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The H7N9 influenza virus causes a severe form of disease in humans. Neuraminidase inhibitors, including oral oseltamivir and
injectable peramivir, are the first choices of antiviral treatment for such cases; however, the clinical efficacy of these drugs is
questionable. Animal experimental models are essential for understanding the viral replication kinetics under the selective pres-
sure of antiviral agents. This study demonstrates the antiviral activity of peramivir in a mouse model of H7N9 avian influenza
virus infection. The data show that repeated administration of peramivir at 30 mg/kg of body weight successfully eradicated the
virus from the respiratory tract and extrapulmonary tissues during the acute response, prevented clinical signs of the disease,
including neuropathy, and eventually protected mice against lethal H7N9 influenza virus infection. Early treatment with
peramivir was found to be associated with better disease outcomes.

The H7N9 influenza virus is a novel avian-origin influenza virus
that emerged in February 2013 (1). Since then, the virus has

sustained its presence, as sporadic human cases are seen through-
out the year, with the largest numbers typically appearing in win-
ters, following the trend of seasonal flu viruses (2, 3). Unlike lowly
pathogenic influenza viruses, the H7N9 virus causes severe hu-
man illness, characterized by a pneumonia that rapidly develops
into acute respiratory distress syndrome (ARDS), multiple-organ
dysfunction (MOD), and shock (4). To date, 619 human cases
have been reported from 16 different territories or provinces in
mainland China (5, 6), while a few cases in patients with a recent
history of travel to China also appeared, in Hong Kong (6), Tai-
wan (7), Malaysia, and Canada (8). Among these cases, nearly
70% of patients required intensive care support and mechanical
ventilation, and approximately 34% died (9). Scientific evidence
about limited airborne transmission among ferrets (10) as well as
the appearance of family clusters could not rule out the possibility
of human-to-human transmission and raises serious global con-
cern (11).

Due to intrinsic adamantane resistance, H7N9 influenza virus
infections are treated primarily with neuraminidase inhibitors
(NAIs), particularly oseltamivir and, to some extent, intravenous
administration of peramivir or zanamivir (9). Clinical data have
demonstrated that the emergence of NA-R292K variants that en-
code NAI resistance in a few H7N9 cases during oseltamivir ther-
apy had effects on viral eradication and resulted in high respira-
tory viral loads (12). These mutants also developed NAI resistance
when tested in cells, but without an effect on replication and in-
fectivity (13). Despite the fact that most H7N9-infected strains are
sensitive to oseltamivir in cell culture, high mortality rates have
been documented for H7N9-infected patients receiving oseltami-
vir therapy (14–16). This demonstrates the critical need to evalu-
ate all available antiviral options.

Peramivir is an intravenous (i.v.) NAI prescribed by the Na-

tional Health and Family Planning Commission for the treatment
of severe H7N9 cases (17). It is a distant sialic acid analogue (a
cyclopentane derivative with a guanidino group and lipophilic
side chain) that shares structural features with both zanamivir and
oseltamivir and similarly targets influenza virus neuraminidase
activity. Limited clinical data are available for patient compliance
with this drug, and so far it has not been evaluated in experimental
animal models of H7N9 influenza virus infection. In vitro studies
showed that peramivir has antiviral activity comparable to that of
oseltamivir against H7N9 viruses (18, 19); however, the rapid bio-
availability of the drug through the intravenous route might have
an added advantage in treating patients with ARDS and MOD. In
H7N9 cases, the drug is typically administered as a follow-up to
oseltamivir, at which point the virus may have accumulated mu-
tations that confer resistance to both drugs. Peramivir has previ-
ously been used for severe pandemic H1N1- or H5N1-infected
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patients in Japan, the United States, and other parts of the world,
with recommended dosages of 300 to 600 mg i.v. daily for 5 days,
or until the end of viral shedding in respiratory specimens in the
case of immunocompromised patients (20–23).

Given the evidence of resistance to oseltamivir among circulat-
ing H7N9 viruses (24), we sought to evaluate the antiviral efficacy
of peramivir in vivo and to ascertain its suitability as a front-line
therapeutic for the treatment of H7N9. Here we report on the
antiviral activity of peramivir in H7N9-infected C57/BL6 mice.

