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Abstract

Advances in technology have greatly stimulated the understanding of insect-specific viruses

(ISVs). Unfortunately, most of these findings are based on sequencing technology, and lab-

oratory data are scarce on the transmission dynamics of ISVs in nature and the potential

effects of these viruses on arboviruses. Mesonivirus is a class of ISVs with a wide geograph-

ical distribution. Recently, our laboratory reported the isolation of a novel strain of mesoni-

virus, Yichang virus (YCV), from Culex mosquitoes, China. In this study, the experimental

infection of YCV by the oral route for adult and larvae mosquitoes, and the vertical transmis-

sion has been conducted, which suggests that YCV could adopt a mixed-mode transmis-

sion. Controlled experiments showed that the infectivity of YCV depends on the mosquito

species, virus dose, and infection route. The proliferation curve and tissue distribution of

YCV in Cx. quinquefasciatus and Ae. albopictus showed that YCV is more susceptible to

Ae. albopictus and is located in the midgut. Furthermore, we also assessed the interference

of YCV with flaviviruses both in vitro and in vivo. YCV significantly inhibited the proliferation

of DENV-2 and ZIKV, in cell culture, and reduced transmission rate of DENV-2 in Ae. albo-

pictus. Our work provides insights into the transmission of ISVs in different mosquito species

during ontogeny and their potential ability to interact with mosquito-borne viruses.

Author summary

Mosquitoes transmit many pathogenic viruses, such as dengue virus, Zika virus, and Japa-

nese encephalitis virus, which are of great burden to public health worldwide, notably in

the tropical regions. In addition, they also harbor a number of insect-specific viruses

(ISVs), however, little is known about the role for the ISV in mosquito populations and

their interaction with arboviruses. Yichang virus (YCV) is a newly identified member of
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theMesoniviridae family discovered in Culexmosquitoes collected from Hubei, China. In

this article, we investigate the transmission competence of Cx. quinquefasciatus and Ae.
albopictus for YCV, and its interaction with mosquito-borne flaviviruses in vitro. Our

study shows, for the first time, that this virus could be horizontally and vertically transmit-

ted, thus strongly inhibiting the replication of the pathogenic dengue virus serotype 2

(DENV-2)in C6/36 cells, and reduced transmission of DENV-2 in Ae. albopictus. These

data provide further insight on the transmission mechanism of ISVs and how they interact

with flaviviruses.

Introduction

For the last two decades, with advancements in high-throughput sequencing, metagenomics

and intensified mosquito surveillance, a large number of insect-specific viruses (ISVs) and

arboviruses have been discovered. ISVs are restricted to arthropods and are unable to replicate

in vertebral cells [1], whereas arboviruses can be transmitted between mosquitoes and verte-

brates [2]. Although these two types of viruses have different host ranges, there are many simi-

larities in virological classification and transmission methods [2]. While arboviruses are

related to many diseases of animals and humans, such as dengue virus (DENV), Zika virus

(ZIKV), and Japanese encephalitis virus (JEV), their horizontal transmission and vertical

transmission mechanisms are relatively clear [3–8]. Significantly, the mode of transmission

and ecological significance of the ISVs remain unknown 45 years after the discovery of ISVs by

Stellar and Thomas [9,10].

Most ISVs and arboviruses share similar genetic and structural virus particles and have a

close evolutionary relationship. The relationship and interaction of the ISVs and arboviruses

are complex and attract concerns worldwide. Some scholars conjecture that ISVs may be an

important evolutionary source of new arboviruses [11–13] and that some ISVs may inhibit

arbovirus infections in their insect hosts [10]. Moreover, the host-restricted characteristics of

ISVs facilitate their development and application in biologically controlling the spread of

infectious viruses [14]. In general, research on ISVs transmission models and interactions with

arboviruses is becoming increasingly important.

Mesoniviridae contains single-stranded positive-sense RNA viruses belonging to Nido-
virales. So far, all members of the Mesoniviridae family are ISVs, with a wide geographic

and population distribution [15]. Among them, Yichang virus (YCV), isolated from Culex
mosquitoes collected from Hubei, China, has the largest genome ever discovered [16].

Due to the extensive geographic distribution and host range of Mesoniviridae, as well as

their potential as biological control agents, more studies are needed to better understand

arthropod-restricted virus maintenance in nature and the potential impact on arbovirus

infection.

In this study, we investigated horizontal transmission through an oral virus challenge at the

adult stage and feeding with virus-contaminated water during the larval stage and vertical

transmission of YCV in Culex quinquefasciatus and Aedes albopictus. The effects of virus titers,

breeding water and mosquito species on YCV infectivity were also confirmed. Furthermore,

we analyzed the proliferation and tissue distribution of YCV in mosquitoes and their interac-

tion with flavivirus in vitro and in vivo. Our findings deepen the understanding of the trans-

mission mechanism of ISVs and provide important information for the implementation of

ISVs in vector-borne virus control.
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Materials and methods

Mosquito rearing

Both Cx. quinquefasciatus and Ae. albopictus (kindly provided by Chinese center for disease

control and prevention, Beijing, China) were maintained at 27±1˚C with a 12:12 light: dark

cycle and 70% relative humidity. Adult mosquitoes were provided with 10% glucose solution.

