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Abstract: Background: Diabetic vasculopathy plays an important role in the pathophysiology of
coronary artery disease (CAD) with oxidative stress as a strong mediator. This study aims to elucidate
the underlying pathomechanisms of diabetic cardiac vasculopathy leading to coronary disease with
an emphasis on the role of oxidative stress. Therefore, novel insights into antioxidant pathways might
contribute to new strategies in the treatment and prevention of diabetic CAD. Methods: In 20 patients
with insulin-dependent or non-insulin dependent diabetes mellitus (IDDM/NIDDM) and 39 non-
diabetic (CTR) patients, myocardial markers of oxidative stress, vasoactive proteins, endothelial nitric
oxide synthase (eNOS), activated phosphorylated eNOS (p-eNOS), and antioxidant enzymes, e.g.,
tetrahydrobiopterin generating dihydrofolate reductase (DHFR), heme oxygenase (HO-1), as well as
serum markers of inflammation, e.g., E-selectin, interleukin-6 (IL-6), and lipid metabolism, e.g., high-
and low-density lipoptrotein (HDL- and LDL-cholesterol) were determined in specimens of right
atrial tissue and in blood samples from type 2 diabetic and non-diabetic patients undergoing coronary
artery bypass graft (CABG) surgery. Results: IDDM/NIDDM increased markers of inflammation
(e.g., E-selectin, p = 0.005 and IL-6, p = 0.051), decreased the phosphorylated myocardial p-eNOS
(p = 0.032), upregulated the myocardial stress response protein HO-1 (p = 0.018), and enhanced
the serum LDL-/HDL-cholesterol ratio (p = 0.019). However, the oxidative stress markers in the
myocardium and the expression of vasoactive proteins (eNOS, DHFR) showed only marginal adverse
changes in patients with IDDM/NIDDM. Conclusion: Dyslipidemia and myocardial inflammation
seem to be the major determinants of diabetic CAD complications. Dysregulation in pro-oxidative
enzymes might be attributable to the severity of CAD and oxidative stress levels in all included
patients undergoing CABG.

Keywords: chronic disease; nutrition; diabetes mellitus; coronary artery disease; dyslipidemia;
inflammation; oxidative stress

1. Introduction

Diabetic cardiomyopathy is characterized by microstructural changes: myocardial
oxidative stress leads to molecular and cellular inflammation, myofibroblast induction,
as well as cardiomyocyte loss with subsequent replacement fibrosis [1–3]. Those changes
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are usually associated with diastolic dysfunction followed by symptomatic progressive
systolic dysfunction and cardiac insufficiency [2].

Recently, animal studies have shed new light on this process, suggesting a role for an
exaggerated oxidative cardiac damage and inflammation induced by diabetes mellitus in
the progress of diabetic cardiomyopathy [2,4–7]. In addition, an increased inflammatory
response was observed in diabetic patients [8,9] that was associated with vascular oxidative
stress [10] and endothelial dysfunction [11,12]. In the long-term, this may play a major
role in the formation of atherosclerotic lesions [13] and enhance the risk for cardiovascular
disorders [14,15]. In addition, most cytokines are associated with higher cardiovascular
risk and represent independent cardiovascular risk factors [16,17], which is a concept that
was more recently explored for pharmacological targeting, e.g., within the “CANTOS trial”
using “Canakinumab”, a monocloncal antibody against interleukin-1β in patients with
previous myocardial infarction and high C-reactive protein (CRP) levels [18] and many
other published or ongoing studies (reviewed in [19]). Of note, “Canakinumab” therapy
also improved the cardiovascular prognosis of diabetic patients [20].