MATERIALS AND METHODS
Isolation of H7N9 influenza virus. The influenza virus A/Shantou/1001/
2014 (H7N9) was isolated from a lung aspirate collected from a patient
with a fatal case of influenza, reported from The First Affiliated Hospital of
Shantou University Medical College, Guangdong Province, China, in
March 2014 and confirmed to be an H7N9 infection by the Chinese Cen-
ter of Disease Control and Prevention. The whole-genome sequence of the
virus was already deposited in GISAID’s EpiFlu database, under identifier
EPI_Isl_162618, and has already been reported (25). The virus was culti-
vated, propagated, and titrated in 9- to 10-day-old embryonated chicken
eggs for 72 h at 37°C. The hemagglutination test was performed using 1%
horse red blood cells (RBCs) as described by the WHO. Virus isolation
and infection procedures were performed in animal biosafety level 3 con-
tainment facilities, and the ethical committee of The First Affiliated Hos-
pital of Shantou University Medical College approved the study.

Cells and compound. Madin-Darby canine kidney (MDCK) cells
were obtained from ATCC, China. Cells were maintained in Dulbecco’s
modified Eagle’s medium (DMEM) (Gibco, Beijing, China) supple-
mented with 10% heat-inactivated fetal bovine serum (FBS), 100 U pen-
icillin, 100 �g/ml streptomycin, and 100 mM L-glutamine. Peramivir was
purchased from Biocryst Pharmaceutical, Shanghai, China, and a stock
solution was prepared in 0.85% NaCl and stored at �80°C.

Animal infection and treatment procedures. Six- to 8-week-old fe-
male C57/BL6 mice (Vital River, Beijing, China) were maintained on
standard feed and water in a specific-pathogen-free (SPF) facility with
controlled environmental temperature and humidity.

For this study, several sets of experiments were performed. The fol-
lowing protocols were used in each experiment; each group consisted of
16 mice. The animals were anesthetized by intraperitoneal (i.p.) admin-
istration of 2,2,2-tribromoethanol (Sigma, Steinheim, Germany) prior to
inoculation and experimental procedures. For survival experiments, 10
animals from each group were monitored for clinical signs, weight loss,
and mortality for up to 14 days postinfection (dpi). More than 20% loss of
the original body weight was considered the humane endpoint for this
study. Animals were specifically monitored for any neurological symp-
toms throughout the disease course.

For the characterization of viral pathogenicity, animals were divided
into four different groups (n � 16) and inoculated intranasally (i.n.) with
50 �l of A/Shantou/1001/2014 (H7N9) virus inoculum containing 103,
104, 105, or 106 50% egg infective doses (EID50) of viral particles.

To assess antiviral activity in vivo, we administered peramivir to ani-
mals infected i.n. with different concentrations of A/Shantou/1001/2014
(H7N9) virus, such as 103, 104, 105, and 106 EID50. Briefly, 30 mg perami-
vir/kg body weight was administered to the thigh muscles in a final vol-
ume of 50 �l for each mouse. The treatment was given once daily from the
time of infection until 8 dpi. An equal amount of 0.85% NaCl was admin-
istered in the same manner to vehicle groups.

In dose-dependent experiments, peramivir at 30, 15, and 3 mg/kg was
administered to animals (n � 16/group) as described above. The treat-
ment was given once daily from the time of infection until 8 dpi. The
animals were infected with 104 EID50 of A/Shantou/1001/2014 (H7N9)
virus i.n.

We next evaluated four different treatment regimens in mice infected
with 104 EID50 of A/Shantou/1001/2014 (H7N9) virus. In the first two
groups, a single dose of 30 mg/kg of peramivir was administered to mice

(n � 16/group) immediately (single dose D0) or 24 h after inoculation
(single dose D1). The next two groups were given multiple doses of
peramivir, initiated at the day of infection or 1 day later. The groups were
designated “multiple doses D0-D8” and “multiple doses D1-D8,” respec-
tively.

