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Abstract

Sign Language (SL) is a continuous and complex stream of multiple body movement fea-

tures. That raises the challenging issue of providing efficient computational models for the

description and analysis of these movements. In the present paper, we used Principal Com-

ponent Analysis (PCA) to decompose SL motion into elementary movements called princi-

pal movements (PMs). PCA was applied to the upper-body motion capture data of six

different signers freely producing discourses in French Sign Language. Common PMs were

extracted from the whole dataset containing all signers, while individual PMs were extracted

separately from the data of individual signers. This study provides three main findings: (1)

although the data were not synchronized in time across signers and discourses, the first

eight common PMs contained 94.6% of the variance of the movements; (2) the number of

PMs that represented 94.6% of the variance was nearly the same for individual as for com-

mon PMs; (3) the PM subspaces were highly similar across signers. These results suggest

that upper-body motion in unconstrained continuous SL discourses can be described

through the dynamic combination of a reduced number of elementary movements. This

opens up promising perspectives toward providing efficient automatic SL processing tools

based on heavy mocap datasets, in particular for automatic recognition and generation.

Introduction

Sign Languages (SLs) are the first languages of 70 million deaf people in the world [1]. Yet,

deaf SL users face many communication barriers. In particular, the vast majority of automatic

communication tools are not compatible with SL content, but only with spoken or written

one. Developing successful tools for automatic SL processing (i.e., SL automatic recognition,

generation and translation) would allow breaking down these barriers. For that aim, further

insights must be gained into multiple disciplines, in particular motion science. Indeed, beyond

the sparsity of research and developments conducted in SL compared to spoken languages, the

automatic processing of SL is challenging because of the intrinsic complexity of SL move-

ments. For instance, SL involves multiple motion features from various body parts, such as

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0259464 October 29, 2021 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Bigand F, Prigent E, Berret B, Braffort A

(2021) Decomposing spontaneous sign language

into elementary movements: A principal

component analysis-based approach. PLoS ONE

16(10): e0259464. https://doi.org/10.1371/journal.

pone.0259464

Editor: Peter Andreas Federolf, University of

Innsbruck, AUSTRIA

Received: June 18, 2021

Accepted: October 19, 2021

Published: October 29, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0259464

Copyright: © 2021 Bigand et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

information files. All raw motion capture data are

available from the MOCAP1 corpus on the

https://orcid.org/0000-0002-6343-0433
https://doi.org/10.1371/journal.pone.0259464
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0259464&domain=pdf&date_stamp=2021-10-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0259464&domain=pdf&date_stamp=2021-10-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0259464&domain=pdf&date_stamp=2021-10-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0259464&domain=pdf&date_stamp=2021-10-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0259464&domain=pdf&date_stamp=2021-10-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0259464&domain=pdf&date_stamp=2021-10-29
https://doi.org/10.1371/journal.pone.0259464
https://doi.org/10.1371/journal.pone.0259464
https://doi.org/10.1371/journal.pone.0259464
http://creativecommons.org/licenses/by/4.0/


movements of the torso, arms, hands and fingers as well as facial expressions. These move-

ments involve coordinating many biomechanical degrees of freedom (DOFs) [2, 3]. Further-

more, the spatial and temporal coordination of SL gestures is driven by a complex linguistic

system, whose modeling does not yet meet with a broad consensus among linguists. This raises

the question of determining how the motor system actually controls such complex movements

and how computational models of SL motion could be improved by exploiting these control

strategies.

Indeed, despite the complexity of SL motion, SL users have no difficulty engaging in various

SL conversations throughout the day. More generally, the ease with which humans fluidly exe-

cute movements has questioned how the motor system could coordinate the many DOFs and

master such a high-dimensional space of postures [4]. One hypothesis is that the multiple

DOFs are controlled within a subspace of lower dimension than the available number of DOFs

[4–6]. Instead of processing the multiple DOFs individually, the motor system controls a

reduced set of compositional elements called synergies (i.e., patterns of muscle activations) [7–

9]. These synergies are combined and, depending on their respective weights, are used to gen-

erate different movements.

