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Abstract 

Objective:  Apis mellifera is a species of honeybee that has been introduced around the world as an industrial bee‑
keeping species. Recently, urban beekeeping has attracted attention as a means of ecosystem protection and urban 
greening. This study aimed to investigate nectar sources of urban beekeeping in Kōtō-ku, Tokyo using pollen DNA 
metabarcoding.

Results:  We extracted DNA from pollen collected by the honeybees of a local urban beekeeping operation. DNA 
metabarcoding analysis was carried out by sequencing a part of the rbcL region of the chloroplast genome. A total 
of 31 samples collected between mid-March, 2018 and mid-October, 2018 yielded 54 operational taxonomic units 
(OTUs) comprising 14 families, 32 genera, and 8 species. Whereas 5 OTUs were profiled throughout all seasons, 38 
OTUs were season-specific (spring, summer, or autumn). Therefore, we were able to infer seasonal nectar sources for 
the beekeeping operation at the family or genus level, as well as at the species level to a lesser extent. Our pollen-
sampling strategy was effective for profiling season-specific nectar sources, with the exception of a few anomalies 
that can be accounted for by out-of-season flowering associated with artificial gardening and/or pollen accumulation 
over multiple seasons.

Keywords:  Honeybee, Urban beekeeping, Nectar source, Pollen, DNA metabarcoding, Metagenome, Ribulose 
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Introduction
Apis mellifera is a honeybee species that has been intro-
duced around the world as an industrial beekeeping 
species. Although Apis cerena has long been used in 
Japanese beekeeping as a part of the traditional culture, 
A. mellifera was introduced via the United States in 1877 
[1]. Honeybees generally collect nectar and pollen from 
flowers that they visit to provide the nutrients necessary 
for colony maintenance and development [2]. Nectar 
is processed to form honey, the main energy source for 

the colony. Pollen represents the colony’s only supply of 
protein and is essential for brood rearing and the devel-
opment of hypopharyngeal glands in young worker bees 
[3]. Urban beekeeping has recently attracted worldwide 
attention as a useful method of bee conservation in urban 
areas and as a method to promote urban greening, which 
is an important countermeasure to heat islands [4–6]. A 
Japanese urban beekeeping project known as the Ginza 
Honey Bee Project was initiated in Tokyo in 2006 and 
is currently being implemented in many cities and com-
munities [7]. In addition to honey harvesting, this project 
includes four objectives as follows: environmental educa-
tion, such as providing honey harvesting experiences and 
workshops; development of local brands using the har-
vested honey; promotion of urban greening around the 
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region; investigation of surrounding nectar and pollen 
sources [8].

Since high-throughput sequence technology using 
next-generation sequencing (NGS) appeared recently, a 
DNA metabarcoding technique based on metagenomic 
analysishas enabled investigation into various aspects 
of biome compositions by comprehensively identifying 
barcode regions common to organisms occupying a par-
ticular habitat type (e.g. soil, water, or air). Conventional 
DNA barcoding based on Sanger sequencing technology 
has been used to analyse pollen collected by honeybees 
[9–11]. While this technique can be useful in elucidating 
information on a fine scale, it is not practical for large-
scale application [12]. To address this limitation, DNA 
metabarcoding has recently been applied to pollen col-
lected by honeybees [13–16]. This updated approach to 
pollen analysis is expected to yield improvements in effi-
ciency, cost and labour.

Located on the waterfront of Tokyo Bay, Kōtō-ku is a 
special ward within Tokyo Metropolis, Japan, and has 
been targeted for development as a green city (Fig.  1). 
Urban beekeeping has been practised at Musashino Uni-
versity of Kōtō-ku since 2014 as a practical education 
program that is part of the ‘Living Laboratory for Sus-
tainability’ environmental project. This project explores 
the potential role of urban beekeeping as an integral 
aspect of a sustainable landscape design model based on 
symbiosis among honeybees, plants, and humans. How-
ever, knowledge of surrounding nectar-source plants is 
primary to successful beekeeping. By using DNA meta-
barcoding to analyse pollen collected by the honeybees, 
this study investigated the kinds of plants that serve 
as nectar sources for the Musashino University bee 

colonies, because honeybees collect both nectar and pol-
len as described.