Estimation of viral loads in body tissues. At 3 and 6 dpi, animals from
treated and untreated groups (n � 3/group) were euthanized, and body
tissues, such as the lungs, liver, intestine, spleen, kidneys, stomach, lymph
nodes, heart, and brain, were removed aseptically and rinsed in phos-
phate-buffered saline (PBS). Lung tissues were homogenized in 1 ml PBS,
and homogenates were titrated in MDCK cells by a 50% tissue culture
infective dose (TCID50) assay according to the Reed and Muench method.
Viral RNAs were extracted from other tissues by using a viral RNA minikit
(Qiagen, Hilden, Germany) and converted into cDNAs by using a high-
capacity cDNA RT kit (Life Technologies, Foster City, CA). The cDNAs
were then subjected to quantitative real-time PCR (qRT-PCR) using in-
fluenza virus M gene-specific primers. qRT-PCR was performed with
SYBR green qPCR supermix (Invitrogen, Carlsbad, CA) on a MyiQ real-
time PCR detection system (Bio-Rad, Hercules, CA). Results are ex-
pressed as viral copy numbers per milliliter.

Histology and immunostaining. Tissues were collected at 3 and 6 dpi
from treated and untreated groups and were also removed from surviving
animals (after euthanization) from the peramivir treatment group, fixed
with 4% buffered formalin, processed, and embedded in paraffin. Tissue
sections were stained with hematoxylin and eosin (H&E). Viral staining
was performed using an anti-influenza virus nucleoprotein (NP) anti-
body (Bio X Cell, West Lebanon, NH).

Statistical analyses. Statistical analysis was performed by using
GraphPad Prism 6 software (GraphPad Inc.). Student’s t test and one-way
analysis of variance (ANOVA) were applied for comparisons of two and
more than two groups, respectively. Survival curves were analyzed by the
log rank test. P values of �0.05 were considered significant.

RESULTS
Characterization of A/Shantou/1001/2014 (H7N9) virus in C57/
BL6 mice. We first characterized the pathogenicity of H7N9 in-
fluenza virus in C57/BL6 mice. Animals exhibited severe weight
loss and lethal disease following infection with 104, 105, and 106

EID50 of H7N9 virus. The median number of days to death was 7
for the dose of 104, 4.5 for the dose of 105, and 4 for the dose of 106.
Animals infected with 103 EID50 gradually lost body weight from 6
dpi, had a delayed time of death, and had a 70% mortality rate
(Fig. 1a and b). Clinical signs included minimal physical activity,
hunched posture, lethargy, and ruffled fur and started to appear in
infected animals starting at 3 dpi. The virus was detected in lung
tissues at levels as high as 7.7 log10 TCID50/ml at 3 dpi and 5.9 log10

TCID50/ml at 6 dpi, whereas viral spread to other body organs,
such as the brain, intestine, liver, spleen, stomach, kidneys, and
heart, was found at 3 dpi (data not shown).

Histology of lung sections revealed that lethal challenge (104

and 105 EID50) with H7N9 influenza virus induced interstitial
pneumonia and a marked inflammatory response in lungs. At 3
dpi, pathology was typically characterized by an infiltration of
neutrophils and mononuclear cells and the presence of multiple
focalized lesions—intense in the periphery—and hemorrhaging.
Pulmonary exudates were predominantly present in the bronchial
lumen, and the disappearance of nuclei from the bronchial epi-
thelium, suggesting bronchial necrosis, was also observed (Fig. 2A
to D). At 6 dpi, the lesions were similar, but with a predominant
presence of lymphoid structures and involvement of the larger
portions of the lungs. A typical lobular pneumonia that almost
destroyed the lung architecture was observed, combined with
heavy infiltration of mononuclear cells in the bronchial lumen
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and peribronchial spaces and around blood vessels. Signs of bron-
chial spasm were also seen in heavily inflamed spaces. Emphysema
was observed at the lung periphery (Fig. 2E to H).