Defibrillated horse blood (Shanghai Yuanye Biological Technology Co., Ltd. Shanghai, China)

was provided through the Hemotek membrane blood feeding system (Hemotek, Lancaster,

UK). F1 generation of mosquitoes used were collected from parent females oviposited after the

blood meal.

Virus strain

The YCV (strain HB14-64-01) used in this study was originally isolated in a culture of C6/36

cells inoculated with homogenized Culexmosquitoes from the Yichang area of Hubei [16].

C6/36 cells were cultured as monolayers in T75 flasks at 28˚C in RPMI medium (Gibco, Carls-

bad, USA) supplemented with 10% FBS, 2% tryptose phosphate broth (Gibco); YCV was

grown in C6/36 cells for viral production. DENV-2 (strain TSV01), ZIKV strain (SZ-WIV01)

and JEV (strain SA14) were kindly provided by Professor Bo Zhang (Wuhan Institute of Virol-

ogy, Chinese Academy of Sciences, Wuhan, China).

Plaque assay

BHK-21 cells in 24-well plates were infected with 10-fold serial dilutions of viruses for 1 h at

37˚C. The cell monolayers were overlaid with 1% Aquacide II (Calbiochem, Saint Louis, USA)

in DMEM containing 2% FBS and incubated at 37˚C for 4 days. Monolayer cells were fixed

with 3.7% formaldehyde and stained with 1% crystal violet to visualize plaques.

Plasmid construction and antibodies

The cDNA encoding the full-length YCV nucleotide capsid protein (abbreviation YCV-N) was

coded by ORF2b cloned into vector pet28a using primers (YCV Forward-1: 50-atgccaggacgcac-

caacaca-30 and YCV Reverse-1: 50-ggggtcaacagtaataacataatcagcag-30). Recombinant protein

expression was induced in the E. coli BL21 DE3 strain using 1 M IPTG for inclusion bodies,

separated, and purified by SDS-PAGE. The protein was used for subsequent polyclonal anti-

body preparation in the laboratory at the Animal Center, Wuhan Institute of Virology, Chi-

nese Academy of Sciences, following standard animal procedures. A 178-bp fragment between

nucleotides 154 and 331 of YCV was amplified by specific primers (YCV Forward-2: 50-

ccaggtttgagcgaacaggt-30; and YCV Reverse-2: 50-tcggggtgcggttaaaagtg-30) and cloned into the

pet28a vector for constructing the standard. A 127-bp fragment between nucleotides 10517

and 10643 of DENV-2 (TSV01) was amplified by specific primers (Forward-2: 50- tccctta-

caaatcgcagcaac-30; and Reverse-2: 50- tggtctttcccagcgtcaat-30) and cloned into the pet28a vector

for constructing the standard.

Mosquito infection by blood meal

Before blood meal, 5 to 7-day-old female mosquitoes were starved for at least 16 h. The mos-

quitoes were fed defibrillated horse blood (Shanghai Yuanye Biological Technology Co., Ltd.

Shanghai, China) mixed with YCV solution at 1:1 via the Hemotek membrane blood feeding

system (Hemotek, Lancaster, UK). Mosquitoes were allowed to feed for 1 h in light conditions,

at 24˚C and 70% relative humidity (RH). Fully engorged mosquitoes were selected and incu-

bated at 28˚C and 70% relative humidity (RH) with 10% glucose solution, and around 10
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mosquitoes were collected at 0, 3, 7, 11, and 14 days post infection (dpi) for viral detection

each time and with three repeats.

Mosquito infection by breeding in YCV-containing liquid

Water (clean water and sewage from NO. 52 Hongshan Side Road, Wuhan, China) (S1 Table)

was mixed with YCV supernatant from infected C6/36 cells. In addition, sewage water was fil-

tered at 0.22 μm to remove particles, clean water together with addition of particles derived

from sewage were used for mosquito breeding. The initial YCV titer were 1 × 105, 1 × 104,

1 × 103 or 1 × 102pfu/ml. The mixture was used for breeding the 3–4 instar larvae of Cx. quin-
quefasciatus and Ae. albopictus. After a 1–2 d exposure to the mixture, the larvae were trans-

ferred to a container with fresh water until eclosion. The emerging mosquitoes were reared for

an additional 8 days for viral detection. Sample size ranged between 50–70 immature mosqui-

toes each time, and with three repeats.