Methods
Materials collection
Beekeeping (A. mellifera) is carried out on the roof of the 
second building at Musashino University Ariake Cam-
pus in the Ariake district of Kōtō-ku, on the Tokyo Bay 
coast (Fig.  1). A microspatula-tip full of bee pollen was 
obtained from an uncovered and relatively new honey-
comb. Pollen was bright orange or yellow in colour, with 
low viscosity and low permeability. The honeybee in 
temperate regions including Japan has a foraging season, 
which is spring to autumn [9]. Samples were collected 
three times per month (representing early, middle, and 
late periods) on rain-free days during daylight hours from 
mid-March, 2018 to mid-October, 2018, with the excep-
tion of the mid-July sample period, because of honeybee 
behavioural suppression with continuous extreme heat 
days (Additional file 1, Fig. S1).

DNA metabarcoding analysis
After adding Lysis Solution F (Nippon Gene, Tokyo, 
Japan), 0.5-mm zirconia beads, and 5.0-mm stainless steel 
beads to the bee pollen sample, the liquid was shaken 
at 1500  rpm for 2  min using a Shake Master Neo (Bio-
medical Science, Tokyo, Japan) and was then incubated 
at 65 °C for 10 min. After centrifugation at 12,000×g for 
10  min, supernatant was collected. Genomic DNA was 
extracted using an MPure Bacterial DNA Extraction 
Kit (MP Bio Japan, Tokyo, Japan). The extracted DNA 
solution was mixed with a final concentration of 10% 
polyvinylpolypyrrolidone and purified by collecting the 
supernatant after centrifugation. The DNA concentra-
tion was measured with a Synergy H1 (BioTek, Winooski, 
VT, USA) and a QuantiFluor dsDNA System (Promega, 
Madison, WI, USA).

An amplicon library targeting a part of the rbcL 
region of the chloroplast genome was constructed by 
two-step PCR. The 1st PCR primer set was customised 
within the barcode region as a mini-barcoding system 
for amplicon sequencing by short-read NGS [17]. This 
PCR was carried out in a total volume of 10  μl, con-
taining 0.5  ng template DNA, 0.5  μM forward primer  
(5ʹ-ACA​CTC​TTT​CCC​TAC​ACG​ACG​CTC​TTC​CGA​
TCT​CTT​ACC​AGY​CTT​GAT​CGT​TAC​AAA​GG-3 ʹ 
[underline indicates the Illumina adapter sequence]), 
0.5  μM reverse primer (5ʹ-GTG​ACT​GGA​GTT​CAG​
ACG​TGT​GCT​CTT​CCG​ATCT​GTA​AAA​TCA​AGT​
CCA​CCR​CG-3ʹ [underline indicates the Illumina 
adapter sequence]), 0.2  mM dNTP mixture, 1 × com-
pany-supplied buffer, and 0.05 U ExTaq HS DNA poly-
merase (TaKaRa Bio, Shiga, Japan). The reaction cycles 

Fig. 1  Topography of Kōtō-ku, located on the waterfront of Tokyo 
Bay, Japan
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were as follows: initial denaturation at 94 °C for 2 min; 
30–35 reaction cycles at 94  °C for 30 s, 50  °C for 30 s, 
and 72 °C for 30 s, and final extension at 72 °C for 5 min. 
After clean-up of the 1st PCR product, the 2nd PCR 
was performed under the same conditions, with the fol-
lowing modifications: a forward primer (5ʹ-AAT​GAT​
ACG​GCG​ACC​ACC​GAG​ATC​TACAC[index 2]ACA​
CTC​TTT​CCC​TAC​ACG​ACGC-3ʹ) and reverse primer 
(5ʹ-CAA​GCA​GAA​GAC​GGC​ATA​CGA​GAT​[index 1]
GTG​ACT​GGA​GTT​CAG​ACG​TGTG-3ʹ) were added 
based on the Illumina Adapter Sequences Document 
(https​://suppo​rt.illum​ina.com/conte​nt/dam/illum​ina-
suppo​rt/docum​ents/docum​entat​ion/chemi​stry_docum​
entat​ion/exper​iment​-desig​n/illum​ina-adapt​er-seque​
nces-10000​00002​694-14.pdf ), and adjustments were 
made to some PCR programs (12 cycles and anneal-
ing temperature at 60  °C). After clean-up of the 2nd 
PCR product, the quality of the constructed library was 
checked using a Fragment Analyzer (Advanced Analyti-
cal Technologies, Ankeny, IA, USA) and a dsDNA 915 
Reagent Kit (Advanced Analytical Technologies). Mul-
tiple libraries were pooled and sequenced by running 
2 × 300-bp paired-end reads using a MiSeq platform 
(Illumina, San Diego, CA, USA).