Effect of peramivir on the outcome of H7N9 influenza dis-
ease. We assessed the antiviral activity of peramivir in C57/BL6
mice challenged with different viral concentrations representing
high (105 and 104) and low (103) infective doses. Intramuscular
injection of 30 mg/kg of peramivir was performed on mice once
daily from the day of infection to 8 dpi, while normal saline
(0.85% NaCl) was administered in the same manner to the vehicle
group. Peramivir treatment saved all animals in the 103 dose
group, compared to 70% lethality in the vehicle (untreated) group
(P � 0.0005). Furthermore, these animals did not exhibit any
clinical signs and weight loss during the course of infection (Fig. 3a
and b). Peramivir treatment also prevented death in 80% and 20%
of animals challenged with 104 and 105 EID50 of H7N9 virus. In
the 104 dose group, weight loss was observed only from 7 to 9 dpi,
with the maximal dip at 8 dpi, which is significantly different from
the case for the vehicle group (P � 0.001). Milder clinical signs,

such as lethargy, dyspnea, and grouping, were also observed dur-
ing this period. Peramivir treatment significantly lowered the risk
of death (P � 0.0001), and the animals were able to recover toward
the end of the disease course (Fig. 3c and d). Although only a 20%
survival benefit was noticed in heavily infected (105) animals after
peramivir treatment, these animals exhibited significant differ-
ences (P � 0.001) in weight loss from 4 to 7 dpi, extending the
median survival time from 4.5 to 8 dpi compared to the vehicle
group (Fig. 3e and f).

In agreement with the survival curve, peramivir treatment also
led to dramatic reductions in lung virus titers regardless of the
viral infection dose. A �4-log10 reduction was observed in the 103

and 104 dose groups, with a �2-log10 reduction in the 105 dose
group, at 3 dpi (P � 0.0001). Complete viral eradication was seen
in the 103 dose group at 6 dpi, with a �4-log10 reduction in viral
replication in the other groups at the same time point (P �
0.0001) (Fig. 3g and h). Peramivir treatment also reduced the viral
load in extrapulmonary tissues (see Appendix SA1 in the supple-
mental material). Even though decreased viral replication and a

FIG 1 Pathogenicity of A/Shantou/1001/2014 H7N9 influenza virus in C57/BL6 mice. Animals (n � 10/group) were infected with different viral concentrations
by the intranasal route, and weight loads (a) and mortality (b) were monitored until 14 dpi. Survival curves were found to be significantly different at each viral
concentration (P � 0.0005).

FIG 2 Pathological changes in lung tissues infected with A/Shantou/1001/2014 H7N9 influenza virus. C57/BL6 mice were infected with 104 EID50 of H7N9 virus,
and lung sections were stained with H&E. Lung sections at 3 dpi showed interstitial pneumonia with focalized lesions at the periphery (white arrow) (original
magnification, �40) (A), hemorrhage (black arrows), the presence of pulmonary exudates, and infiltration of neutrophils and mononuclear cells into the
bronchial lumen (white arrows) (original magnifications, �100 and �200) (B and C), and bronchial necrosis (original magnification, �200) (D). Tissue
inflammation was intense at 6 dpi, with the involvement of larger portions, the presence of lymphoid structures (white arrows), and signs of emphysema (black
arrow) (original magnification, �40) (E), heavy infiltration of inflammatory cells, specifically lymphocytes, in peribronchial (white arrow) and perivascular
(black arrow) areas (original magnification, �40) (F), typical lobular pneumonia resulting in diffused alveolar damage (original magnification, �100) (G), and
signs of bronchial spasm (white arrows) (original magnification, �100) (H).
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survival benefit were observed, peramivir treatment did not bring
about significant improvements in lung pathology during the
acute phase of disease, such as at 3 and 6 dpi. Diffused interstitial
pneumonia combined with bronchial necrosis and infiltration of
mononuclear cells, comparable to that in the controls, was ob-

served in peramivir-treated animals at 6 dpi (Fig. 4A and D). His-
tological analysis of surviving animals in the peramivir group re-
vealed that by 14 dpi, most of the lung architecture was devoid of
inflammatory cell infiltration, and inflamed areas were rarely ob-
served toward the periphery (Fig. 4B). Virus-infected cells in

