2005). The hindrance of the
electron flow and the increase of local O2 may boost ROS
production (Brookes et al., 2004). On the other hand, NO reacts
readily with superoxide and generates peroxynitrite (ONOO−),
which is a more potent ROS that causes Cyto c release, lipid
peroxidation and oxidative damage to other vulnerable targets
(Ghafourifar and Cadenas, 2005).

3. Elevated [Ca2+]mito promotes the opening of mPTP. mPTP
opening can lead to changes of ionic strength and hence disrupt
the electrostatic interaction between Cyto c and cardiolipin
in mitochondrial intermembrane space. Cyto c is required
for the activity of ubiquinol-cytochrome c oxidoreductase
(complex III of OXPHOS) (Ott et al., 2002). The blockage of
complex III activity enhances ROS production by increasing
the accumulation of the one-electron donor ubisemiquinone
(Turrens et al., 1985; Muller et al., 2002, 2003). mPTP
opening also seems to induce conformation changes in NADH-
ubiquinone oxidoreductase (complex I of OXPHOS), resulting in
increased ROS production (Batandier et al., 2004).

4. [Ca2+]mito overload may stimulate Cyto c release from
cardiolipin through competing for cardiolipin binding sites
(Grijalba et al., 1999), which affects complex III activity and hence
promotes ROS generation.
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FIGURE 2 | Associations between mitochondrial Ca2+ level and ROS production. Ca2+ promotes the activities of multiple Ca2+ sensitive dehydrogenase such as
glycerol phosphate dehydrogenase (GPDH), pyruvate dehydrogenase (PDH), isocitrate dehydrogenase (ICDH), and α-ketoglutarate dehydrogenase (α-KGDH). It also
elevates the efficiency of complexes I, III, IV, and V of OXPHOS. Ca2+-induced activation of NCLX results in Na+ influx into the matrix and Na+ interacts with
phospholipid in the inner leaflet of IMM, decreases its fluidity, and slows down ubiquinol (UQH2) diffusion. This results in uncoupling of Q cycle and increased ROS
production at Qo site in complex III. Ca2+ stimulation of nitric oxide synthase (NOS) increases nitric oxide (NO) production, which inhibits complex IV by competing
with O2. NO also readily react with superoxide to form peroxynitrite (ONOO−), which promotes cytochrome c (Cyt c) release. Cyt c release would disrupt the activity
of complex III, increase the level of ubisemiquinone (UQ−), which provide one electron to O2 to form superoxide. Ca2+ is also the major stimulant of mPTP opening.
The subsequent change of ion strength in mitochondrial intermembrane space disrupts electrostatic interactions between Cyt c and membrane lipid cardiolipin,
leading to Cyt c release and hindrance of complex III activity. mPTP opening has also been implicated in inducing conformation changes of complex I, resulting in
elevated ROS production.

5. During acute hypoxia, elevation of [Ca2+]mito due to
matrix acidification activates NCLX, promoting the import of
Na+. Matrix Na+ interacts with phospholipids in the IMM
(such as phosphatidylcholine), reducing membrane fluidity,
slowing down the diffusion of ubiquinol from glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) or complex II to complex
III of OXPHOS, resulting in elevated ROS production of complex
III at Qo site (Hernansanz-Agustín et al., 2020).

Transient Mitochondrial Ca2+ Influx
Diminishes Denervation-Induced ROS
Production and mPTP Opening in
Skeletal Muscle
The cytosolic Ca2+ transients are spatiotemporally well-
controlled Ca2+ release events from the sarcoplasmic reticulum
(SR) responding to the motor nerve activation in a skeletal muscle
fiber during excitation contraction (EC)-coupling. Skeletal
muscle inactivity including neuromuscular diseases, spinal cord
injury, and muscle unloading, etc., could partially or completely
disrupt EC-coupling and eliminate cytosolic Ca2+ transients.
A pathological hallmark of prolonged muscle inactivity is the
enhanced ROS production in muscle fibers (Muller et al., 2007;
Powers et al., 2012; Xiao et al., 2018). It is very well established