Viral RNA detection in mosquito

Total RNA was isolated using RNAiso Plus reagent (Takara, Dalian, Japan) according to the

manufacturer’s protocol and dissolved in 60 μL RNase-free water. Real-time PCR was per-

formed using the One Step SYBR Prime Script PLUS RT-PCR Kit (Takara) on a MyiQ Optics

Module (Bio-Rad, Hercules, USA). The primers were as follows: YCV detection primers are

YCV Forward-2 and YCV Reverse-2 in Plasmid construction and antibodies section.

AalRPS17 was used as the internal control for qRT-PCR. The primer sequences for AalRPS17

primers were AalRPS17 forward: 50- acgtagttgtctctctgcgctc-30 and AalRPS17 reverse: 50-

cgcttggtttcgtgacacatc-30[17]. A standard curve of YCV (linear curve slope –3.5715, Y intercept

41.552, R2 = 0.9988, amplification efficiency 90.546) and DENV-2 (linear curve slope –3.5841,

Y intercept 45.146, R2 = 0.9998, amplification efficiency 90.543) was generated from a range of

serial 10-fold dilutions of the plasmid and was used to normalize the genomic copies.

Western blotting

At 14 dpi, heads, midguts and whole bodies of 5–10 mosquitoes were washed three times with

cold PBS. Total protein was extracted by homogenizing samples and lysing in RIPA buffer

(Sangon, Shanghai, China) for 30 min at 4˚C. Protein concentration was determined using the

BSA protein Assay Kit (Takara). YCV was detected with a mouse polyclonal antibody pro-

duced by immunizing mice with protein YCV-N. Actin was used as an internal control and

detected with a mouse pan-actin antibody-clone C4 (Millipore, Billerica, MA).

Co-infection interference in vitro

Simultaneous infections: Before infection, YCV was mixed with DENV-2, ZIKV or JEV

according to the specified multiplicity of infection (MOI) (YCV MOI = 1, DENV-2/ZIKV /

JEV MOI = 1 or 0.1; YCV MOI = 0.1, DENV-2/ZIKV / JEV MOI = 1 or 0.1) and then incu-

bated with C6/36 or Aag2 cells for 1 h at 28˚C with 5% CO2.

Sequential infections: The method of sequential infections was similar to that for simulta-

neous infection, but YCV (MOI = 1) was incubated with C6/36 after 12 h, then the C6/36 cells

containing YCV were incubated with DENV-2, ZIKV or JEV. After incubation, cells were

rinsed once with PBS and 1 mL of complete media was added. Cells were incubated for 5 days

at 28˚C with 5% CO2.

Simultaneous and sequential infections supernatant was collected at 1, 2, 3, 4 and 5 dpi for

the plaque assay to determine infectious viral particle. The data were repeated three times.
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Co-infection interference in vivo

Mosquitoes that pulled through 5–7 d after being starved for at least 16 h were fed defibrillated

horse blood (Shanghai Yuanye Biological Technology Co., Ltd) mixed with YCV solution and

DENV-2 solution at 1:1:1 using the Hemotek membrane blood feeding system (Hemotek).

The titer for YCV and DENV-2 used was both 3.7×107pfu/ml. Full engorged mosquitoes were

selected and incubated at 28˚C and 70% relative humidity (RH), and the bodies and heads of

10 to mosquitoes were collected at 7 and 14 dpi for viral detection. The data were repeated by

three times.

Evaluation of Ae. albopictus vector competence for DENV-2 used infection rate and popu-

lation transmission rate, as follows[18]:

Infection rate: Percentage of mosquitoes containing virus in their bodies (number positive/

number tested)

Transmission rate: Percentage of mosquitoes containing virus in their heads (number posi-

tive/number tested)

Statistical analysis

Statistical analysis (Student’s t-test) was performed using R.3.5.1 (https://www.r-project.org/).

In all tests, the data represent the mean ± SEM. The results were analyzed using the unpaired

t-test with statistical significance alpha (α) levels denoted as P < 0.05, �; P< 0.001, �� and

P< 0.001, ���.

Results

Mosquitoes are permissive to oral YCV infection in a dose-dependent

manner

Research on the route of YCV oral infection showed that YCV reproduction was detected in

total RNA from the whole mosquito bodies of Cx. quinquefasciatus (26.9%) and Ae. albopictus
(45.5%) by RT-PCR (Table 1 and S1 Fig). Western blot results demonstrated that the YCV

structural protein N was expressed in both Cx. quinquefasciatus and Ae. albopictus (S1 Fig).

We also investigated the infectious activity of these viruses in C6/36 cells. In comparison to the

control, 17.6% and 33.3% of the homogenates of Cx. quinquefasciatus and Ae. albopictus
resulted in cytopathy and positive for YCV RNA in C6/36 cells, respectively (Table 1 and S1

Fig). All the results indicate that YCV can infect two types of adult mosquito through the oral

route.