FIG 3 Peramivir mediated protection of mice against lethal H7N9 challenge. Animals were infected with the indicated viral concentrations, and 30 mg/kg of
peramivir was administered intramuscularly once daily from the time of infection until 8 dpi. Significant changes in animal body weight (a, c, and e) and lethality
(b, d, and f) were observed after peramivir treatment throughout the course of infection. MDCK cells were used to titrate viral loads present in lung tissues of
peramivir- or vehicle (0.85% NaCl)-treated animals at 3 dpi (g) and 6 dpi (h). Results are expressed as the log10 mean TCID50/ml � standard error of the mean
(SEM) for each group of mice (n � 3). *, P � 0.01; **, P � 0.001; ***, P � 0.0001.
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bronchial epithelium and alveolar spaces were rarely seen when
lung sections of peramivir-treated animals were stained with an
influenza virus nucleoprotein (NP) antibody (Fig. 4C), whereas
no infected cells were found in surviving animals at 14 dpi. In
contrast, vehicle-treated mice showed infection of multiple cell
types, including epithelial cells from bronchi, terminal bronchi-
oles, and the alveolar lining, where mainly type II pneumocytes
were found to be infected (Fig. 4E and F). Infiltrating cells in
heavily inflamed areas exhibited NP-positive staining, indicating
the capability of H7N9 influenza virus to infect multiple cell types
(Fig. 4F). Our findings clearly suggest that viral replication is di-
rectly correlated with an uncontrollable H7N9 influenza virus-
induced lung pathology that leads to irreparable physiological
damage and compromised animal health. Peramivir treatment
decreased viral replication during the acute phase of infection,
which subsequently helped the animals to resolve pathological
signs and to regain body weight during the recovery phase.

Dose-dependent antiviral effect of peramivir on H7N9
influenza virus. To determine the therapeutic concentration of
peramivir, different doses of peramivir (30, 15, and 3 mg/kg/day)
were administered to separate groups of C57/BL6 mice from 0 to 8
dpi. Animals were infected with 104 EID50 of A/Shantou/1001/
2014 (H7N9) virus. We found that peramivir at all doses tested
improved the animal survival rate (P � 0.0001). Lower doses, such
as 15 and 3 mg/kg, helped 30 and 20% of the animals to survive,
respectively, with a delay in the median time of death from 7 to 9
dpi (Fig. 5b). The areas under the curve (AUCs) for animal
weights from 1 to 14 dpi showed comparable improvements in
animals after treatment with different doses; however, significant

differences in weight loss were specifically observed at 5, 6, and 7
dpi (P � 0.001) (Fig. 5a and c). Although all doses were able to
reduce viral titers in the same manner at 3 dpi (P � 0.0001), a
dose-dependent effect was found at 6 dpi (P � 0.001) that might
account for the beneficial effects on disease outcome (Fig. 5d).

Therapeutic effect of single versus multiple doses on H7N9
influenza virus infection. We observed that peramivir treatment
from 0 to 8 dpi efficiently inhibited viral replication in the lungs
and protected animals from lethal disease. Therefore, we next
evaluated four different treatment regimens in infected mice.
Peramivir (30 mg/kg) was administered immediately or 24 h after
inoculation of mice. Peramivir treatment was given as either a
single dose or multiple doses until 8 dpi (see Appendix SA2 in the
supplemental material). A single dose of peramivir at the time
of infection (D0 single) provided a significant improvement in
weight loss, leading to protection in 50% of animals (P � 0.0005).
In addition, the single-dose regimen substantially lowered the
lung viral titer if initiated at the time of infection (P � 0.005). We
further observed that a 24-h delayed treatment with either the
single- or multiple-dose regimen significantly decreased the ther-
apeutic capacity of peramivir. Only 20% of animals in the delayed-
treatment groups were able to overcome lethal virus challenge.
However, viral titers were significantly lower in lung samples from
mice on the delayed multiple-dose regimen (D1 multiple) than in
those from mice receiving vehicle (P � 0.005) (Fig. 6).