that mitochondria are a major source of ROS production in
prolonged muscle inactivity (Powers et al., 2012). Prolonged
muscle unloading leads to an elevated resting [Ca2+]cyto (Tischler
et al., 1990; Ingalls et al., 1999), which in turn could overload
mitochondria, increase the propensity of mPTP opening and
stimulate ROS production (Csukly et al., 2006). However, the
initial cause of mitochondrial ROS production in inactivated
skeletal muscle remains elusive (Hyatt et al., 2019). One question
is whether the cessation of physiological Ca2+ transients is an
initiating factor for promoting mitochondria ROS production.

Transgenic mouse model expressing a mitochondria-targeted
biosensor (mt-cpYFP) allowed a real-time measurement of a
ROS-related mitochondrial signal, termed “mitoflash” (Wang
et al., 2008; Ding et al., 2015). Although mitoflash activities
could be composed of multifaceted signals including matrix
alkalization, superoxide, and arguably some other oxidants
(Wang et al., 2008, 2016; Schwarzländer et al., 2012; Wei-LaPierre
et al., 2013), the mechanism underlying mitoflash events is
believed to be linked to transitory opening of mPTP due to the
high spatiotemporal correlations between mitoflash events and
IMM depolarization (Wang et al., 2008, 2016). Besides transitory
opening of mPTP, there are also other potential causes of IMM
depolarization during mitoflash events, such as the activation
of uncoupling proteins UCP2 and UCP3. However, inhibition
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of UCP2 by chemical blocker or RNA interference slightly
increased, rather than decreased the mitoflash incidence (Wang
et al., 2017). Skeletal muscle fibers derived from UCP3 knockout
mice exhibited no changes in mitoflash frequency, amplitude
or duration compared to wild type controls, while the average
area of mitoflash events mildly reduced (McBride et al., 2019).
Thus, these functional perturbation experiments do not support
the hypothesis of UCP2/3 mediated uncoupling activities as the
major contributor of mitoflash signals.

Using this transgenic mouse model, Karam et al detected
a fourfold increase of mitoflash activity in skeletal muscle
following a short period (24 h) of sciatic nerve transection
(Karam et al., 2017). This denervation-induced mitoflash
activity could be attenuated by the application of CsA,
an established inhibitor of mPTP opening (Giorgio et al.,
2018), further suggesting that mitoflash events reflect real-time
opening of mPTP in denervated muscle fibers. Consistently,
the increased mitoflash activity is associated with an elevated
mitochondrial superoxide level reported with MitoSOX Red
(Mukhopadhyay et al., 2007) in muscle fibers 24 h after the
denervation. Similar results were also reported for muscle
fibers derived from the ALS mouse model (SOD1G93A) at
a stage before disease symptom onset (Xiao et al., 2018),
when motor neuron axon terminal withdrawal (denervation)
start to occur in individual muscle fibers (Frey et al., 2000;
Fischer et al., 2004).

Due to lack of neuronal impulses, the action potential and
physiological [Ca2+]cyto transients are abolished in denervated
skeletal muscle. Thus, a hypothesis was proposed that dynamic
Ca2+ transients were required to keep mPTP at its closed
state and maintain mitochondrial ROS production at the
physiological level in skeletal muscle (Karam et al., 2017).
Remarkably, when muscle fibers from denervated (24 h)
mouse model were exposed to a brief electrical stimulation
(40 Hz, 0.5 ms pulses at 8–12 V for a total duration of
350 ms) to restore physiological cytosolic and mitochondrial
Ca2+ transients, the area and amplitude of mitoflash events
dramatically reduced within a minute to a level comparable
to the unstimulated sham muscle fibers (Karam et al., 2017).
Importantly, after treating the denervated muscle fibers with
Ru360 to block MCU for mitochondrial Ca2+ uptake, electrical
stimulation no longer had significant impact on mitoflash
activities. Additionally, the levels of mitochondrial superoxide
(indicated by MitoSOX Red) also exhibited the same trend
of changes under these conditions (Karam et al., 2017).
Thus, mitochondrial Ca2+ influxes triggered by physiological
cytosolic Ca2+ transients, even brief ones, seems to be capable
of inhibiting transitory mPTP opening and ROS generation
in mitochondria.