The infectivity effect factor of the virus dose was verified with a series of YCV titers (from

1×102 to 1×106 pfu/ml) to infect mosquitoes. YCV infected both species of mosquito at 1×106

pfu/ml by blood-meal feeding, with a stronger infectivity in Ae. albopictus. The average copies

(log10) and the infection rate of YCV in Ae. albopictus were higher than in Cx. quinquefascia-
tus at 106 pfu/ml (Fig 1A and 1B). However, with lower titers of YCV, its infectivity to both

mosquito species decreased dramatically. The 1×105 pfu/ml virus infection resulted in 4.94

and 4.5 average copies (log10) of YCV in Ae. albopictus and Cx. quinquefasciatus (Fig 1A),

Table 1. Infection rate of YCV in Cx. quinquefasciatus and Ae. albopictus.

Species Blood meal titer (pfu/ml) Infection rate

No. YCV RNA positive/No. engorged No. CPE observed/No. engorged

Cx. quinquefasciatus 106 26.9% (7/26) 3/17 (17.6%)

Ae. albopictus 106 10/22 (45.5%) 4/12 (33.3%)

https://doi.org/10.1371/journal.pntd.0008920.t001
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corresponding to 8.9% and 8.5% infection rates, respectively (Fig 1B). When the infective YCV

titer was less than 1×104 pfu/ml, no infection was observed in the two mosquitoes (Fig 1A and

1B).

Mosquitoes could acquire YCV in an aquatic environment, and particles

enhance virus acquisition ability

The investigation of the potentiality of the virus to infect larvae (S1 Table) indicates that the

average copies (log10) of YCV in Cx. quinquefasciatus were not significantly different when

mosquitoes were bred in sewage (5.13) or clean water (5.17) containing 105 pfu/ml of YCV

(Fig 2A), while the positive rate in sewage (10.66%) was slightly higher than that in clean water

(5.66%) (Fig 2B). Interestingly, at the treatment concentrations of 103 pfu/ml and 104 pfu/ml,

the virus average copies (log10) were much higher for Cx. quinquefasciatus (4.04 and 4.4.65) in

the sewage than in clean water (1.2 and 3.62) (Fig 2A), but the positive rate was low (<3%)

(Fig 2B). Similarly, the infection pattern of YCV on Ae. albopictus was comparable to that of

Cx. quinquefasciatus in the sewage and clean water (Fig 2A and 2B). The results show that the

infectivity present in larvae incubated in clean water or sewage was dose-dependent; Ae. albo-
pictus was more susceptible to YCV; and YCV had a stronger infection ability in sewage for

both two mosquito species.

In addition, the average copies increased by approximately 102-fold in the clean water with

added particles, with a significant increase in infection rate from 2.17% to 13.2% in Cx. quinque-
fasciatus (Fig 3A and 3B). In contrast, the average copies of YCV in Cx. quinquefasciatus
reduced by approximately 104-fold with a lower infection rate of 1.43% in the filtered sewage

compared to the sewage treatment. Furthermore, along with the restoration of the particles in

sewage, the average YCV copy number in Ae. albopictus increased by 10-fold, and the infection

rate conclusively increased from 16.05% to 39.68%. However, the average YCV copy number in

Ae. albopictus decreased by approximately 102-fold when incubated in filtered sewage compared

to clean water, and the infection rate also decreased from 34.65% to 15.04% (Fig 3A and 3B).

This result wholly suggests that the particles in water influence the infectivity of YCV to mos-

quitoes, which might be related to the viral stability, but remains to be further investigated.

YCV vertical transmission in mosquitoes

The presence of YCV in different developmental stages of the F1 generation detected showed

that YCV copies were low among the eggs, larvae, pupae and adults of Cx. quinquefasciatus

Fig 1. Infectivity and infection rates of Cx. quinquefasciatus and Ae. albopictus infected with different doses of

YCV. Mosquitoes were inoculated with an infectious blood meal containing a dose of 106, 105, 104, 103 or 102 pfu/ml

YCV. (A) Ingested virus titers of Cx. quinquefasciatus and Ae. albopictus by qRT- PCR at 14 dpi. Each dot represents

one mosquito body; the results are expressed as the mean ± SEM. (B) Infection rates of Cx. quinquefasciatus and Ae.
albopictus at 14 dpi presented as the percentage of the total number of engorged mosquitoes. The results are expressed

as the mean ± SEM. The results were analyzed using the unpaired t-test. A P value of< 0.05 indicates statistical

significance. P< 0.05, �; P< 0.001, �� and P< 0.001, ���.

https://doi.org/10.1371/journal.pntd.0008920.g001
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Fig 2. YCV in an aquatic environment can be acquired by Cx. quinquefasciatus and Ae. albopictus. Cx.

quinquefasciatus and Ae. albopictus were bred in clean water or sewage with a serial YCV titration (105, 104, 103 and

102 pfu/ml). (A) The emerging adults were reared for an additional 8 days for YCV detection by qRT-PCR. Each dot

represents one mosquito body; the results are expressed as the mean ± SEM. (B) Infection rates of Cx. quinquefasciatus
and Ae. albopictus are represented as the ratios of mosquito infection. The results are expressed as the mean ± SEM.

