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Abstract

Lectin-like bacteriocins consist of tandem monocot mannose-binding domains and display a genus-specific killing activity.
Here we show that pyocin L1, a novel member of this family from Pseudomonas aeruginosa, targets susceptible strains of
this species through recognition of the common polysaccharide antigen (CPA) of P. aeruginosa lipopolysaccharide that is
predominantly a homopolymer of D-rhamnose. Structural and biophysical analyses show that recognition of CPA occurs
through the C-terminal carbohydrate-binding domain of pyocin L1 and that this interaction is a prerequisite for bactericidal
activity. Further to this, we show that the previously described lectin-like bacteriocin putidacin L1 shows a similar
carbohydrate-binding specificity, indicating that oligosaccharides containing D-rhamnose and not D-mannose, as was
previously thought, are the physiologically relevant ligands for this group of bacteriocins. The widespread inclusion of D-
rhamnose in the lipopolysaccharide of members of the genus Pseudomonas explains the unusual genus-specific activity of
the lectin-like bacteriocins.
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Introduction

The ability to target a subgroup of pathogenic bacteria in a

complex bacterial community has potential applications in

medicine and agriculture where the maintenance of a ‘normal’

microbiome is beneficial. For example, the use of broad spectrum

antibiotics to treat bacterial infections is known to cause a range of

complications associated with collateral damage to the micro-

biome, including antibiotic associated diarrhea and Clostridium

difficile infection [1,2]. In addition, there is growing evidence to

suggest that microbial dysbiosis may play a role in a range of

chronic diseases such as inflammatory bowel disease, diabetes,

obesity and rheumatoid arthritis [3,4,5,6]. Indeed, for Crohn’s

disease, where the link with dysbiosis is well established, the

administration of multiple courses of antibiotics is associated with

an increased risk factor for the development of this chronic form of

inflammatory bowel disease [7,8,9].

In contrast to the broad spectrum antibiotics that are widely

used in medicine and agriculture, protein antibiotics known as

bacteriocins often target a specific bacterial species or a group of

closely related bacterial species [10,11,12,13]. Well characterised

bacteriocins include the S-type pyocins from P. aeruginosa and the

closely related colicins of E. coli [12,13]. The colicin-like

bacteriocins form a diverse family of multidomain protein

antibiotics which share similar mechanisms of uptake and kill

cells through either a pore-forming activity, a specific nuclease

activity against DNA, tRNA or rRNA or through inhibition of cell

wall synthesis [14,15,16,17]. In the case of S-type pyocins it is

thought that their activity is limited to strains of P. aeruginosa,

whereas colicins show activity against E. coli and some strains of

closely related bacteria such as Salmonella spp. [18]. In the case of

colicins and S-type pyocins, killing specificity is primarily

determined by the presence of a specific outer membrane receptor

on the cell surface. For example, the well characterised E group

colicins utilise the TonB-dependent BtuB receptor, which has a

normal physiological role in vitamin B12 uptake [19]. Colicin-like

bacteriocins have also been shown to have a potent antibiofilm

activity, indicating their potential as useful therapeutics for the

treatment of chronic biofilm mediated infections [20,21]. In the

case of the opportunistic human pathogen P. aeruginosa there is an

urgent requirement for the development of novel therapeutic

options since its ability to form drug-resistant biofilms in
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combination with the presence of an outer membrane that is

highly impermeable to many classes of antibiotics can make this

pathogen essentially untreatable in some groups of patients. This is

exemplified in cystic fibrosis patients where chronic lung infection

with P. aeruginosa is the leading cause of mortality [22].

An interesting addition to this group of protein antibiotics is the

recently discovered lectin-like bacteriocins that contain two

carbohydrate-binding domains of the monocot mannose-binding

lectin (MMBL) family [23,24,25,26,27]. Lectin-like bacteriocins

from P. putida (putidacin L1 or LlpABW) P. syringae (LlpAPss642) and

P. fluorescens (LlpA1Pf-5) have been characterised and have the

unprecedented ability to kill strains of a broad range of bacterial

species within the genus Pseudomonas, but are not active outside this

genus [24,26,27]. Similarly the lectin-like bacteriocin LlpAXcm761

from Xanthomonas citri pv. malvacearum LMG 761 has the ability to

kill various species within the genus Xanthomonas [24]. The

molecular basis of this unusual genus specific activity has not

been explained.