With the progress of motion capture (mocap) systems, converging evidence has been pro-

vided across various movement contexts that motion datasets could be properly defined using

a reduced number of synergies. For instance, Principal Component Analysis (PCA) has been

shown to be effective in extracting synergies, by decomposing motion data into uncorrelated

principal movements (PMs). Troje [10] first used PCA to disentangle the motion patterns of

human gait. Similarly to “eigenfaces” [11] or “eigenvoices” [12], the whole movement of the

walker was decomposed into simpler one-directional PMs (i.e., time series of “eigenpostures”),

which maximized the variance in the original motion. The first PMs accounted for most of the

variance in the movements and can be interpreted as the kinematic elements (i.e., synergies)

recruited by the motor system to organize the movement [13]. PCA has then been successfully

applied to various common movements, such as walking or running [14–17], but also in more

complex sport contexts, such as skiing [18], karate [19] or diving [20].

In most of the studies mentioned above, PM decomposition has allowed gaining insights

into the coordinative structure of complex movements and into the underlying mechanisms of

motor control. This data-driven technique has also allowed shedding light on specific motor

mechanisms related to gesture expertise. In Federolf et al. [18], PMs were projected back onto

the original 3D space and were visualized. This allowed interpreting and comparing the skiing

movements of athletes in terms of distinct PMs, such as lateral body inclination, flexion-exten-

sion of the legs or rotation of the skis. The same method has been successfully applied to other

sports, such as karate [19] or diving [20]. In juggling, individual differences due to experience

have also been found in specific PMs [21]. Beyond expertise, such differences in PMs have

allowed determining specific biomechanical mechanisms due to impairments, such as knee

osteoarthritis [14] or cerebral palsy [15, 22]. Several studies have also used this technique to

investigate human posture control [23–27], notably to detect mechanisms due to perturbations

of the postural control system, such as head shaking [28]. Additionally, Haid et al. [26] have

reported age effects in postural control characterized by control differences in specific PMs. In

the artistic domain, Tits et al. [29] have showed that the finger gestures of pianists can be

decomposed into eight PMs and that the complexity of the decomposition was a function of

the expertise of the pianists.

To the authors’ knowledge, such a holistic evaluation of the upper-body movements in

spontaneous SL discourses has not been proposed yet. Some studies investigating hand syner-

gies have provided insights into the movements of the dominant hand of signers during the

production of highly constrained isolated ASL signs (i.e., shaping the hand into static letters of
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the alphabet, or numbers) [30–33]. PCA application was successful, which suggests that hand

control of ASL letters occupies a space of low dimension. These results support the potential

contribution of PM decomposition to automatic SL processing, as it allows models to use a

reduced number of dimensions and thus simplifies automatic tasks such as recognition, as pre-

viously shown for ASL letters [30]. However, producing ASL letters or numbers with the hand

is only a reduced part of particular ASL signs. Moreover, SL productions made in isolation

hardly provide complete descriptions of how SL is used by signers in real-life conditions, even

for more complex signs than letters or numbers. For instance, it has been demonstrated that

spontaneous SL mocap recordings could reveal faster movements than isolated signs [34–36].

Furthermore, SL motion involves the coordination of far more body parts than the dominant

hand, including the other hand, but also torso, head, shoulders and arms.

Investigating PM decomposition for the description of spontaneous upper-body SL move-

ments thus presents a two-fold interest. First, it may provide unexpected fundamental insights

into how the complex movements of SL are structured and into the motor control strategies

used to produce such complex motion. These analyses could interestingly complement prior

studies made on a linguistically limited set of hand gestures [30–33]. Furthermore, it could be

used to improve technological tools dedicated to SL, notably as it allows for substantial

dimensionality reduction. Indeed, PCA has been successfully applied to human full-body

movements for machine learning purposes, such as automatic prediction of gender [10], iden-

tity [37], mental state [38] or expertise level [19, 20], which calls for further investigations

using PMs as relevant inputs of automatic SL models. For instance, dense mocap datasets

could be decomposed using PCA before more complex machine learning procedures, notably

considering the crucial role of proper pre-processing steps in improving the performance of

deep neural networks for automatic SL recognition [39]. Again, such recognition models

could complement the prior work made on the automatic classification of ASL alphabet letters

using PCA [30]. Furthermore, taking advantage of the inter-segment coordination with PMs

could open up promising perspectives for automatic SL generation via virtual signers (or sign-

ing avatars), as previously shown for robot control problems [5], such as control of artificial

hands [7, 40, 41]. For instance, animation models could use dense mocap datasets to produce

realistic movements by processing only a reduced subset of PMs while keeping most of the

information about the original movements.