Measuring the level of oxidative stress in myocardium is a demanding process and
requires the identification of suitable and reliable markers. Reduction in the cellular gen-
eration of tetrahydrobiopterin (BH4), a cofactor of the endothelial nitric oxide synthase
(eNOS), is well known to be associated with oxidative stress, impaired endothelial func-
tion, and higher cardiovascular risk [21,22]. Furthermore, the heme oxygenase 1 (HO-1)
is an important cardiac antioxidant protein, which is responsible for the production of
biliverdin, bilirubin, and carbon monoxide [23–25]. These species have anti-atherosclerotic,
anti-aggregatory, and vasodilatory properties, also acting as a potent antioxidant by the
long-term induction of ferritin, which is responsible for iron storage and contributes to the
prevention of Fenton-type oxidative damage. Its inducible isoform HO-1 is considered to
be an important part of the cardiac antioxidant system, playing a role in stress response
pathways [26,27]. Hyperlipidemia is a common phenomenon associated with type 2 dia-
betes mellitus caused by the insulin-dependency of lipoprotein lipase. Increased levels of
low-density lipoprotein (LDL) lead to cholesterol deposition in arteries, while high levels
of high-density lipoprotein (HDL) prevent cholesterol deposition [28,29].

Thus, the current study aims to validate the findings of animal studies that suggest
that diabetes mellitus is associated with dyslipidemia, increased inflammation, and ox-
idative cardiac damage, e.g., diabetic cardiomyopathy, being strongly associated with the
development of CAD [3,30]. The translational approach from animal studies to human
myocardium represents a major requirement to understand the mechanisms of human
disease, as our human atrial tissue samples are barely accessible and rare: In this work,
we used human samples obtained from the right atrium from diabetic (IDDM/NIDDM)
and non-diabetic (CTR) patients undergoing CABG due to CAD. We used cardiac markers
to quantify the oxidative stress and antioxidant/vascular-regulatory proteins as well as
serum markers of inflammation in the above-described patients with associated CAD.

2. Materials and Methods
2.1. Ethical Aspect

This study was conducted with permission of the ethical board of Rhineland-Palatinate,
Germany (Register Nr. 837.104.08 (6100)) and after obtaining written consents of all partici-
pants. The work has been carried out in accordance with The Code of Ethics of the World
Medical Association (Declaration of Helsinki). Samples of this study were already used for
association studies of body mass index (BMI) with markers of oxidative stress and vascular
function [31].

2.2. Patient Selection and Tissue Harvesting

The following inclusion criteria were defined: elective isolated CABG patients, sinus
rhythmus; age under 85 years; absence of relevant valvular disease; absence of pulmonary
hypertension; sufficient renal function; no known neoplasms or chronic systematic inflam-
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matory diseases; and absence of severe comorbidity. The patients’ baseline characteristics
are summarized in Table 1. For more details, see the published protocol where patients were
grouped by different degree of adiposity and obesity (by BMI) and markers of oxidative
stress as well as vascular function were associated with the BMI [31].

Table 1. Patients’ baseline characteristics. Summary of preoperative patients’ characteristics. Values
are expressed as mean ± SD or as percentage (in brackets). Significant changes are displayed in italics.
Abbreviations: ACE, angiotensin-converting enzyme; AT1, angiotensin-1; BMI, body mass index.
Chi2 test was performed for categorial variables, and an unpaired, two-tailed t-test was applied for
comparison of metric variables. Significant changes are displayed in italics.