Lectins are a structurally and evolutionarily diverse class of

proteins produced widely by prokaryotes and eukaryotes and are

defined by their ability to recognise and bind carbohydrates. This

binding is generally highly specific and mediates a range of diverse

functions, including cell-cell interaction, immune recognition and

cytotoxicity [28,29] MMBLs represent a structurally conserved

lectin subclass, of which the mannose-binding Galanthus nivalis

agglutinin (GNA) was the first to be characterised [30]. The

MMBL-fold consists of a three sided b-prism; each face of which

contains a sugar binding motif with the conserved sequence

QxDxNxVxY [31]. While originally identified in monocots like G.

nivalis or Allium sativum, it is now recognised that proteins of this

class are distributed widely throughout prokaryotes and eukary-

otes, where they have evolved to mediate diverse functions

[30,32,33,34]. Structural and biochemical analysis of MMBLs has

shown that they are generally translated as a single polypeptide

chain containing tandem b-prism domains that are then proteo-

lytically processed into monomers. These domains often form

homo- or hetero-dimers by strand exchange and p-stacking [35].

The lectin-like bacteriocins are not proteolytically processed and

thus consist of a single peptide chain, containing tandem b-prism

domains. Sequence alignments of members of this class from

Pseudomonas spp. show complete conservation of two sugar binding

motifs on the C-terminal domain and partial conservation of two

sites on the N-terminal domain [23]. Recent work by Ghequire et

al [23] on the characterisation of putidacin L1 shows these motifs

to be important for cytotoxicity. Mutagenesis of the first C-

terminal motif has the most dramatic effect on activity, while

mutagenesis of the second C-terminal and first N-terminal sugar

binding motifs leads to a synergistic reduction in activity. This

study also showed low-affinity binding between putidacin L1 and

methyl-a-D-mannose or a range of mannose containing oligosac-

charides. However, Kds for these protein-carbohydrate complexes

were reported in the range from 46 mM for methyl-a-D-manno-

side to 2 mM for a mannose containing pentasaccharide [23]. An

extensive search for high affinity carbohydrate binding through

the use of glycan arrays failed to detect high affinity carbohydrate

binding for this lectin-like bacteriocin [23].

Despite progress in our understanding of the structure and host

range of MMBL-like bacteriocins, the mechanism by which these

bacteriocins target susceptible strains and exert their antimicrobial

effects is unknown. Here we report on the discovery of a novel

member of this family, pyocin L1 from P. aeruginosa, and show that

it utilises lipopolysaccharide (LPS) as a surface receptor, specifi-

cally targeting the common polysaccharide antigen (CPA) that is a

conserved homopolymer of D-rhamnose. Structural and biophys-

ical analysis shows that the C-terminal carbohydrate binding

motifs are responsible for D-rhamnose recognition and that these

sites are specific for this sugar over D-mannose. Further to this, we

show that the previously described putidacin L1 also selectively

binds LPS from susceptible, but not from resistant, P. syringae

isolates and shows selectivity for D-rhamnose over D-mannose.

This work shows that the physiologically relevant ligand for the

QxDxNxVxY carbohydrate binding site of the lectin-like bacte-

riocins is indeed D-rhamnose and not D-mannose as previously

thought. As such, the genus-specific activity of lectin-like

bacteriocins from Pseudomonas spp. can be attributed to the

widespread inclusion of the rare D-rhamnose in the LPS of

members of the genus Pseudomonas.

Results

Identification and characterisation of pyocin L1
As part of a wider project, aimed at identifying bacteriocins that