In the present study, we used PCA in order to determine the extent to which upper-body

motion of French Sign Language (LSF) could be described within a low number of PMs. More-

over, we aimed to quantify whether these PMs were shared across various signers in spontane-

ous discourses. For that aim, (1) common PMs were extracted from a mocap dataset

containing spontaneous LSF motion of six signers; (2) individual PMs were extracted from the

separate data of each signer; (3) the consistency of the principal movements across signers was

assessed.

Materials and methods

Motion capture corpus

The data used in the present analyses were taken from a previously reported study [42]. In

brief, each of six deaf native and fluent signers (3/3 males/females) had freely described the

content of 25 pictures using French Sign Language (LSF). The signers had been selected so

that they were all deaf, fluent in LSF and working in professions that require them to be com-

fortable expressing themselves in front of a camera (e.g., teacher, journalist, story-teller, trans-

lator). They all gave informed written consent (translated into LSF for better accessibility)

before the experiment, in accordance with the ethical standards of the Declaration of Helsinki.
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Using a motion capture system equipped with 10 cameras (Optitrack S250e), the data con-

sisted of the upper-body movements recorded at 250 fps, in three dimensions. Further details

(e.g., picture content, type of SL discourse, mocap equipment) are available from the original

mocap corpus [43, 44]. From the 25 mocap recordings, only 24 were taken into account in the

present study, as one of them was not available for one signer. Moreover, from the 23 original

body markers available for all signers, we used 21 markers that optimally describe the major

joints of the body. We chose to represent each elbow using one marker instead of two, as the

second marker did not add substantial information and removing it eased the visualization of

stick figures. As shown in Fig 1, the markers were (L = left, R = right, F = front, B = back): (1)

pelvis, (2) stomach, (3) T10 kidneys, (4) sternum, (5) C7 thyroic gland, (6) LB head, (7) LF

head, (8) RB head, (9) RF head, (10) L shoulder, (11) L elbow, (12) LB wrist, (13) LF wrist, (14)

LB hand, (15) LF hand, (16) R shoulder, (17) R elbow, (18) RB wrist, (19) RF wrist, (20) RB

hand, (21) RF hand.

Fig 1. The 21 upper-body markers taken from the motion capture corpus.

https://doi.org/10.1371/journal.pone.0259464.g001
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Data pre-processing

All the data processing was conducted in Python (Python Software Foundation https://www.

python.org/) using custom code, which is publicly available at the following GitHub reposi-

tory: https://github.com/felixbgd/SL-PMs_Bigandetal_2021.

The 3D positions of all markers were defined in reference to the pelvis (used as the origin).

From each of the 24 original recordings, one mocap recording unit with the duration of 5-sec-

ond was extracted from the beginning of the utterance, irrespective of the semantic content.

Each mocap recording unit was thus related to a different SL utterance. This resulted in 24

mocap examples per signer, of 5-second duration each.

The movements of each individual signer (i.e., the concatenation of their 24 mocap exam-

ples) were described in a matrix containing 30,000 posture vectors (rows) defined by the 3D

coordinates of the 21 markers (columns) at each time frame t:

pðtÞ
��!
¼ ½x1ðtÞ; y1ðtÞ; z1ðtÞ; . . . ; x21ðtÞ; y21ðtÞ; z21ðtÞ� ð1Þ

A two-step normalization was then applied to these data, in order to allow extracting com-

mon PMs across different signers while reducing the effects of anthropometric differences, as

defined in prior work [23]. First, the mean posture of each signer was computed over the 24

mocap examples (Eq 2). The mean posture was then subtracted from the posture vectors for

each signer (Eq 3), in order to capture the variance caused by postural movements (i.e., devia-

tions from the mean) rather than by differences in the mean postures:

psigner
��!