CTR IDDM/NIDDM p-Value

Age (years) 65.15 ± 9.08 66.90 ± 9.83 0.5782

Female (%) 61.54% 61.11% 0.9754

Height (cm) 1.694 ± 0.081 1.681 ± 0.104 0.5856

Body weight (kg) 80.62 ± 13.5 79.56 ± 12.6 0.7794

BMI (ratio) 27.99 ± 3.62 28.43 ± 5.60 0.7234

Waist circumference (cm) 102.4 ± 8.69 102.6 ± 9.53 0.9257

Hip circumference (cm) 100.5 ± 6.49 104.9 ± 8.59 0.1357

Waist/Hip ratio 1.018 ± 0.077 0.986 ± 0.096 0.3452

Oral anti-diabetics (%) 0.00% 88.89% <0.0001

Insulin dependence (%) 0.00% 16.67% 0.0088

ACE inhibitors (%) 35.90% 50.00% 0.3131

AT1 antagonists (%) 12.82% 22.22% 0.3656

Beta-blocker (%) 58.97% 55.56% 0.8080

Calcium-channel
blocker/%) 20.51% 16.67% 0.7323

Spironolactone (%) 2.56% 0.00% 0.4931

Statins (%) 64.10% 50.00% 0.3131

2.3. Blood Samples and Tissue Harvesting

Blood serum samples and myocardial tissues were obtained from 59 CABG patients
as described [31]. Twenty patients had diabetes mellitus with oral medication or insulin-
dependent type 2 diabetes mellitus (IDDM/NIDDM). The other 39 patients with regular
blood glucose levels formed the control group (CTR). After thoracotomy, a full heparin
dose was applied (400 IE/kg body weight) before cannulation of the aorta ascendens prior
to the right atrium for cardiopulmonary bypass. Approximately 1 cm3 of the right atrial
appendages were collected. Right atrial tissue is usually removed and discarded during
cannulation of the right atrium in order to install cardiopulmonary bypass, as previously
described [32]. Then, these tissue samples were immediately stored in ice-cold NaCl 0.9%
solution and subjected to analysis.

2.4. Isolation of Cardiac Mitochondria and Mitochondrial Aldehyde Dehydrogenase 2 Activity

A detailed description of the mitochondria isolation method was previously pub-
lished [31]. Briefly, the human cardiac tissues were homogenized in HEPES buffer and then
centrifuged (1500× g for 10 min, followed by 2000× g for 5 min). Then, the supernatant
was re-centrifuged (20,000× g for 20 min), and the resulting precipitate was resuspended
in 1 mL Tris buffer. The amount of protein was quantified by the Lowry method. The
activity of aldehyde dehydrogenase 2 (ALDH-2) in isolated heart mitochondria (final
protein content 1 mg/mL) was determined by measuring the conversion of 6-methoxy-2-
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naphthylaldehyde (Monal 62) to the fluorescent naphthoic acid product by an HPLC-based
assay as described [6,33].

2.5. Western Blot Analysis

Protein expression and modification was assessed by standard SDS-PAGE, Western
blot analysis using established protocols [31,34]. Cardiac protein samples were analyzed
by Western blot analysis for endothelial NO-synthase (eNOS, mouse monoclonal, 1:1000,
BD Biosciences, Heidelberg, Germany), phospho-Ser1177-eNOS (rabbit polyclonal, 1:1000,
Cell Signaling, Danvers, MA, USA), dihydrofolate reductase (DHFR, mouse monoclonal,
1 µg/mL, Abnova Corp., Heidelberg, Germany), monoclonal mouse heme oxygenase-1
(HO-1) (4 µg/mL, Stressgen, San Diego, CA, USA), and polyclonal rabbit β-actin (both
1:2500, Sigma-Aldrich, St. Louis, MO, USA) for normalization of loading and transfer.
Detection and quantification were performed by enhanced chemiluminescence (ECL) with
peroxidase conjugated anti-mouse/rabbit (GAM-POX/GAR-POX, 1:10,000, Vector Lab.,
Burlingame, CA, USA) secondary antibodies. Densitometric quantification of antibody-
specific bands was performed with a ChemiLux Imager (CsX-1400M, Intas, Göttingen,
Germany) and Gel-Pro Analyzer software (Media Cybernetics, Bethesda, MD, USA).

2.6. ELISA

Quantikine ELISA Immunoassays were performed according to the manufacturers’
instructions and as published [31,35]. The assays were obtained from R&D Systems using
human serum samples: human interleukin-6 (IL-6) (Catalog Number D6050), human solu-
ble vascular cell adhesion molecule-1 (sVCAM-1)/CD106 (CatalogNumber DVC00), human
sE-Selectin/CD62E (DSLE00), and human CD40L/TNFSF5 (CatalogNumber DCDL40).