could be used as novel therapeutics in the treatment of P. aeruginosa

infections, we searched the genomes of 10 recently sequenced

clinical and environmental isolates of P. aeruginosa for genes with

homology to known bacteriocins. One putative bacteriocin gene

identified in strain C1433, an isolate from a patient with cystic

fibrosis, encodes a protein with 31% identity to the lectin-like

bacteriocin LlpA1Pf-5, from P. fluorescens. This protein, designated

pyocin L1, contained 256-amino acids with a predicted molecular

mass of 28413 Da. Alignment of the pyocin L1 protein sequence

with other lectin-like bacteriocins, LlpA1Pf-5, LlpAPss642, putidacin

L1 (LlpABW), LlpAAu1504 from Burkholderia cenocepacia and

LlpAXcm761 from Xanthomonas citri pv. malvacearum shows that

pyocin L1 contains tandem MMBL domains with three conserved

QxDxNxVxY MMBL sugar-binding motifs (Figure S1). Two of

these motifs are located in the C-terminal domain of the protein

and one in the N-terminal domain. Comparison with the

sequences of other lectin-like bacteriocins shows that the C-

terminal QxDxNxVxY motifs are highly conserved, with only

LlpAXcm761 lacking one C-terminal motif. In contrast the

Author Summary

Due to rapidly increasing rates of antibiotic resistance
observed among Gram-negative pathogens, such as
Pseudomonas aeruginosa, there is an urgent requirement
for novel approaches to the treatment of bacterial infec-
tions. Lectin-like bacteriocins are highly potent protein
antibiotics that display an unusual ability to kill a select
group of bacteria within a specific genus. In this work, we
show how the lectin-like protein antibiotic, pyocin L1, can
kill Pseudomonas aeruginosa with extraordinary potency
through specific binding to the common polysaccharide
antigen (CPA) of P. aeruginosa lipopolysaccharide. The CPA
is predominantly a homopolymer of the sugar D-rhamnose
that although generally rare in nature is found frequently
as a component of the lipopolysaccharide of members of
the genus Pseudomonas. The targeting of D-rhamnose
containing polysaccharides by pyocin L1 and a related
lectin-like protein antibiotic, putidacin L1, explains the
unusual genus- specific killing activity of the lectin-like
bacteriocins. As we learn more about the link between
changes to the microbiome and a range of chronic
diseases there is a growing realisation that the ability to
target specific bacterial pathogens while maintaining the
normal gut flora is a desirable property for next generation
antibiotics.

Pyocin L1 Uses LPS as a Cell Surface Receptor
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N-terminal sugar-binding motifs are less well conserved with only

LlpAAu1504 possessing two fully conserved QxDxNxVxY motifs

(Figure S1).

In order to determine the killing spectrum of pyocin L1 we

cloned the pyocin L1 open reading frame into the pET21a vector

and expressed and purified the protein by nickel affinity, anion

exchange and size exclusion chromatography. Purified pyocin L1

was tested for its ability to inhibit the growth of 32 environmental

and clinical isolates of P. aeruginosa using an overlay spot plate

method on LB agar [36]. Under these conditions, pyocin L1

showed killing activity against nine of the P. aeruginosa strains

tested. Strain E2, an environmental isolate from a tomato plant for

which the genome sequence is available, and strain P8, a clinical

isolate from a cystic fibrosis patient, showed the greatest sensitivity

to pyocin L1 with killing observed down to concentrations of

27 nM and 7 nM, respectively. Pyocin L1 also showed activity

against 5 of the 11 P. syringae strains tested, although the effect was

much weaker, with cell killing observed at high mM concentra-

tions.

Pyocin L1 targets the common polysaccharide antigen
(CPA) of P. aeruginosa LPS

In order to gain insight into the bacteriocidal activity of pyocin

L1, we subjected P. aeruginosa E2 to high concentrations of

recombinant protein and recovered mutants with greatly increased

tolerance to pyocin L1 (Figure 1A). The genomes of two of these

mutants were sequenced and comparative analysis with the

genome of wild-type E2 revealed a dinuclear deletion, C710 and

T711, of the 1146-bp wbpZ gene. This deletion was common to

both mutants. wbpZ encodes a glycosyltransferase of 381 amino

acids that plays a key role in lipopolysaccharide synthesis,

specifically in the synthesis of the common polysaccharide antigen

(CPA) also known as A-band LPS [37], (Figure S2). Most strains of

P. aeruginosa produce two distinct LPS-types that differ in their O-

antigen, but share the same core oligosaccharide. The CPA is

predominantly a homopolymer of D-rhamnose and the O-specific

antigen contains a heteropolymeric repeating unit that varies

widely among strains [38]. Consistent with mutation of wbpZ, we

found that production of CPA, as determined by immunoblotting

with a CPA-specific monoclonal antibody [39], in both M4(E2)

and M11(E2) was reduced to undetectable levels (Figure 1B).

Visualisation of LPS from these strains was performed via silver

staining and comparable quantities of LPS were shown to be

present. These observations suggest that pyocin L1 may utilise

CPA as a cellular receptor. To test this idea further, we obtained

two transposon insertion mutants of P. aeruginosa PAO1, which is

sensitive to pyocin L1, with insertions in the genes responsible for

the transport of CPA to the periplasm [40]. These two genes, wzt

and wzm, encode the ATP-binding component and membrane

component of a CPA dedicated ABC transporter [38]. Pyocin L1,

which shows good activity against PAO1 showed no activity

against strains with insertions in wzm and wzt (Figure 1C) and

immunoblotting with a CPA-specific antibody confirmed the

absence of the CPA in these pyocin L1 resistant strains (Figure 1D).

Thus, the presence of CPA on the cell surface is required for

pyocin L1 killing.

In order to determine if the requirement for CPA is due to a

direct interaction with pyocin L1 we purified LPS from wild-type

PAO1 and from the pyocin L1 resistant, wzm and wzt mutants

(which produce no CPA but do produce the O-specific antigen)

and analysed the pyocin-CPA interaction by isothermal titration

calorimetry (ITC). Titration of pyocin L1 into isolated LPS-

derived polysaccharides (a mixture of CPA and the O-specific

antigen containing polysaccharides) from PAO1 gave rise to strong

saturable exothermic heats of binding (Figure 2A), whereas no

binding was detected on titration of pyocin L1 into an equivalent

concentration of LPS carbohydrates from PAO1 wzt, which

produces the O-specific antigen but not the CPA (Figure 2B).