A series of bioinformatic analyses is shown in Addi-
tional file 2, Fig. S2. Briefly, raw read data were cleaned by 
removing primer sequences using the Fastx-Toolkit ver-
sion 0.0.14 (https​://hanno​nlab.cshl.edu/fastx​_toolk​it/). 
In addition, reads with a quality score of less than 20 or 
length less than 40 nt were excluded using Sickle version 
1.33 (https​://githu​b.com/ucdav​is-bioin​forma​tics/sickl​e). 
The clean paired reads were merged using FLASh version 
1.2.11 [18]. Parameters were merged as follows: (i) mini-
mum overlap length = 10, (ii) average read length = 230, 
and (iii) average fragment length = 320. Sequence derep-
lication, sorting by decreasing abundance, operational 
taxonomic unit (OTU) clustering, chimera filtering, and 
mapping reads back to OTUs were performed using USE-
ARCH version 10.0.240 (https​://www.drive​5.com/usear​
ch/). After reads were mapped to representative OTUs, 
they were normalised by counts per million (CPMs). The 
most abundant sequence from each OTU was selected as 
the representative sequence and was annotated for target 
species with 97% similarity against the NCBI non-redun-
dant nucleotide ‘nt’ database using the blastn program 
(BLAST+ version 2.7.1) [19]. For each OTU that was 
annotated to different species with the same similarity 
score, the genus or family common to those was assigned.

Results
A total of 31 samples were obtained from each sampling 
period. Thirteen samples (for example early May) were 
taken from a single honeycomb on the same day to assess 

any potential variation in pollen accumulated among 
different honeycombs. Sequence data for 6994–95,832 
paired-end reads were generated as output for each sam-
ple (Additional file  3, Table  S1). Approximately 13–94% 
reads per sample were available for OTU profiling. Non-
target OTUs, which included sequences that were classi-
fied as honeybee, human, Zygosaccharomyces sp., shuttle 
vector, Ralstonia pickettii, and Trebouxia showmanii, 
were excluded from analysis. Those classified as Pinaceae, 
Cupressaceae, Podocarpaceae, Arecaceae, Poaceae, and 
Woodsiaceae were also excluded, as these represent 
wind-pollinated flowers.

A total of 54 OTUs were obtained by DNA metabar-
coding analysis (Fig.  2). They were annotated as com-
prising 14 families, 32 genera, and 8 species. The average 
number of OTUs per sample was 5.9, with a range of 
1–31. Moreover, multiple samples that were obtained 
from different honeycombs on the same day shared some 
OTUs in common with each other, although the matches 
were imperfect. The family Fagaceae and the genera Sal-
via, Photinia, Hydrangea, and Trifolium were detected 
throughout all three seasons. The family Fabaceae and 
the genera Prunus, Papaver, Spiraea, Citrus, Celastrus, 
and Phellodendron were detected only in spring (March, 
April, and May). The family Vitaceae and the genera 
Hypericum, Mallotus, Passiflora, and Erythrina were 
detected only in summer (June, July, and August). The 
families Brassicaceae, Fabaceae, Hydrangeaceae, Verben-
aceae, Asteraceae, and Polygonaceae, the genera Bidens, 
Liriope, Abelia, Polyspora, Phyla, Berberis, Chloracan-
tha, Allium, and Eruca, and the species Ulmus parvifo-
lia, Commelina communis, Begonia herbacea, Elaeagnus 
macrophylla, Diplotaxis tenuifolia, and Berberis thun-
bergii were detected only in autumn (September and 
October).