2.7. CRP, Blood Lipids, and Lipoproteins

Human C-reactive protein (CRP) was analyzed in the Department of Clinical Chem-
istry, University Hospital Mainz, Germany, using the daily routine facilities for in-patient
care. Serum cholesterol, triglyceride, HDL, and LDL levels were analyzed in the Depart-
ment of Clinical Chemistry, University Hospital Mainz, Germany, using the daily routine
facilities for in-patient care. In addition, lipoproteins were also quantified by Field-Flow
Fractionation (FFF), as described [6]. Lipoproteins in serum were also determined by
HF5 (Superon GmbH, Dernbach, Germany). Briefly, Field-Flow Fractionation (FFF) is a
well-known family of separation methods that vary in the physical nature of the force field
applied to generate separation [36]. Asymmetric Flow Field-Flow Fractionation (AF4) is
the most popular type of FFF. It employs a flat or cylindrical separation channel equipped
with an ultrafiltration membrane and covers a wide separation range (1 nm to 1 µm). In
HF5, the solvent is pumped through a porous fiber allowing a part of the flow to penetrate
the wall, thus creating a cross flow that is perpendicular to the main solvent flow, which
has a parabolic profile and is directed to the fiber outlet. The combination of the two
forces applied eventually results in the separation of the sample compound according
to their respective diffusion coefficient (i.e., their hydrodynamic radius or molar mass,
respectively). Similar to AF4, HF5 has a wide range of applications. It allows the separation
of molecules in solution and particles in the same separation run. The separation takes
place without the use of a stationary phase as in column chromatography. Consequently,
there is less danger of sample adsorption or physical plugging of the separation channel.
Another advantage of this technique is the low sample dilution due to the small channel
volumes (<100 µL) and low detector flow rates. The literature shows promising results for
protein, nanoparticle, and even whole cell fractionation.

2.8. HPLC Assay for Dihydroethidium Oxidation Products

Superoxide was measured by a modified HPLC-based method to quantify ethidium
and 2-hydroxyethidium levels, as previously described [37]. Briefly, myocardial mitochon-
dria (0.2 mg/mL) were incubated with 50 µM dihydroethidium (DHE) for 30 min at 37 ◦C
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in PBS buffer and stored at −80 ◦C. Upon thawing, DHE oxidation products were extracted
by the addition of 50% acetonitrile and 50% PBS, incubated (10 min), centrifuged (20 min
at 20,000× g), and filtered (30 kDa Millipore Filter, 45 min at 16,000× g). A 50 µL sample
of this supernatant was subjected to HPLC analysis and measured, based on a previously
described method [38,39].

2.9. Statistical Analysis

Data are presented as mean ± SD. After evaluating the normal distribution of the data
(using the Kolmogorov–Smirnov test), we applied an unpaired and two-tailed t-test or,
where appropriate, a Mann–Whitney U-test for comparative analysis of reactive oxygen
species (ROS) detection, protein activity, and expression and serum parameters (Prism for
Windows version 8). p values < 0.05 were considered statistically significant.

3. Results
3.1. Myocardial Markers of Oxidative Stress

The primary markers of oxidative stress, direct measurement of mitochondrial super-
oxide formation and oxidative inactivation of ALDH-2, showed no significant changes of
mitochondrial superoxide formation (DHE HPLC, p = 0.205) and cardiac ALDH-2 activity
(Monal HPLC, p = 0.618) in the IDDM/NIDDM group (Figure 1).
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Figure 1. Markers of oxidative stress in myocardium. (A) Marginal higher concentration of mitochondrial superoxide
formation (DHE HPLC) in the diabetic (IDDM/NIDDM) group versus control (CTR). (B) No difference in ALDH-2 activity
after oxidative inactivation in the IDDM/NIDDM versus CTR group. 2-HE, 2-hydroxyethidium; ALDH-2, mitochondrial
aldehyde dehydrogenase. Data are the mean ± SD of n = 38 (CTR) and 20 (IDDM/NIDDM) (A) and n = 16 (CTR) and
11 (IDDM/NIDDM) (B) patients. Mann–Whitney test in (A) and unpaired t-test in (B). CTR, control; IDDM, insulin-
dependent diabetes mellitus type 2; NIDDM, non-insulin dependent diabetes mellitus type 2.