Resolution of H7N9-associated neurological symptoms and
brain virus titers after peramivir treatment. Avian influenza vi-
ruses, including H5N1 and H7N9 viruses, are known for their
neurovirulent characteristic in humans and animals (26–28). In

FIG 4 Temporal changes in H7N9-induced lung pathology following peramivir treatment. The images show H&E staining of lung sections. (A) Peramivir
(30 mg/kg; D0 to D8)-treated animals showed minimal resolution of lung pathology compared to untreated infected animals (D) at 6 dpi. (B) Surviving
animals in the peramivir-treated group showed resolved lung pathology, as evidenced by normal lung architecture in 90% of areas and localized
inflammation in certain places, at 14 dpi. Lung sections stained with influenza virus NP antibody showed minimal signs of infection in peramivir-treated
animals (magnification, �100) (C), while infection of type II pneumocytes (E), inflammatory cells, and bronchial epithelium (F) was observed in
untreated infected animals (magnification, �400).
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this study, we observed that A/Shantou/1001/2014 (H7N9) virus-
infected animals exhibited neurological symptoms, such as trem-
ors, hind-limb paralysis, and hunched posture. Furthermore,
brain tissues of animals infected with virus at 105 and 104 EID50

showed high viral titers at 3 dpi. In mice treated with multiple
doses of peramivir, complete inhibition of viral replication in the
brain was observed at 3 dpi irrespective of the viral infective dose
(P � 0.0001). A 1.5-log10 reduction in viral load was also found in
animals treated with a single dose of peramivir at the time of
infection (P � 0.05). Interestingly, peramivir treatment was also
helpful for resolving H7N9-induced neurological symptoms in
mice (Table 1).

Histological analysis revealed the presence of brain lesions in
H7N9-infected mice at 3 and 6 dpi. Animals examined at 3 dpi had

severe hemorrhaging in the frontal cortex and midbrain. Scattered
foci of inflammatory cell infiltration were also observed in these
regions. Signs of neural degeneration and liquefaction were seen
in the cerebral cortex at 3 dpi and led to karyopyknosis at 6 dpi.
Furthermore, inflammation of the meninges was seen, with infil-
trating cells, neural edema in the frontal cortex, and an increased
size of the arachnoid space. In peramivir-treated animals, signs of
hemorrhage were minimal compared to those in the untreated
group; however, there were foci of infiltrating cells and neural
degeneration (Fig. 7).

DISCUSSION

Here we present a mouse model of H7N9 influenza virus infection
that can be used to assess the therapeutic potential of antiviral

FIG 5 Dose-dependent effect of peramivir on lethal H7N9 influenza virus challenge in mice. Animals were infected with 104 EID50 of A/Shantou/1001/2014
H7N9 virus and administered 30, 15, or 3 mg/kg/day of peramivir intramuscularly from 0 to 8 dpi. Peramivir provided protection against lethal H7N9 infection
in a dose-dependent manner. Changes in animal weight (a) and lethality (b) were observed throughout the course of infection. (c) The AUCs for animal weights
from 1 to 14 dpi showed a 2-fold improvement for peramivir-treated animals (n � 10/group). (d) Dose-dependent reductions of viral loads in lung homogenates
from peramivir-treated animals were seen at 3 and 6 dpi. Results are expressed as the log10 mean TCID50/ml � SEM for each group of mice (n � 3). ***, P �
0.0001; **, P � 0.001.