¼ ½x1 ; y1 ; z1 ; . . . ; x21 ; y21 ; z21 � ð2Þ

where x ¼ meantðxðtÞÞ.

pcentðtÞ
����!

¼ pðtÞ
��!
� psigner
��!

ð3Þ

where pcentðtÞ
����!

is the centered posture vector.

Furthermore, the centered posture vectors were normalized to their mean Euclidean norm,

in order to ensure an equal contribution by each signer to the variance of the combined matrix.

The Euclidean norm was defined as follows:

dsignerðtÞ ¼ kpcent
��!
k2ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xcent;1ðtÞ
2
þ . . .þ zcent;21ðtÞ

2
q

ð4Þ

Then, centered posture vectors were divided by the mean of the Euclidean norm. The nor-

malized vectors thus had the following form:

pnormðtÞ
����!

¼
1

dsigner

pcentðtÞ
����!

¼
1

dsigner

ðpðtÞ
��!
� psigner
��!

Þ ð5Þ

In order to investigate common PMs across individuals, the normalized 30, 000 × 57-posture

matrices of the six signers were concatenated into a 180, 000 × 57-matrix.

Extraction of principal movements

PMs were extracted by applying PCA to the normalized posture matrix. PCA was performed

using singular value decomposition and produced principal components (PCs) (or eigenvec-

tors) and their respective eigenvalues. The normalized eigenvalues indicated the percentage of

variance explained by the related PCs. Each posture pðtÞ
��!

could then be reconstructed using a

linear combination of the PCs. The PMs were then characterized by projecting separately each
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specific PC back onto the original 3D space (Eq 6). PMs were resynthesized using stick figures.

This allowed visualizing the PMs and comparing the motion patterns they described.

PMiðtÞ
����!

¼ psigner
��!

þ dsignerwiðtÞPCi
�!

ð6Þ

where PMiðtÞ
����!

is the vector that describes the movements of the ith PM. wi(t) is the projection

of the normalized posture vector pnormðtÞ
����!

onto the ith PC-vector, PCi
�!

.

In order to ensure that the extracted PMs reflect actual, volitional, movements rather than

noise, their frequency content was estimated. For that aim, the Power Spectral Density (PSD)

of the wi(t) was computed using the Welch method [45]. This analysis revealed that the highest

power resided in frequencies below 3 Hz, but visible power was still found in the frequency

range between 3 to 6 Hz (see S1 Fig). Therefore, the wi(t) were low-pass filtered using a 4th-

order Butterworth Filter with a cut-off frequency of 6 Hz. The effect of noise was thus deemed

to have been sufficiently reduced.

Statistical analyses

This study aimed to assess the extent to which upper-body motion in spontaneous SL could be

described within low-dimensional subspaces shared by different signers. Therefore, a leave-

one-out cross-validation was conducted to evaluate the vulnerability of the PMs to signer

changes in the input (i.e., a signer was added or left out before applying the PCA). On average,

the first eight PMs were found to be robust to signer changes (i.e., the PC-vector did not

change its orientation in posture space by more than 15˚ when a signer was left out) [26] and

explained around 94.6% of the total variance. They were therefore included in the further anal-

yses. Yet, note that PM5 and PM6 were slightly less robust when Signer 5 was left out (i.e., for

this specific signer change, the 5th and 6th PC-vectors changed their orientations by 21.9˚ and

20.6˚, respectively), which motivated further statistical analyses assessing the extent to which

the PMs could be common across different signers.