3.2. Myocardial Vasoactive Regulatory Proteins and Antioxidant Enzymes

Cardiac eNOS protein showed a non-significant marginal increase in the diabetic
subjects (p = 0.183) (Figure 2A). On the other hand, the phosphorylation of eNOS at serine
1177 (p = 0.032), an activation mark, was significantly decreased in the IDDM/NIDDM
group (Figure 2B). Cardiac DHFR expression showed a non-significant marginal decrease
in the diabetic subjects (p = 0.334) (Figure 2C). The antioxidant stress-response protein
HO-1 was significantly upregulated in the IDDM/NIDDM group (p = 0.018) (Figure 2D).
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Figure 2. Expression of vasoactive regulatory protein and antioxidant enzyme/response in myocardium. (A) Absent upreg-
ulation of dysfunctional enzyme (eNOS protein) in the diabetic (IDDM/NIDDM) versus the control (CTR) group. (B) Signif-
icant decrease in activated eNOS (Ser1177 phosphorylation) in the IDDM/NIDDM versus CTR group. (C) Slightly lower
DHFR expression in the IDDM/NIDDM versus CTR group. (D) Significant upregulation of the antioxidant stress-response
enzyme HO-1 in the IDDM/NIDDM versus CTR group. Data are mean ± SD of n = 37–39 (CTR) and 17 (IDDM/NIDDM)
(A,B) and n = 38 (CTR) and 16 (IDDM/NIDDM) (C) and n = 37 (CTR) and 16 (IDDM/NIDDM) (D) patients. Unpaired
t-test in (A–C) and Mann–Whitney test in (D). CTR, control; IDDM, insulin-dependent diabetes mellitus type 2; NIDDM,
non-insulin dependent diabetes mellitus type 2.

3.3. Serum Markers of Inflammation

While some inflammatory mediators were unchanged (sVCAM-1, p = 0.148 and
sCD40L, p = 0.467 and CRP, p = 0.661), other serum markers of inflammation were increased
in IDM/NIDDM (E-selectin, p = 0.005 and IL-6, p = 0.051) (Figure 3), pointing to a rather
inflammatory and thrombotic phenotype in response to hyperglycemic conditions.



Int. J. Environ. Res. Public Health 2021, 18, 10892 7 of 13
Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 7 of 13 
 

 

 

Figure 3. Serum markers of inflammation. (A) Significant raise of E-selectin in the diabetic (IDDM/NIDDM) versus the 

control (CTR) group. (B) Enhanced concentration of VCAM-1 in the IDDM/NIDDM versus CTR group (n.s). (C) Increased 

concentration of interleukin-6 (IL-6) in the IDM/NIDDM versus CTR group (n.s.). (D) Increase in concentration of CD40L 

and (E) C-reactive protein (CRP) in the DM versus CTR group (n.s.). Data are mean ± SD of n = 15 (CTR) and 11 

(IDDM/NIDDM) patients (A–D) or n = 11–12 (E). Mann–Whitney test in (A,D,E) and unpaired t test in (B,C). CTR, con-

trol; IDDM, insulin-dependent diabetes mellitus type 2; NIDDM, non-insulin-dependent diabetes mellitus type 2. 

3.4. Serum Markers of Lipid Metabolism 

Diabetic subjects showed no obvious increase in triglycerides (p = 0.445), total cho-

lesterol (p = 0.872) (Figure 4A), or LDL-cholesterol (p = 0.609 in routine laboratory and p = 

0.465 in Field-Flow Fractionation), but there was a significant lowered HDL-cholesterol (p 

= 0.03; Field-Flow Fractionation) and an imbalance between LDL and HDL, which was 

characterized by a higher LDL/HDL ratio (p = 0.024 and p = 0.019, respectively) in the 

IDM/NIDDM group (Figure 4B,C). The latter was mainly due to decreased HDL levels in 

the diabetic subjects, which was confirmed by two independent quantification methods 

for serum LDL and HDL (Clinical Chemistry routine measurement and Field-Flow Frac-

tionation). 

A B 

C E D 

Figure 3. Serum markers of inflammation. (A) Significant raise of E-selectin in the diabetic (IDDM/NIDDM) versus the
control (CTR) group. (B) Enhanced concentration of VCAM-1 in the IDDM/NIDDM versus CTR group (n.s). (C) Increased
concentration of interleukin-6 (IL-6) in the IDM/NIDDM versus CTR group (n.s.). (D) Increase in concentration of
CD40L and (E) C-reactive protein (CRP) in the DM versus CTR group (n.s.). Data are mean ± SD of n = 15 (CTR) and
11 (IDDM/NIDDM) patients (A–D) or n = 11–12 (E). Mann–Whitney test in (A,D,E) and unpaired t test in (B,C). CTR,
control; IDDM, insulin-dependent diabetes mellitus type 2; NIDDM, non-insulin-dependent diabetes mellitus type 2.