The above results are in line with previous discoveries
that electrical stimulations help prevent apoptosis, retard
muscle atrophy and improve muscle strength in denervated
animal models (Mokrusch et al., 1990; Arakawa et al., 2010;
Nakagawa et al., 2017) and patients with motor impairment
caused by spinal cord injury or stroke (Dudley et al.,
1999; Crameri et al., 2000, 2002; Doucet et al., 2012;
Nascimento et al., 2014). However, the studies of the mechanisms

underlying these phenomena usually focus on relatively long-
term molecular changes, such as gene expression regulation,
which usually takes tens of minutes to hours to occur (Voytik
et al., 1993; Kostrominova et al., 2005; Arakawa et al.,
2010; Peviani et al., 2010; Russo et al., 2010). The events
occurred within a minute after electrical stimulation were
rarely investigated.

One potential mechanism underlying the role of physiological
Ca2+ transients in inhibition of mitochondrial ROS production
could be that mitochondrial Ca2+ influxes induced by cytosolic
Ca2+ transients suddenly boost the electron flow rate along the
respiratory chain, decreasing the reduced state of ROS generators,
such as ubisemiquinone generated by complex III of OXPHOS.
Meanwhile, the sudden boost of respiratory chain activity also
increases O2 consumption rate, decreasing the amount of local
O2 available for forming superoxide. These two factors may
both contribute to a quick attenuation of superoxide formation.
Similar situation also occurs during sudden transition of state
4 respiration to state 3 respiration in isolated mitochondria
(Barja, 2007).

Additionally, as illustrated in Figure 3, we propose a second
hypothetical mechanism that key mPTP components have two
sets of Ca2+ responding structures with different affinities
that trigger opposite changes in the propensity of mPTP
opening based on the temporal profile of mitochondrial Ca2+

influxes in skeletal muscle fibers. Under this scenario, a steady-
state increase of [Ca2+]mito (a likely outcome of steady-state
[Ca2+]cyto elevation after denervation or neuronal degenerative
disease) promotes mPTP opening through a relatively higher
affinity Ca2+ responding structure. The second Ca2+ responding
structure with relatively lower Ca2+ binding affinity may
respond to the spike of mitochondrial Ca2+ influx following
the cytosolic Ca2+ transient during EC-coupling activated by
neuronal input or electrical field stimulation and quickly shut
down the opening of mPTP in skeletal muscle. More than a
coincidence, previous studies identified two binding sites for
divalent cations (including Ca2+) on the F1 catalytic domain
of ATP synthase. One located in the nucleotide binding pocket
within the αβ cleft, the other located in the superficial loop
of the β subunit and contains the acidic sequence DELSEED
(Hubbard and McHugh, 1996; Giorgio et al., 2017, 2018). The
first one is implicated as the “trigger site” of mPTP opening.
More specifically, the occupancy of this site by Ca2+ (instead
of Mg2+) is proposed to elevate the rigidity of F1 domain
and transmit mechanical energy to OSCP, the peripheral stalk
and finally to the IMM, leading to the formation of mPTP by
ATP synthase dimers (Giorgio et al., 2017, 2018). Interestingly,
the physiological role of the other Ca2+ binding site remains
unknown. Due to the low affinity nature of this Ca2+ binding
site, it may serve as the potential link between mitochondrial
Ca2+ transients and quick mPTP shut down. It is also possible
that the second Ca2+ responding structure locates on molecules
other than ATP synthase, which acts as an accessory safe
guard against mPTP opening upon Ca2+ binding during rapid
mitochondrial Ca2+ influx. Further structural and functional
studies are needed to validate those hypotheses. Nevertheless, the
results reported in Karam et al. suggest that the physiological
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FIGURE 3 | Hypothetical mechanisms underlying differential mitochondrial Ca2+ dynamics and ROS production. Neuronal or electrical stimulation-induced cytosolic
Ca2+ transient can result in rapid Ca2+ influx into mitochondria, serving as a stimulant of multiple enzyme complex in OXPHOS that accelerate electron flux along
the respiratory chain, leading to decreased accumulation of ubisemiquinone (UQ) and lower O2 partial pressure. Both factors contribute to alleviated superoxide
production. On the other hand, we hypothesize that a key mPTP component may have two sets of Ca2+ sensory structures with different Ca2+ affinities, resulting in
distinct responses to rapid versus steady-state elevation of [Ca2+]mito. Steady-state elevation of [Ca2+]mito resulting from denervation or other pathological
conditions may predominantly trigger the response mediated by a relatively higher affinity structure (such as the Ca2+ binding site within the F1 domain nucleotide
binding pockets of ATP synthase), which promotes mPTP opening, enhances Cyt c release, disrupts complex III activity, and increases superoxide production. The
rapid mitochondrial Ca2+ transients induced by motor neuron input or electrical stimulation may predominantly activate the response mediated by a relatively lower
affinity Ca2+ responding structure, shutting down mPTP and decrease ROS production.