To address this problem, we further extracted individual PMs (i.e., from the 30,

000 × 57-matrices of each signer separately) and assessed their similarity to the common PMs

(i.e., extracted from the 180, 000 × 57-matrix combining the six signers). This analysis notably

aimed to investigate whether the PMs could be similar across signers although ranked in a dif-

ferent order by the PCA, notably due to differences in the discourse, which was not con-

strained and thus could activate PMs differently across signers. The similarities between the

common and individual PMs were assessed using cosine similarity [46, 47]. This analysis was

conducted on the normalized PMs, in order to compare postural movements beyond anthro-

pometric differences. The 30, 000 × 57-posture matrix of each normalized PM was reshaped

into a vector of length 1, 710, 000. Then, the cosine similarity (sim) between two PMs was com-

puted as follows:

simðPMi
��!

; PMj
��!
Þ ¼

PN
k¼1

PMi;kPMj;k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

k¼1
PM2

i;k

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼1

PM2
j;k

q ð7Þ

where PMi
��!

and PMj
��!

are the 1, 710, 000-vectors of the two PMs to be compared and N is the

length of both vectors (N = 1, 710, 000).

Finally, beyond comparing individual and common PMs one-by-one as in the analysis

above, we further aimed to compare the PM subspaces specific to each signer. Therefore, we

evaluated the extent to which the individual PM subspace of one signer could account for the

variance in the movements of the other signers, by computing the cross-projection similarity
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[31, 48]. For that aim, the movements of one signer were projected onto their first N PC-vec-

tors and the cumulative amount of variance of these projections was computed (V1). Then, the

movements of this first signer were projected onto the first N PC-vectors of a second signer

and, similarly, the cumulative amount of variance was computed (V2). Finally, we calculated

the ratio V2/V1, which quantified the extent to which the second subspace was similar to the

first. The closer this ratio is to 1, the higher the similarity is. As this measure is not symmetric

(i.e., its value would not necessarily be equivalent if we projected the movements of the second

signer onto the N PC-vectors of the first one), the cross-projection similarity between the sub-

spaces of two signers was then obtained as the mean of the ratios computed in both directions.

Results

Structure of common principal movements

Common PMs were computed from the mocap dataset containing the 24 examples of the six

signers. As shown in Fig 2, most of the overall variance was explained by the first eight com-

mon PMs. Combined, the first eight common PMs explained 94.6% of the cumulative

variance.

The first eight common PMs (Videos 1 to 8 in S1 Dataset) are shown in Fig 3 and are

described in details in Table 1. In summary, the first eight PMs were mainly defined as motion

patterns visible in the frontal and sagittal planes. PM1 to PM4 quantified movements of the

two hands along the vertical, anteroposterior and mediolateral axes, as well as upper-body

rotation around the vertical axis. PM5 and PM6 quantified specific joint movements, such as

arm internal rotation or elbow flexion. Higher-order PMs (PM7 and PM8) extracted finer

movements, such as flexion of the wrists or shoulder abduction. Moreover, PM8 reported

covarying movements between the head, the torso and the arms of the signers. For instance, a

low negative weighting of PM8 was related to high flexion of the head, anteroposterior inclina-

tion of the torso, and high abduction of both shoulders.

Similarities in principal movements across signers

Individual PMs (i.e., specific to each signer) were computed from the mocap data of individual

signers. As shown in Fig 4, most of the overall variance was explained by the first eight individ-

ual PMs. Combined, the first eight individual PMs explained 95.7% (SD = 0.6%) of the cumu-

lative variance. By comparison, the first eight common PMs explained 94.6%, and the first

seven individual PMs explained 94.3% (SD = 0.9%). Therefore, although the common dataset

contained a wide variety of unsynchronized movements performed by six different signers, the

common PMs explained a similar amount of the movements variance, compared with PMs

computed separately for each signer.