Discussion
Although our approach enabled profiling of many fami-
lies and genera, few identifications were made at the spe-
cies level. In particular, half of the OTUs annotated at 
the family level were related to Asteraceae and Fabaceae, 
which constitute two of the three largest plant fami-
lies (the third being Orchidaceae) [20]. The restrictive 
approach to barcoding used here, which was specific to 
the rbcL region of the chloroplast genome, might lead 
to difficulty in recognising common sequences between 
species. However, an even more complex approach, 
which uses portions from both the rbcL and matK 
regions of the chloroplast genome along with the ITS2 
region of the nuclear genome, has not been completely 
refined [16]. Therefore, the technique of applying DNA 
metabarcoding to plants using pollen requires further 
improvement in terms of the identification and selection 
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of more robust barcoding regions, as well as the accrual 
of many more reference genomes.

In this study, five OTUs were detected in all three sea-
sons. These included garden plants such as sage (Sal-
via sp.) and white clover (Trifolium sp.), which flower 
throughout the entire year. In contrast, 38 OTUs were 
detected as ‘seasonal OTUs’. These include park and 
street plants such as cherry (Prunus sp.) and echidna 
(Cytisus sp.) in spring, Mallotus bark (Mallotus sp.) and 
passion flower (Passiflora sp.) in summer, and lacebark 
elm (Ulmus parvifolia) and broad-leaved oleaster (Elae-
agnus macrophylla) in autumn. However, based on pro-
filed OTUs, some plants were suggested to be present in 

seasons other than their typical flowering time. In par-
ticular, samples collected during the autumn tended to 
yield many such annotations. This could possibly be the 
result of two factors, out-of-season flowering induced by 
artificial gardening techniques and/or pollen accumula-
tion over multiple seasons. As noted, we found that dif-
ferent honeycombs sampled on the same day tended 
to share some OTUs. However, our sampling method 
might require improvement, because it allowed arbitrari-
ness in sample selection on the part of the experimenter. 
One potential improvement could be the use of a pollen 
trap [21]. We can therefore conclude that the sampling 
method is a very important consideration in pollen DNA 
metabarcoding analysis.

The range of honeybee travel has long been believed 
to be within 2 km [22]. However, recent reports based 
on new research techniques indicate that bees can 
forage approximately 10  km further than previously 
thought [23, 24]. A large variety of plants occupies the 
14 parks or grounds that occur within a radius of 2 km 
from our beekeeping site (Fig. 3). In addition, 26 parks 
or grounds are located across the sea within a distance 
of 4 km. Although it is plausible that honeybees could 
forage from these locations, the presence of only a few 
OTUs indicated that this was the case. We posit that 

Fig. 2  Profiles of annotated operational taxonomic units (OTUs) 
from each sample. The read count for each OTU is indicated by the 
log2CPM (counts per million). Taxonomic level is indicated by colour: 
family (orange), genus (purple), and species (red). These categories 
are shown as pie charts in the lower left portion of the figure. To 
facilitate visualisation of variations in seasonal patterns, the annotated 
OTUs are listed in the order of appearance from March to October. 
Nine OTUs with the symbol “#” show that they are annotated as 
different species with the same similarity score; candidate genera are 
described within this figure

Fig. 3  Locations of major planted parks and grounds in Kōtō-ku. 
The red plot shows the beekeeping site at Musashino University; the 
green plot shows parks or grounds
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the honeybee foraging range could be limited by bee-
keeping management practises and inclement weather 
(Additional file  3, Table  S2). However, this study did 
not demonstrate these associations.

In summary, most plants used as nectar sources by 
the urban honeybees studied herein were identified at 
the family and genus levels. Most plants could not be 
identified at the species level. We conclude that further 
development of this approach will enable the creation 
of a full-year pollen calendar.

Limitations
The data used in this study were obtained through 
metabarcoding of plant DNA that was derived from 
pollen collected by honeybees. However, there is no 
supporting data regarding the locations of the identi-
fied plant species.
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