3.4. Serum Markers of Lipid Metabolism

Diabetic subjects showed no obvious increase in triglycerides (p = 0.445), total choles-
terol (p = 0.872) (Figure 4A), or LDL-cholesterol (p = 0.609 in routine laboratory and p = 0.465
in Field-Flow Fractionation), but there was a significant lowered HDL-cholesterol (p = 0.03;
Field-Flow Fractionation) and an imbalance between LDL and HDL, which was character-
ized by a higher LDL/HDL ratio (p = 0.024 and p = 0.019, respectively) in the IDM/NIDDM
group (Figure 4B,C). The latter was mainly due to decreased HDL levels in the diabetic
subjects, which was confirmed by two independent quantification methods for serum LDL
and HDL (Clinical Chemistry routine measurement and Field-Flow Fractionation).
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Figure 4. Serum markers of lipometabolism. (A) No obvious increase in triglycerides or total cholesterol in the
IDDM/NIDDM versus CTR group. (B) (measurement by Clinical Chemistry Department) and (C) (measurement by
Field-Flow Fractionation). Significant lower concentration of HDL-cholesterol together with a slightly higher concentration
of LDL-cholesterol resulting in a significant raise of LDL/HDL ratio in the IDDM/NIDDM versus CTR group. Data are
mean ± SD of n = 12 (CTR) and 11 (IDDM/NIDDM) (A,B) and n = 12 (CTR) and 10 (IDDM/NIDDM) (C) patients. Unpaired
t-test in (A–C) [LDL and LDL/HDL ratio] and Mann–Whitney test in (C) [HDL]. CTR, control; IDDM, insulin-dependent
diabetes mellitus type 2; NIDDM, non-insulin-dependent diabetes mellitus type 2.

4. Discussion

The present study provides important insights into the contributing role of treated
type 2 diabetes mellitus to the development of coronary artery disease in humans. Diabetic
dyslipidemia is well known [40,41], and statin therapy should lower hyperlipidemia and
prevent from the risk of CAD [40]. Here, we could show that dysregulated lipid metabolism
and inflammation reactions are central pathomechanisms in diabetic vasculopathy. Our
results provide evidence that the LDL-/HDL-cholesterol ratio and the E-selectin level in
serum as a marker for vascular wall inflammation were raised in IDM/NIDDM patients
compared to CTR with CAD. A higher LDL-/HDL-cholesterol ratio is a prognostic marker
of higher atherosclerotic risk [42], and E-selectin is generally elevated in patients with
CAD [43] and according to our present results further aggravated in patients with diabetes
mellitus. As a general oxidative stress response in diabetes mellitus, the antioxidant HO-1
was upregulated, and there was less activated eNOS, resulting in endothelial dysfunction
in accordance to animal experimental data reported previously [6].