Visual animations of the first eight individual PMs seemed highly similar to the common

PMs for most signers, although they may sometimes be ranked in a different order. This obser-

vation was further confirmed by the cosine similarity measures, as show in Fig 5. For instance

for Signer 4 (Videos 9 to 16 in S1 Dataset), all the first seven PMs reported high levels of simi-

larity (sim> 0.7 [47]) and PM8 reported a level of similarity near the latter threshold

(sim = 0.69). All the PMs of this signer were similar to common PMs of the same order (i.e.,

individual ith PM is similar to common ith PM), except for PM3 and PM4, which were ranked

in reverse order. Of the total number of 48 individual PMs across signers, 25 PMs reported a

similarity level above 0.7, and 36 reported a similarity level above 0.5. The amount of similarity

could vary depending on the signer. For instance, although some signers also presented conse-

quent levels of similarity (e.g., Signer 3, where sim> 0.7 for five PMs, and sim> 0.5 for the
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three others), others reported lower similarity between their PMs and the common ones (e.g.,

Signer 6, where sim> 0.7 for only three PMs, and sim< 0.5 for four PMs).

However, most of the PMs that reported low levels of similarity when compared one-by-

one displayed non-negligible similarities to multiple common PMs (e.g., PM2 to PM5 of

Signer 6 or PM5 and PM6 of Signer 1). In other words, these PMs may be combinations of

common PMs. This outcome suggests that, although some PMs were not perfectly similar

when compared individually with common ones, the PM subspace of the signer may still

account for the movements of all signers and thus reflect similar low-dimensional dimensions

used to control upper-body SL motion. A demonstration of these potential combinations

Fig 2. Variance explained by the first 15 common PMs.

https://doi.org/10.1371/journal.pone.0259464.g002
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appears notably in PM1 of Signer 1 (Video 17 in S1 Dataset), which can be characterized as

vertical movement of the hands (sim = 0.71 with common PM1), jointly with anteroposterior

movement of the hands (sim = 0.45 with common PM3).

In summary, most of the individual PMs were similar to the common ones, although they

were sometimes ranked in a different order or were combinations of several common PMs. A

few PMs could eventually be interpreted as signer-specific, when the cosine similarity was sig-

nificantly low and not reflecting a combination of common PMs (e.g., PM7 of Signer 5, or

Fig 3. The first eight common PMs. Stick figures represent the PM at the time instants corresponding to the minimum (gray) and the maximum

(black) PM weighting, across signers and examples. PMs are displayed in their main plane of motion (e.g., frontal or sagittal).

https://doi.org/10.1371/journal.pone.0259464.g003

Table 1. Characterization of the first eight common PMs. EV is the Explained Variance in original movements.

PM EV (%) Description

1 28.5 Vertical parallel movement of the hands.

2 17.4 Mediolateral opposite movement of the hands.

3 15.1 Anteroposterior parallel movement of the hands.

4 12.7 Upper-body rotation around the vertical axis, jointly with parallel shift of the two hands along the

mediolateral axis.

5 8.7 Opposite internal rotations of the arms.

6 7.4 Opposite vertical movement of the two hands achieved by elbow flexion.

7 2.9 Upper-body rotation around the vertical axis, jointly with wrists flexion.

8 1.8 Abduction of both shoulders while elbows are flexed, jointly with slight anteroposterior sway of the

upper body.

https://doi.org/10.1371/journal.pone.0259464.t001
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PM6 of Signer 6). Still, the reported one-by-one similarities called for further analysis investi-

gating the extent to which the PM subspaces, rather than the PMs individually, were similar

across signers. This was achieved using cross-projection similarity (i.e., for each signer, we

computed the amount of variance in the movements that could be accounted for by the first N

PMs of another signer). This measure revealed that the PM subspaces specific to each signer

were highly similar: on average, the first eight PMs of each signer explained 96.9% of the vari-

ance in the movements of the other signers (see Fig 6).

Fig 4. Variance explained by the first 15 individual PMs. Mean was computed across the six signers, error bars indicate standard errors across

signers.

https://doi.org/10.1371/journal.pone.0259464.g004
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Fig 5. Cosine similarity between individual and common PMs. The similarity measures are specified when sim> 0.2, for

sake of visibility.

https://doi.org/10.1371/journal.pone.0259464.g005
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Discussion

In the present paper, we used PCA to decompose the upper-body movements of spontaneous

LSF into a reduced set of simpler, elementary, movements. The original motion data were

transformed into a new space spanned by principal components, called principal movements