FIG 6 Comparison of single and multiple doses of peramivir. Animals were infected with 104 EID50 of A/Shantou/1001/2014 H7N9 virus. Single-dose regimens
consisted of 30 mg/kg/day of peramivir administered intramuscularly at the time of infection (D0 single) or at 1 dpi (D1 single). In multiple-dose regimens,
similar peramivir treatments were initiated either at the time of infection (D0 multiple) or at 1 dpi (D1 multiple) and continued until 8 dpi. Changes in animal
weight (a) and lethality (b) were observed throughout the course of infection. (c) Reductions of viral loads in lung homogenates from peramivir-treated animals
were seen at 3 and 6 dpi. Results are expressed as the log10 mean TCID50/ml � SEM for each group of mice (n � 3). ***, P � 0.0005; **, P � 0.005.
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drugs. We found that A/Shantou/1001/2014 (H7N9) virus, which
was isolated from a fatal human case during the second wave of the
epidemic, efficiently replicated in the respiratory tract, induced
interstitial pneumonia and inflammatory cell infiltration in the
lungs, and caused lethal infection in mice even at the lowest chal-
lenge dose (103 EID50). The virus was able to disseminate to ex-
trapulmonary tissues, indicating the efficiency of the mouse
model for replicating the vital properties of H7N9 infection in
humans. A/Shantou/1001/2014 (H7N9) virus belongs to the ma-
jor phylogenetic group of H7N9 viruses that were widely distrib-
uted across China during the first and second waves of the H7N9
flu epidemic (25). Previous studies showed inconsistency in the
pathogenicities of ancestral H7N9 strains in mice. The A/Anhui/
1/2013 (H7N9) and A/Shanghai/1/2013 (H7N9) viruses were
found to be lethal, with a 50% lethal dose in mice (MLD50) of 103.5

PFU (29, 30), but no lethal infection was seen by Mok et al. (31) in
mice infected with higher doses of A/Shanghai/2/2013 (H7N9)
virus. Signature amino acid mutations, specifically those in hem-
agglutinin (HA) and the polymerase complex that are linked to
adaptation to the mammalian host and to viral replication effi-
ciency, have been attributed to various pathogenicity profiles of
H7N9 influenza viruses. For instance, the Q226L mutation in the
HA gene, associated with increased binding to mammalian recep-
tors, is found in some H7N9 strains (29). In addition, the PB2
E627K mutation, which is known to aid in avian virus adaptation
to mammalian hosts, is also present in H7N9 strains isolated from
humans (32). A/Shantou/1001/2014 (H7N9) virus contains both
these mutations (25), like its early ancestors, which explains its
pathogenic potential and high replication tendency in the mam-
malian environment.

Continuous evolution of newly emerged H7N9 influenza vi-
ruses has increased the risk of infecting populations on a larger
scale. Severe human H7N9 cases are currently being treated with
NAIs. Among the NAIs, only oseltamivir has been tested for anti-
H7N9 influenza virus activity in animals (18, 33). The present
study demonstrates for the first time the antiviral activity of
peramivir against an H7N9 virus in mice. Peramivir is known to
be administered intravenously, particularly to patients who de-
velop severe influenza virus infections. However, clinical efficacy
trials were performed on intravenous as well as intramuscular
administration of peramivir, and the results showed the superior
efficacy of these routes over oral administration to patients with
complicated and uncomplicated influenza virus infections (34).
The drug has a higher affinity for binding to the neuraminidase
enzyme (35) and also achieves a longer plasma elimination half-

life (36) if administered by the intravenous and intramuscular
routes. However, most animal studies have been performed by the
intravenous route of administration, except for a few that showed
successful antiviral therapies by the intramuscular route (37, 38).
Considering that intramuscular injections are easily achievable
and less time-consuming in small animals, with no inferior effi-
cacy, a rationale was made to use this route in this study.

Our studies showed that repeated administration of 30 mg/kg
peramivir starting from the day of infection until 8 dpi is capable
of protecting animals against lethal H7N9 influenza virus infec-
tion. This protection may be the result of successful viral eradica-
tion from the lungs by 3 and 6 dpi, indicating direct antiviral
effects of peramivir that reduce pathology toward the end of the
disease course. In addition, peramivir treatment greatly affected
the biodistribution of H7N9 virus in various extrapulmonary tis-
sues.

The H7N9 virus is known to cause a severe form of disease in
humans, with increased mortalities during the second and third
waves of the epidemic (39). Patients with this severe disease re-
quire aggressive treatment and mechanical ventilation and stay
longer in hospitals (40, 41). Moreover, clinical studies have shown
the tendency of H7N9-infected patients to shed virus into the
respiratory tract for long periods, which subsequently affects the
clinical outcome of disease (24). The situation indicates that pa-
tients with severe cases need to have a longer duration of antiviral
treatment. In this context, we decided to assess a longer treatment
regimen that consisted of nine consecutive doses of peramivir,
starting either at the time of infection of animals or a day after. The
24-h delay in drug administration showed readily apparent differ-
ences between the two regimens. As shown by observational stud-
ies performed with pandemic H1N1 human cases (21, 42), de-
layed treatment of peramivir in H7N9-infected animals remained
sufficient enough to eradicate the virus but resulted in moderate
effects on the disease process. Our further experiment assessing
the effects of single- and multiple-dose regimens also confirmed
that the time for the initiation of treatment is critical to obtain a
survival benefit. A single dose of peramivir administered on the
day of infection provided greater clinical benefits to the animals
than the multiple-dose regimen initiated with a delay of 24 h.