The results were analyzed using the unpaired t-test. A P value of< 0.05 indicates statistical significance. P< 0.05, �;

P< 0.001, �� and P< 0.001, ���.

https://doi.org/10.1371/journal.pntd.0008920.g002

Fig 3. Particulate matter in sewage enhances YCV infectivity of Cx. quinquefasciatus and Ae. albopictus. Larvae (3rd-4th instar) were bred in clean

water, clean water+particles, sewage, or sewage-particles with YCV (final YCV titer was 104 pfu/ml). (A) YCV RNA titers of Cx. quinquefasciatus (left) and

Ae. albopictus (right) were detected by qRT-PCR 8 days after emergence. One dot represents one mosquito. The results are expressed as the mean ± SEM.

(B) Infection rates. The results were analyzed using the unpaired t-test. A P value of< 0.05 indicates statistical significance. P< 0.05, �; P< 0.001, �� and

P< 0.001, ���.

https://doi.org/10.1371/journal.pntd.0008920.g003
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(Fig 4A). Adults had the lowest positive rate (10%), quantifiably, there were no marked differ-

ences between larvae (18.05%) and pupae (21.13%) (Fig 4B). As such, higher virus copies and

positivity rates were detected in adults of the Ae. albopictus F1 generation than in larvae and

pupae (Fig 4A and 4B). Although vertical transmission is the primary way to maintain and

transmit ISVs in nature, the lower vertical transmission efficiency of YCV suggests that vertical

transmission may only be one of its transmission methods.

Proliferation and distribution of YCV in mosquitoes

RT-qPCR revealed that all Ae. albopictus were YCV virus positive at 0 dpi (Fig 5B); the YCV

copies increased steadily until 7 dpi and then maintained a stable level in later periods

(p>0.05) (Fig 5A). On the other hand, the virus average copies (log10) in Cx. quinquefasciatus
steadily decreased in the first three days, but increased to 6.67 at 7 dpi, and then maintained at

Fig 4. Viral load of YCV in different life stages of the F1 generation. After the infected Cx. quinquefasciatus and Ae. albopictus parent females had

oviposited, egg papers were hatched in deoxygenated water. (A) Offspring were reared and YCV RNA copies were detected by qRT-PCR in different life

stages (egg, larva, pupa and adult). One dot represents one mosquito. The results are expressed as the mean ± SEM. (B) Positive rate. The results are

expressed as the mean ± SEM. The results were analyzed using the unpaired t-test. A P value of< 0.05 indicates statistical significance. P< 0.05, �;

P< 0.001, �� and P< 0.001, ���.

https://doi.org/10.1371/journal.pntd.0008920.g004

Fig 5. Virus reproduction and infection rates for YCV in Cx. quinquefasciatus and Ae. albopictus. The mosquitoes

were fed a mixture containing horse blood (50% v/v) with 106 pfu/ml YCV. (A) YCV virus RNA copies in the whole

mosquito bodies were detected by qRT- PCR at 0 dpi, 3 dpi, 7 dpi, 11 dpi, and 14 dpi. The results are expressed as the

mean ± SEM. (B) Infection rates of Cx. quinquefasciatus and Ae. albopictus at the indicated time points presented as

the percentage of the total number of engorged mosquitoes. Shown are the mean percentages from three independent

replicates. Error bars show the standard error of the mean. The results were analyzed using the unpaired t-test. A P

value of< 0.05 indicates statistical significance. P< 0.05, �; P< 0.001, �� and P< 0.001, ���.

https://doi.org/10.1371/journal.pntd.0008920.g005
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the same level in later (p>0.05) (Fig 5A). It is clear that not only the higher infection rate but

also higher viral copies at dpi 4, 7, 10, and 14, were observed in Ae. albopictus, suggesting that

Ae. albopictusmay be a better host for YCV than Cx. quinquefasciatus.
Furthermore, Western blot results showed that the YCV structural protein N has been

detected in the midgut of Cx. quinquefasciatus and Ae. albopictus, but not in the head (Fig 6A).

YCV nucleic acid was detected in the midgut, with higher RNA expression in Ae. albopictus
than in Cx. quinquefasciatus, but not in the head of both mosquitoes (Fig 6B).