cytosolic and mitochondrial Ca2+ transients induced during EC-
coupling are vital to keep mPTP in a closed status in skeletal
muscle fibers.

Exercise-Induced Signaling Involved in
Mitochondrial ROS Regulation
During exercise, muscle contraction dramatically increases ATP
turnover rate, which could be more than 100-fold that of the
basal rate (Hochachka and McClelland, 1997). To cope with such
large demand of ATP, Ca2+ influx into mitochondrial matrix
activates multiple enzymes related to TCA cycle and oxidative
phosphorylation, elevating the synthesis of ATP in skeletal
muscle (Wan et al., 1989; Das and Harris, 1990; Denton, 2009).
The high O2 consumption rate and elevated [Ca2+]mito level do
not necessarily increase ROS production (Barja, 2007; Silva et al.,
2009), which could be at least partially attributable to the exercise-
induced signaling pathways, such as AMP-activated protein
kinase (AMPK), protein kinase A (PKA), Ca2+/calmodulin-
dependent protein kinase (CaMK), mitogen-activated protein
kinase (MAPK), protein kinase C (PKC), focal adhesion kinase
(FAK), and mammalian target of rapamycin (mTOR), cyclin-
dependent kinase (CDK), integrin-linked kinase (ILK), and
sirtuin (SIRT) family of protein deacetylases (Sakamoto and
Goodyear, 2002; Egan and Zierath, 2013; Hoffman et al.,
2015). Although some of these pathways are preferentially
induced by acute exercise while the others mediate physiological
adaptation to long-term endurance exercise, both of them
involve transcriptional regulation and hence belong to excitation-
transcription coupling framework (Egan and Zierath, 2013). It is
beyond the scope of this review to systematically go through these
pathways. But we would like to highlight some of them directly or
indirectly involved in ROS regulation (Figure 4A).

The three best-characterized MAPK subfamilies are c-Jun
N-terminal kinase (JNK), extracellular signal-regulated kinase
(ERK), and p38 MAPK (Chen et al., 2001). All three subfamilies
have been shown to be activated by oxidative stress (Torres
and Forman, 2003; Li et al., 2005). Among them, p38 MAPK
signaling has been reported to participate in contraction-
induced PGC-1α gene expression in skeletal muscle (Akimoto
et al., 2004). PGC-1α is a “master regulator” of mitochondrial
biogenesis and promotes the expression of OXPHOS enzymes
and uncoupling proteins (UCP2 and UCP3) (Wu et al., 1999;
Zhou et al., 2000). Uncoupling proteins function to mildly
depolarize IMM by increasing proton backflow into the matrix
in a fatty acid (FA)-dependent manner (Brand and Esteves,
2005). This process could be described by an FA futile cycling
model, in which UCP exports FA− anions into intermembrane
space. The anion diffuses away and gets protonated. Then,
the protonated FA flip-flops across the membrane to deliver
protons electro-neutrally back to the matrix (Jabůrek et al.,
1999). UCP2 and UCP3 are not involved in thermogenesis
adapting to cold temperature as UCP1 (Brand and Esteves,
2005). Instead, they are believed to serve as a cellular defense
mechanism against superoxide formation, which works through
accelerating the rates of proton pumping and electron flux
along the respiratory chain, decreasing the level of one-electron
donors (to O2) generated by complex I and III of OXPHOS
(Brand, 2000; Zhou et al., 2000; Echtay et al., 2002; Brand and
Esteves, 2005; Ježek et al., 2018). The expression of UCP3 is
particularly high in skeletal muscle (Boss et al., 1997; Matsuda
et al., 1997; Vidal-Puig et al., 1997; Liu et al., 1998) and
is further induced by exercise or fasting (Gong et al., 1997;
Tsuboyama-Kasaoka et al., 1998; Cortright et al., 1999). In
contrast, denervation of skeletal muscle decreases the expression
of UCP3 (Tsuboyama-Kasaoka et al., 1998).