Neurovirulence is one of the vital properties of some influenza
viruses, such as H1N1 and H5N1, and this is considered a contrib-
uting factor in several neurodegenerative diseases (43, 44). Previ-
ous studies have defined that influenza virus infection of neural
cells can induce encephalitis directly (45–47). The neurovirulence
of H7N9 is a matter of great concern. Clinical studies reported the

TABLE 1 Resolution of neurological signs in H7N9-infected animals after peramivir treatmenta

Infective
dose (EID50) Treatment

No. of animals with
neurological signs/total
no. of animals

Viral copy number/ml
of brain homogenate
at 3 dpi (n � 3/group) Neurological sign(s)

104 30 mg/kg peramivir, multiple doses (D0 to D8) 0/10 0
30 mg/kg peramivir, single dose 0/10 1.52E	03
Vehicle 1/10 3.55E	04 Hind-limb paralysis

105 30 mg/kg peramivir, multiple doses (D0 to D8) 4/10 0 Tremors, hunched posture
Vehicle 8/10 1.50E	03 Tremors, hunched posture,

minimal activity
a The EID50 is the concentration of virus that can infect 50% of inoculated eggs. Viral copy numbers were determined by performing qRT-PCR on RNAs extracted from brain tissue
homogenates.
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FIG 7 Pathological changes in brain tissues after A/Shantou/1001/2014 (H7N9) infection in C57/BL6 mice. Representative sections show hemorrhaging (black
arrow) (A), degenerative neurons and infiltrating cells (B), liquefaction of neural cells in the midbrain (C and D), an increased size of the arachnoid space (E),
and hemorrhaging in the cerebral cortex (E and F). (G and H) Infiltration of inflammatory cells (black arrow) and neural edema (white arrow) in the frontal
cortex at 3 dpi. (I and J) Karyopyknosis (black arrow) in the cerebrum at 6 dpi. (K and L) Minimal signs of hemorrhage associated with neural degeneration in
H7N9-infected animals after treatment with 30 mg/kg of peramivir at 3 dpi. Left panels show higher-magnification (�400) views of the boxes in the right panels.
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possible involvement of the brain in severe cases of H7N9 infec-
tion (4, 48). In addition, we previously observed H7N9 viral in-
fection in brain tissues from ferrets, but none of these animals
exhibited neurological signs (10). This study confirms that H7N9
influenza virus is neurovirulent in mice, as the virus was found in
brain tissues and the animals exhibited a variety of neurological
symptoms and brain lesions. Interestingly, single and multiple
peramivir administrations were capable of eradicating virus from
the brain, preventing neurological signs from occurring. This
study clearly indicates that, as in the H5N1 infection model, the
clinical benefits of peramivir are not limited to localized virus
infection in the respiratory tract (49).

The rapid bioavailability of intravenous or intramuscular
peramivir aids in the superior clinical efficacy of this drug admin-
istered by these routes over oral administration. For H1N1 and
other influenza viruses, the drug has been tested in controlled
trials of prophylaxis and treatment. These studies provide strong
evidence for a direct relationship to virus eradication and earlier
relief of influenza-like illness (ILI) (22, 50). The present study
provides the first evidence of antiviral activity of peramivir toward
H7N9 viruses. Antiviral treatment contributed to the resolution of
clinical signs, increased survival, and prevented the occurrence of
neurological symptoms in mice. This suggests that rapid assess-
ment of the clinical efficacy of this drug is urgently required for its
possible use as a treatment option for future severely H7N9-in-
fected individuals.
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