YCV inhibits replication of pathogenic flaviviruses in vitro

As shown in Fig 7, the presence of YCV significantly inhibits DENV-2 replication in both C6/

36 and Aag2 cells, with replications of about 103, and 102 fold lower at 4 or 5 dpi when DENV-

2 is co-inoculated with YCV (Fig 7A and S2A Fig) in both cells. In addition, a 10-fold lower

ZIKV replication was observed when ZIKV were co-inoculated with YCV than ZIKV alone in

the C6/36 cells at 3, 4, and 5 dpi (Fig 7B and S2B Fig). However, no synergism or inhibition of

YCV on JEV replication in the two cell lines was observed for all tested co-inoculation combi-

nations (Fig 7C and S2C Fig). Furthermore, the effects of the infection sequence order were

also tested, and the replication of DENV-2 and ZIKV is 104 and 10-fold lower, respectively, in

C6/36 cells pre-infected with YCV for 12 h in comparison with the control, whether the MOI

of DENV-2 and ZIKV was high or low (Fig 8A and 8B, S3A and S3B Fig).

YCV interferes with transmission of DENV-2 in vivo

At 7 dpi, there was no significant difference in the positive rate and viral copies of DENV-2 in

the mosquito bodies of DENV-2 and DENV-2+YCV infected groups (P > 0.05) (Table 2 and

Fig 6. Assessing the infectivity of midgut and head of Cx. quinquefasciatus and Ae. albopictus. The mosquitoes

were fed a mixture containing horse blood (50% v/v) with 106 pfu/ml YCV titration. Viral protein and RNA of the

midgut and head of Cx. quinquefasciatus and Ae. albopictus were detected by Western blot (A) and quantitative reverse

transcription PCR (B) at 14 dpi. Data are presented as the mean ± SEM. The results were analyzed using the unpaired

t-test. A P value of< 0.05 indicates statistical significance. P< 0.05, �; P< 0.001, �� and P< 0.001, ���.

https://doi.org/10.1371/journal.pntd.0008920.g006
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Fig 9). As much as significant difference was observed in transmission rate of DENV-2

between these two groups (DENV-2 (36.4%) vs DENV-2+YCV (21.1%)) (P< 0.001) (Table 2),

and RNA copies of DENV-2 detected in the head of DENV-2 group were significantly higher

than co-infection group (P < 0.001) (Fig 9). Similarly, at 14 dpi, the RNA copies of DENV-2 in

bodies was insignificantly different between the two groups (P> 0.05) (Fig 9). However, the

infection rate (90.5% vs 62.5%, p< 0.001), average virus copies (log10) in the mosquito head

Fig 7. YCV effects the growth of DENV-2, ZIKV and JEV in C6/36 and Aag2 cells during single- and coinfections

of simultaneous infections. The flaviviruses DENV-2, ZIKV and JEV at MOI = 0.1 were mixed with YCV at MOI = 1

or 0.1; the mixture was then added to C6/36 (left) or Aag2 (right) cells. (A, B, C) The virus titers during single- and

coinfection were determined by plaque assays at the indicated time points. Data are presented as the mean of three

independent experiments ±SEM. The results were analyzed using the unpaired t-test. A P value of< 0.05 indicates

statistical significance. P< 0.05, �; P< 0.001, �� and P< 0.001, ���.

https://doi.org/10.1371/journal.pntd.0008920.g007
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(5.66 vs 5.18, p = 0.0311), and the transmission rate (71.4% vs 37.5%, p < 0.001) of DENV-2 in

single infection with DENV-2 was much higher than the co-infection group with YCV and

DENV-2 (Table 2 and Fig 9).

Discussion

Herein the results presented indicate that the YCV may be transmitted and maintained in the

environment using a complex transmission and maintenance model, including virus infection

and transmission in the larval and adult stages, as well as localization in mosquito tissues [19]. The

localization of YCV in midgut tissues was consistent with other insect-specific flavivirus (ISFs),

which appeared unable to break through the barrier between the midgut and salivary glands and

dissemination into the salivary glands [20–22]. Although YCV can effectively infect Cx. quinque-
fasciatus and Ae. albopictus at 106 pfu/ml by the oral route, its infection ability is significantly

reduced and actually vanishes with reducing titers, suggesting that oral susceptibility can vary

greatly and only high titers of YCV can infect Cx. quinquefasciatus and Ae. albopictus, which are

consistent with that reported by Vasilakis, N. and Nasar, F [23,24]. However, recent studies using

Dianke virus, (DKV) showed conflicting results. Culex quinquefasciatus, Cx. tritaeniorhynchus,
and Ae. aegyptiwere highly susceptible to infection and able to transmit DKV [25]. This may be

dependent on mosquito species and the microorganisms carried by the mosquito itself.