In addition, we could show an increase in HO-1 protein levels in atrial tissue of
diabetes mellitus. Gall et al. argued that hyperglycemia lowers HO-1 activity and in-
creases superoxide production in the vasculature [44]. Interestingly, Oelze et al. have
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reported an upregulation of HO-1 in diabetic rats without therapy, assuming a general
stress response, while rats under high-dose treatment with sodium-glucose cotransporter
2 inhibitor (SGLT2i) had a decline of HO-1 [6]. In this light, our data suggest either cur-
rent antidiabetic therapy in diabetes mellitus protecting against HO-1 protein decrease
or HO-1 providing a protective response, as plasma HO-1 levels are higher in patients
with carotid plaques compared to healthy subjects, which probably indicates a possible
protective response against carotid atherosclerosis, here against diabetic vasculopathy [44].
It remains unclear whether the HO-1 stress response is caused or affected by less activated
eNOS in diabetes mellitus. The here-reported minor trend of eNOS protein upregulation
in atrial tissue of diabetic patients is supported by similar observations in type 2 diabetic
db/db mice [45,46]. Uncoupled eNOS leads to a lack of NO with disturbed endothelial
function [47] and results in superoxide excess [48]. Probably HO-1 and eNOS protein up-
regulation compensates for the superoxide excess in IDDM/NIDDM, as we could not show
an increased superoxide formation compared to CTR. However, we did clearly show less
activated eNOS by decreased Ser1177 phosphorylation, as also shown in diabetic db/db
mice [45,49] and an upregulation of HO-1 as an oxidative stress response. The predictive
value of the regulatory enzymatic systems centered around eNOS was well documented
in the past. Previously, it was shown that substituting BH4 improved the endothelial
function in cell culture and animals [50] as well as patients with atherosclerosis [51]. Within
the organelle, BH4 is produced by GTP cyclohydrolase I (GCH-1) and recycled from its
oxidized form dihydrobiopterin (BH2) by DHFR [21,22]. Accordingly, BH4 levels or the
expression levels of its main enzymatic sources, GCH-1 and DHFR, may be suitable to
indirectly measure oxidative stress, although they are not changed significantly in the
present study. Here, we observed a slight downregulation of DHFR protein in diabetic
patients as also shown in diabetic db/db mice [52,53]. Altogether, our data support an
uncoupled state of eNOS enzyme with futile compensatory upregulation of eNOS and
DHFR proteins, which is compatible with the known impairment of endothelial function
in diabetic subjects.

Dyslipidemia and cardiovascular inflammation are most likely the major pathomecha-
nisms in diabetes mellitus with adverse impact on cardiovascular prognosis. Accordingly,
it is not surprising that statin therapy improved the clinical outcome of patients with
acute coronary syndromes, as this drug not only prevented dyslipidemia (decreased LDL
levels) but also reduced inflammation (lower CRP levels), as shown by the PROVE IT-TIMI
22 study [54]. Statins have potent anti-inflammatory and antioxidant pleiotropic effects
(e.g., via induction of NRF2/HO-1 pathway [55,56]), also in patients with diabetes [57–60].
Statins therapy also suppresses the activation of NADPH oxidase [61] and uncoupling of
eNOS as well as subsequent endothelial dysfunction in animal models [62], all of which
contribute to the beneficial antioxidant profile of statins [63]. In addition, statins mobilize
endothelial progenitor cells, which could contribute to efficient repair of the endothelium,
better recovery of coronary vessels from atherosclerotic insults, and thereby improved
prognosis of patients with coronary artery disease [64].

5. Limitations of the Study

In the present study, we are talking about well-treated diabetes mellitus. We suggest
the presence of a successful treatment without hyperglycemia in the IDDM/NIDDM group,
although the proof by HbA1c < 6.5% was missed. Nevertheless, we can proclaim that
patients with CAD and IDDM/NIDDM undergoing CABG should regularly present to
a cardiac specialist, and medication for cardiovascular risk factors should be effective.
The availability of left ventricular (LV) myocardium is rare and ethical considerations
prohibit its use, as LV biopsies can be associated with severe bleeding and scar formation
in the “working myocardium” and are thus considered harmful for patients. For this
reason, our choice of myocardial specimen from the right atrial appendages has been
reported before [32]. Due to the multiple measurements requiring large volumes, plasma
samples were pooled for the ELISA assays in Figure 3 and for the determination of lipid
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parameters in Figure 4, explaining the reduced number of independent measurements for
these parameters. The same applies for ALDH-2 activity measurement that also required
the pooling of some of the heart samples. Finally, for protein expression, one to four data
points are missing in each group due to insufficient blot quality (e.g., air bubbles caused
incomplete transfer of the protein bands from the gel to the membrane during the Western
blot procedure or a gel pocket was left empty before SDS-PAGE).

6. Conclusions

Inflammation and lipoprotein dysregulation remain the main triggers of diabetic coro-
nary occlusive disease despite antidiabetic pharmacotherapy. Adjuvant pharmacological
substances such as statins acting as anti-inflammatory agents and lipid blockers might
diminish the detrimental effect of diabetes mellitus on the coronary inflammation and
atherosclerosis. However, further studies are required to evaluate their true therapeutic
value.
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