(PMs). The first eight common PMs (i.e., computed on the whole dataset containing all sign-

ers) accounted for 94.6% of the variance in the movements, which suggests that the control of

spontaneous SL motion can be limited to a low number of dimensions—far fewer than the

multiple dozens of DOFs of the upper body—, as previously demonstrated for full-body move-

ments, such as gait [10], diving [20], skiing [18] or juggling [21]. This outcome is also in line

with prior work on the control of hand gestures, such as grasping [31, 48], piano playing [29,

49] and in particular the production of SL letters [30–33]. However, our analysis differs from

these prior SL-related studies in one crucial respect. The LSF productions used in the present

study are termed spontaneous as signers freely described pictures without any constraints in

time, signs or structure. Signers could thus express themselves freely, which elicited a wider

variety of SL linguistic forms (e.g., lexical signs, but also depicting signs that describe size and

shapes of entities), by contrast with the highly constrained movements (i.e., ASL letters)

assessed in previous studies on hand gestures. Furthermore, the present SL movements were

recorded in context, within continuous discourses, which is known to give rise to further

motion features and coordination properties, by contrast with isolated productions like ASL

letters [34–36]. The PMs extracted from our motion dataset are thus more likely to reflect

potential synergies used by signers in real-life conditions, which is crucial notably to conceive

efficient real-life communication tools.

Fig 6. Mean cross-projection similarity between PM subspaces across signers. Mean was computed across the six signers, error bars indicate

standard errors.

https://doi.org/10.1371/journal.pone.0259464.g006
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Although it is now well known that PCA is efficient in decomposing human motion into

low-dimensional subspaces, the fact that it is confirmed for unconstrained continuous SL is

still an intriguing result, considering the variety of analyzed movements in the discourses (e.g.,

gestures were neither necessarily consistent in structure nor synchronized in time across sign-

ers and examples). By contrast, all studies investigating the synergies of SL in hand gestures

[30–33] were limited to a specific, well-defined, set of linguistic forms: letters of the alphabet.

As precisely outlined by one of the latter studies [30], the common synergies extracted across

signers producing ASL letters may be expected because of the hand postures that were targeted

to conform to the same forms defined by the alphabet. Although the hand has by definition a

high number of biomechanical DOFs, the production of ASL letters imposes a strong linguistic

constraint on the motion, which therefore reduces the number of potentiel hand configura-

tions (i.e., could be referred to as linguistic DOFs, as compared to biomechanical ones). Note

that in this respect, our results also differ from other evidence of synergistic control strategies

in full-body motion made on movements that shared similar temporal structures (e.g., gaits

[10], karate’s kata [19], dives [20] or juggling patterns [21]). Using spontaneous discourses,

the present study further demonstrated that, despite a high number of biomechanical DOFs

and potential linguistic gestures, upper-body movements of SL can be limited to low

dimensions.

The second outcome of this study is that the low-dimensional PM subspaces were consis-

tent across signers. First, the number of PMs needed to account for most of the variance in the

movements was nearly the same for individual PMs as for common ones. Although the num-

ber of PMs retained is a simple metric, it was not trivial that it would be the same across the

common and individual datasets. For instance in prior work on full-body synergies, the PMs

common to all participants did not necessarily represent the original movements as well as the

PMs computed for each participant [18]. For a comparison with prior SL-related work on

hand gestures, a similar synergistic structure common across signers has been reported but it

was more likely to occur, given that all signers were constrained by the common forms of an

alphabet [30], by contrast with the free discourses used here. Given prior outcomes outlined

on postural mechanisms related to gesture expertise [21, 29], we may also note that the similar

number of PMs retained across the six signers of the present study could reflect that they had a

similar level of expertise in SL gestures, all being fluent signers. Furthermore, although PMs of

lower variance (i.e., PMs > 8) can be deemed to be directions of noise [19, 20], intriguing

results including recent work on ASL hand gestures [31, 50] have shown that high-order PMs

can be highly structured, which calls for further research investigating whether the high-order

PMs (e.g., accounting for less than 1%-variance) of upper-body motion in spontaneous SL

could be under volitional control rather than being related to noise.