We conducted growth experiments with YCV in Cx. quinquefasciatus and Ae. albopictus.
The results revealed that the virus infects and replicates in the midgut and that its infection

rate is much lower in Cx. quinquefasciatus than in Ae. albopictus. This indicates that the

Fig 8. YCV effects the growth of DENV-2, ZIKV and JEV in C6/36 cells during single- and coinfections of sequential infections. After 12 h of

YCV (MOI = 1) infection, C6/36 cells were infected with the flaviviruses DENV-2, ZIKV or JEV at MOI = 0.1. (A, B, C) The virus titers during

single- and coinfection were determined by plaque assays at the indicated time points. Data are presented as the mean of three independent

experiments ±SEM. The results were analyzed using the unpaired t-test. A P value of< 0.05 indicates statistical significance. P< 0.05, �; P< 0.001, ��

and P< 0.001, ���.

https://doi.org/10.1371/journal.pntd.0008920.g008

Table 2. Infection and transmission rate of DENV-2 in single infection or co-infection with YCV in Ae. albopictus.

Group Days post exposure Infection ratea Transmission rateb

DENV-2 7d 50% (11/22) 36.4%(8/22)

14d 90.5%(19/21) 71.4%(15/21)

DENV-2 and YCV co-infection 7d 57.9%(11/19) 21.1%(4/19)

14d 62.5%(10/16) 37.5%(6/16)

a. Percentage of mosquitoes containing virus in their bodies (number positive/number tested)

b.Percentage of mosquitoes containing virus in their heads (number positive/number tested)[18]

https://doi.org/10.1371/journal.pntd.0008920.t002
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midgut may be the main target organ for the infection and multiplication of YCV, and Ae.
albopictusmay be a more susceptible host for YCV infection, similar to what was observed for

flaviviruses such as Bamaga virus [26]. This probably resulted from the varied midgut barrier

expressed following ingestion of the virus in different mosquito species [27]. This as well sug-

gested that Cx. quinquefasciatus and Ae. albopictus express a midgut escape barrier, as none of

the infected Ae. albopictus and Cx. quinquefasciatus showed a disseminated infection. A previ-

ous study showed that Eilat virus (EILV, an ISV) could bypass midgut barriers and spread to

the salivary glands of Ae. albopictus and Cx. quinquefasciatus treated with thoracic injection

[23]. We attempted to address the ability of Cx. quinquefasciatus and Ae. albopictus to acquire

viruses from water during the larval stage. Several studies have shown that the population of

adult Ae. aegyptimosquitoes could be effectively infected by the virus in sewage and clean

water [28]. Accumulatively, evidence from field surveillance convincingly shows that A.

aegypti and A. albopictus tend to oviposit and breed in wastewater with low dissolved oxygen

and high turbidity [29]. Our study further confirmed that YCV in an aquatic environment can

be acquired and subsequently transmitted by mosquitoes. Interestingly, the infectivity of YCV

in sewage is higher than that in clean water, and certain ingredients in the sewage can affect

viral infections. Indeed, as shown in S1 Table, we noted that the aquatic particles correlated

with YCV infectivity. The difference might be caused by the divalent cations or the pH, as sug-

gested in other studies on Culex restuans Cypovirus (CrCPV), a dsRNA virus [30,31],

Fig 9. Co-infection interference in vivo. DENV-2 copies in the bodies and heads of Ae. albopictusDENV-2 single

infection or DENV-2+YCV co-infection were detected by qRT- PCR at 7 dpi, and 14 dpi. The results for viral copeies

are expressed as the mean ± SEM. The results were analyzed using the unpaired t-test. A P value of< 0.05 indicates

statistical significance. P< 0.05, �; P< 0.001, �� and P< 0.001, ���.

https://doi.org/10.1371/journal.pntd.0008920.g009

PLOS NEGLECTED TROPICAL DISEASES Transmission competence of Yichang virus and its interference with flaviviruses

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008920 November 30, 2020 12 / 17

https://doi.org/10.1371/journal.pntd.0008920.g009
https://doi.org/10.1371/journal.pntd.0008920


Uranotaenia sapphirina Nucleopolyhedrovirus (UrsaNPV)[32], a DNA virus and ZIKV [29], or

perhaps the presence of bacteria, as demonstrated in Reoviruses by other authors [33]. The

effects of divalent cations or pH on YCV infectivity in water however remains to be further

investigated.

Although vertical transmission has been considered an important way for ISVs to persist

and disperse in nature, the relatively low proportion of YCV positive F1 generation (eggs, lar-

vae or adult) corroborates low rates observed for Culex flavivirus, Aedes flavivirus, Okushiri
virus, and Kamiti River virus [9,34–42]. It is possible that ISVs might persist in mosquitoes for

a long time, although the vertical transmission efficiency may be low. Indeed, studies of Dip-
teran ambidensovirus 1 (Cx. pipiens densovirus) proved that the virus can persist for over 20

years in laboratory colony Cx. pipiens (sl.), with a low rates of vertical and transovarial trans-

mission [43]. The low rate of YCV vertical transmission was consistent with the midgut

restriction barrier expressed in the mosquito. Indeed, the virus disseminated from the midgut

cells typically undergoes secondary replication in other tissues, such as fat bodies or ovaries

[27]. Collectively, the vertical transmission capacity of YCV is low and horizontal transmission

is also restricted to a certain extent. Mixed-mode transmission, including both horizontal and

vertical transmission routes, is likely to be key for YCV to be maintained in nature, which is

similar to ISFs [44,45].