Frontiers in Physiology | www.frontiersin.org 7 October 2020 | Volume 11 | Article 595800

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-595800 October 17, 2020 Time: 20:12 # 8

Li et al. Ca2+ Regulates Muscle Mitochondrial ROS

FIGURE 4 | Exercise-induced signaling pathways regulate mitochondrial ROS level. (A) In the aspect of the excitation-transcription events, the ATP deficit during
exercise induces AMPK activation, which can both directly phosphorylate and increase the expression of PGC-1α, the pivotal player in countering ROS-related
damages. P38 MAPK and certain CAMKs have also been demonstrated to be activated by exercise and induce PGC-1α expression. SIRT1 activation promotes
deacetylation of PGC-1α, enhancing its transcriptional activities. On the other hand, SIRT1 represses the expression of uncoupling protein (UCP2, UCP3). UCP
induced mild depolarization of IMM accelerates electron flux along the respiratory chain, decreases the level of ubisemiquinone (UQ) and hence reduces superoxide
production. Thus, the impact of SIRT1 activation on ROS level is mixed. In contrast, another SIRT family member SIRT3 promotes UCP expression by inhibiting JNK
activation. It also promotes superoxide removal through deacetylating SOD2. (B) The rapid mitochondrial Ca2+ flux induced by motor neuron input may decrease
ROS production through increasing the turnover rate of the respiratory chain or suppressing mPTP opening.

AMPK can also be activated by ROS indirectly through
ATP deficit, more specifically the increase of AMP/ATP and
creatine/phosphocreatine ratios (Kahn et al., 2005; Irrcher et al.,
2009). Acute exercise, due to the increased turnover of ATP,
promotes AMPK activation in an intensity dependent manner
(Wojtaszewski et al., 2000; Egan et al., 2010). AMPK activation
has been report to mediate direct phosphorylation of PGC-1α

and transcriptional upregulation of PGC-1α expression (Jäger
et al., 2007; Irrcher et al., 2008). Meanwhile acute exercise induced
UCP3 expression has also been demonstrated to involve AMPK
(Zhou et al., 2000).

CaMKs are implicated in muscle fiber type switch adapting
to long-term endurance exercise (Wu et al., 2000). Additionally,
they have also been suggested to regulate mitochondrial
biogenesis independent of fiber type transformation (Wu et al.,
2002). Transgenic mice expressing constitutively active CaMKIV

in skeletal muscle exhibited improved resistance to fatigue during
repetitive contraction, augmented mitochondrial biogenesis,
increased expression of OXPHOS genes (such as subunits of
complex I) and PGC-1α (Wu et al., 2002). PGC-1α is a target
gene of myocyte-specific enhancer factor 2 (MEF2), one of the
transcription factors activated by CaMKIV (Passier et al., 2000).
Furthermore, CaMKII has also been suggested to induce PGC-
1α expression due to the activation of MEF2 (Liu et al., 2005;
Egan and Zierath, 2013).