Beyond the similar number of synergies, PM subspaces of the present study quantified con-

sistent motion patterns across signers. Indeed, we showed that a high number of individual

PMs (i.e. computed separately from the mocap data of each signer) were similar to common

ones, although they were sometimes ranked in a different order or expressed as combinations

of the common PMs. Furthermore, a cross-projection similarity analysis revealed that the first

eight individual PMs specific to each signer accounted for most of the variance in the move-

ments of all other signers. The extent to which full-body synergies are utilized across various

locomotion tasks has been assessed in a few studies [46], which showed that similar PMs were

recruited across tasks but that they could be prioritized differently depending on the task. As

regards SL hand gestures, different signers were also reported to yield similar PM subspaces

when producing ASL letters [31]. To the authors’ knowledge, the present study is the first to

demonstrate the similarity between synergies used across signers and across an unconstrained

range of linguistic gestures.
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The motion patterns described by common PMs were mostly visible in the frontal and sagit-

tal planes, in line with the vast majority of prior studies on full-body synergies [10, 14, 15, 18, 19,

23, 24, 51], except for some PMs of juggling reported in the transverse plane [21]. In the present

study, common PM4 (i.e., trunk rotation) can be described in the transverse plane but it was

clearly visible from a frontal view. PM3 was best visible from a sagittal view. Still, the patterns

quantified by most PMs were occurring in the frontal plane. These findings interestingly com-

plement prior SL-related work on the synergies of hand gestures [30–33]. Indeed, the mocap

data used in the present study include upper-body trajectories by contrast with its predecessors,

which have investigated the kinematics of the dominant hand only. Inversely, these prior studies

have applied PCA to precise recordings of finger gestures, while our mocap data were recorded

on various upper limbs but only included global motion data of the wrists and hands. Both

approaches provide fundamental insights into the complex structure of SL motion. Taken

together, these findings could be of particular interest for improving automatic SL processing

models, which requires relevant representations of both upper-body movements and finger ges-

tures, in particular for automatic recognition [39, 52] and generation [53–56]. Further work

examinating larger mocap datasets and across a higher number of signers could be of interest in

order to refine the definition of common PMs, which here were common to six signers only.

The successful application of PCA to the complex movements of spontaneous SL provides

potential contributions to SL research for both fundamental and application purposes. First,

PCA allows resynthesizing PMs in the original 3D space, which enables researchers to visualize

these directions of high movement variability. For these reasons, PM decomposition has been

widely used to better understand the coordinative structure of complex movements and could

shed light on the motor control of SL movements, as previously investigated through common

laws of motion [43, 57]. Furthermore, it allows for dimensionality reduction. This has a signifi-

cant potential impact on machine learning procedures used in automatic SL tasks, in the same

way as some past studies aimed to drastically lower the frame rate [58] or the number of mark-

ers [59] to reduce the bandwidth in SL telecommunication. Following the present results, the

dimensionality of dense mocap datasets could be considerably reduced using only a subset of

PMs while keeping most of the information. For instance, it could significantly reduce the

dimensionality of the input of deep learning models used for the automatic recognition of SL

and, more importantly, exploit knowledge from the structure of SL motion to improve their

performance. Furthermore, both the potential to resynthesize movements from the PMs and

the potential to reduce dimensionality make PM decomposition very promising for the

improvement of other SL automatic tools: generation models. By shedding light on SL syner-

gies, PCA could allow improving the existing synthesis models [53, 54]. It could also ease the

incorporation of high-dimensional mocap recordings, which are known to be efficient in solv-

ing the problem of naturality and comprehensibility of virtual signers [56, 60, 61]. These

potential applications to SL generation call for further work evaluating the observers compre-

hension of SL messages when resynthesized from a reduced set of PMs.

Supporting information

S1 Fig. Frequency content of the first eight common PMs. Power Spectral Density was esti-

mated using the Welch method.

(TIF)

S1 Dataset. Principal movements. Video examples of PMs shown as Point-Light Displays in

frontal and sagittal planes (Total 17 files included). It includes examples of both common and

individual PMs.

(ZIP)
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