Superinfection exclusion is an important feature of ISVs. There are several studies of super-

infection interference, which mostly occur between cognate viruses [13,46,47], as the mecha-

nism is generally considered to be competitive inhibition. In addition, the interference could

be caused by indirectly regulate the immune system of the host.Mesoniviridae is far from the

Flaviviridae, and their interactions are rarely reported. Several reports suggest that flaviviruses

do not interfere with viruses belonging to other families or genera in most instances [48,49].

However, other authors report conflicting results [50,51], which seem to agree with our data.

A recent publication [52] demonstrated that EILV induces heterologous interference with sev-

eral other Alphavirus pathogens, suggesting that heterologous interactions can occur. Indeed,

the data in our laboratory reveal that the inhibitory effect of YCV on flaviviruses was also dif-

ferent, since the most pronounced reduction was observed in sequential infection with

DENV-2 (104-fold less), whereas in JEV, no reduction was seen in coinfections or sequential

infections. This could be the critical factors directly or indirectly affected by the YCV of these

medically important flaviruses that are viral species specific, and further study such as direct

RNA sequencing for the viruses or transcriptome analysis for the host cells could help to

explain this difference. Even though the prevalence of arthropod-borne viruses in mosquito

populations is quite low, the transmission of mosquito bites would greatly increase the epi-

demic risk of arbovirus-related diseases. Therefore, research on the interaction between micro-

organisms in mosquitoes is of utmost importance for epidemiological prediction and

biological control of arboviruses.

ISVs are only maintained in insect populations, however it remains unclear how they trans-

mit among insects. Here, we report that YCV could infect mosquitoes orally at the adult stage

and breed in aquatic environments at the larva stage, with a low vertical transmission capacity.

This offers laboratory evidence that mixed-mode transmission in mosquitoes, including both

horizontal and vertical transmission routes, is likely to be the key for YCV maintenance in

nature. The growth and tissue distribution of YCV in mosquitoes suggests that YCV cannot

spread to the host salivary glands and that Ae. albopictusmaybe a better host for YCV than Cx.

quinquefasciatus. Interactive data between YCV and three flaviviruses indicate that superinfec-

tion exclusion may occur not only between homologous viruses, but also between heterolo-

gous viruses, and the inhibition does not occur with all flaviviruses. It is equally important to

understand the ecological significance of this interaction to expedite the understanding
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mechanisms of interference between vector-borne viruses and ISVs in mosquitoes and subse-

quent implementation of vector-borne virus control.

Supporting information

S1 Fig. Cx. quinquefasciatus and Ae. albopictus are permissive to YCV infection when fed a

blood meal. Mosquitoes were inoculated with an infectious blood meal containing a dose of

106 pfu/ml YCV. Mosquitoes were homogenized and YCV reproduction was detected by

reverse transcription PCR (A) and Western blot (B) at 14 dpi. Homogenate of mosquitoes at

14 dpi was added to C6/36 cells, infectious virus particles in the whole mosquito bodies were

assessed by the cytopathic effect (CPE) (C) and viruses in the supernatant of C6/36 cells were

detected by reverse transcription PCR (D).

(TIF)

S2 Fig. YCV effects the growth of DENV-2, ZIKV and JEV in C6/36 and Aag2 cells during

single- and coinfections under simultaneous infections. The flaviviruses DENV-2, ZIKV

and JEV at MOI 1 were mixed with YCV at MOI 1 or 0.1; then, the mixture was added to C6/

36 (left) or Aag2 (right) cells. (A, B, C) The virus titers during single- and coinfections were

determined by the plaque assay at the indicated time points. Data are presented as the mean of

three independent experiments ±SEM. The results were analyzed using the unpaired t-test. A

P value of< 0.05 indicates statistical significance. P < 0.05, �; P< 0.001, �� and P < 0.001, ���.

(TIF)

S3 Fig. YCV effects the growth of DENV-2, ZIKV and JEV in C6/36 cells during single-

and coinfections under sequential infections. After 12 h of YCV (MOI 1) infection, C6/36

cells were infected with the flaviviruses DENV-2, ZIKV or JEV at MOI 1. (A, B, C) The virus

titers during single- and coinfection were determined by the plaque assay at the indicated time

points. Data are presented as the mean of three independent experiments ±SEM. The results

were analyzed using unpaired t-test. A P value of< 0.05 indicates statistical significance.

P< 0.05, �; P < 0.001, �� and P< 0.001, ���.

(TIF)

S1 Table. Characterization of the clean water and sewage.
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