SIRTs are a family of protein deacetylases sensitive to elevated
[NAD+] or NAD+/NADH ratio (Egan and Zierath, 2013).
Their activities are closely linked with cellular metabolic status
(Schwer and Verdin, 2008). SIRT1 mediated deacetylation is
suggested to activate PGC-1α transcriptional activity on other
genes (Gerhart-Hines et al., 2007; Gurd, 2011). However, SIRT1
also serves a potent repressor of UCP2 and UCP3 gene
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expression (Amat et al., 2007, 2009; Schwer and Verdin, 2008).
Thus, SIRT1 exerts both positive and negative impact on ROS
production. SIRT3 is a major deacetylase for mitochondrial
proteins (Jing et al., 2011). In SIRT3 knockout mice, O2
consumption rate decreases while oxidative stress increases,
accompanied by enhanced activation of JNK pathway (Jing
et al., 2011). Consistently, knocking down SIRT3 in cultured
myoblast also led to defective mitochondrial respiration capacity,
increased ROS production and JNK pathway activation (Jing
et al., 2011). Furthermore, SIRT3 has been shown to deacetylate
SOD2, leading to increase in the SOD2 enzymatic activity to
convert superoxide into hydrogen peroxide (Tao et al., 2014).
Thus, the SIRT3 activity overall helps mitigate ROS accumulation
(Tao et al., 2010, 2014).

It is also worth noticing that PGC-1α has an isoform termed
PGC-1α4 resulted from alternative promoter usage and splicing
(Ruas et al., 2012). This isoform is preferentially induced in
mouse and human muscle during resistance exercise training
(Ruas et al., 2012). Different from PGC-1α, it does not regulate
OXPHOS genes but specifically induces IGF1 and represses
myostatin, resulting in muscle hypertrophy (Ruas et al., 2012).
Studies have indicated that the induction of PGC-1α4 requires
MCU mediated Ca2+ uptake (Mammucari et al., 2015).

Although most studies concerning the beneficiary effect of
exercise on ROS control focus on the excitation-transcription
coupling framework, there is evidence directly linking acute
exercise with improved mitochondrial functions such as
decreased susceptibility to mPTP opening and increased O2
respiration rate in cardiac and skeletal muscle (Ascensão
et al., 2011; Yoo et al., 2019a,b). These reports are consistent
with the mechanisms we proposed underlying the instant
decrease of mitochondrial ROS production in denervated skeletal
muscle upon electrical stimulation. These two mechanisms
may also explain why mitochondria were not the major
contributor of ROS during electrical stimulation induced muscle
contractions (Sakellariou et al., 2013). Thus, we propose that
beside the excitation-transcription coupling framework, the rapid
mitochondrial Ca2+ transients generated during exercise serve
as a parallel mechanism contributing to prevent excessive ROS
production, either through accelerating the turnover rate of the
respiratory chain or suppressing mPTP opening (Figure 4B). The
rapid mitochondrial Ca2+ influxes could also be one reason why

there is no significant mitochondrial contribution to cytosolic
ROS level in contractile skeletal muscle fibers.

SUMMARY AND FUTURE
PERSPECTIVES

The elevations of [Ca2+]mito induced by muscle contraction
or muscle inactivity share many Ca2+ regulators in common,
yet the outcomes are dramatically different in skeletal muscle
ROS production. Additionally, electrical stimulation not only
rapidly inhibits ROS production in an MCU dependent
manner in skeletal muscle, but also prevents apoptosis, retards
muscle atrophy in a longer term. These phenomena imply
that [Ca2+]mito temporal profile, likely in combination with
steady-state [Ca2+]mito level, serves as a toggle switch flipping
between the beneficiary versus destructive outcomes. The players
downstream of this toggle switch, aside from those relatively
slower excitation-transcription coupling events, also include
processes that modulate ROS production within the time frame
of seconds to minutes. In this review, we proposed two
potential mechanisms underlying this rapid process, such as
direct regulation of the turnover rate of the respiratory chain
and mPTP desensitization. Further experiments are needed to
evaluate the validity of these hypotheses.
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