These data show that pyocin L1 binds directly to the CPA and that

this interaction is required for killing. The CPA is therefore likely

to be the cellular receptor for pyocin L1.

Pyocin L1 binds the monosaccharide D-rhamnose
The evolutionary relationships between MMBL-like bacterio-

cins and the originally identified mannose-binding members of this

protein family, led to the assumption that carbohydrate binding of

polysaccharides by the lectin-like bacteriocins is primarily medi-

ated through binding of D-mannose at one or more of their

conserved QxDxNxVxY carbohydrate binding motifs. Indeed, the

recent structures [23] of putidacin L1 bound to mannose-

containing monosaccharides adds weight to this idea, although

measured affinities between polysaccharides and putidacin L1 are

weak (mM) and so may not be physiologically relevant. However,

the strong interaction between pyocin L1 and CPA, is incompat-

ible with this and suggests that D-rhamnose and not D-mannose is

the likely physiological substrate for the QxDxNxVxY carbohy-

drate binding motifs.

To determine the affinity of pyocin L1 for D-rhamnose and D-

mannose, isothermal titration calorimetry (ITC) was performed.

Titration of pyocin L1 into D-rhamnose gave rise to weakly

saturable heats of binding that are significantly larger than the

heats observed on titration of pyocin L1 into an identical

concentration of D-mannose (Figure 3). From this experiment an

apparent Kd of 5–10 mM was estimated for the interaction of

pyocin L1 with D-rhamnose with apparently weaker binding for

Figure 1. CPA production correlates with pyocin L1 killing. (A)
Inhibition of growth of P. aeruginosa E2 and tolerant mutants M4 and
M11 by pyocin L1, as shown by a soft agar overlay spot-test. 5 ml of
purified pyocin L1 (1.5 mg ml21) was spotted onto a growing lawn of
cells. Clear zones indicate cell death. (B) Expression of CPA by P.
aeruginosa E2 and tolerant mutants, visualised by immunoblotting with
the CPA specific antibody N1F10. (C) Inhibition of growth of P.
aeruginosa PAO1 and PAO1 wzm and wzt mutants by pyocin L1 (details
as for A). (D) Expression of CPA by PAO1 and wzm and wzt strains
(details as for B).
doi:10.1371/journal.ppat.1003898.g001

Pyocin L1 Uses LPS as a Cell Surface Receptor

PLOS Pathogens | www.plospathogens.org 3 February 2014 | Volume 10 | Issue 2 | e1003898



D-mannose, Kd.50 mM. The interaction between pyocin L1 and

these monosaccharides was also probed using NMR with 15N

labelled pyocin L1, monitoring changes to its 15N-heteronuclear

single quantum correlation (15N-HSQC) spectra on addition of D-

rhamnose or D-mannose. In the absence of added monosaccharide
15N-HSQC spectra of pyocin L1, which should contain one

crosspeak for each non-proline amide NH as well as peaks for the

NH groups in various side chains, were well resolved and

dispersed, indicative of a folded protein. Chemical shift perturba-

tion monitored by 15N-HSQC allows the mapping of changes to a

protein that occur on ligand binding. Addition of either D-

rhamnose or D-mannose up to a concentration of 100 mM did not

give rise to large or global changes in chemical shifts (Figure S3).

On addition of D-rhamnose significant chemical shift changes were

observed for a discrete subset of peaks including some in the amide

side chain region of the spectra, while changes of a smaller

magnitude were observed on the addition of equal concentrations

of D-mannose (Figure S3). Fitting the chemical shift changes that

occur on addition of D-rhamnose, for peaks showing strong shifts,

to a single site binding model indicates a Kd for the pyocin L1- D-

rhamnose complex in the range of 5–20 mM (Figures 3C–F).

These data correlated well with the ITC sugar binding data, with

low mM binding of pyocin L1 to D-rhamnose and much weaker

binding to D-mannose.

D-rhamnose and the CPA bind to the C-terminal
QxDxNxVxY motifs of pyocin L1

In an attempt to determine the location of the pyocin L1 D-

rhamnose binding site(s) and the structural basis of the D-rhamnose

specificity of pyocin L1 we determined the X-ray structures of

pyocin L1 with bound D-mannose, D-rhamnose and in the unbound

form (Table 1). Pyocin L1, as predicted by sequence homology to

MMBL proteins, consists of two tandem b-prism domains

characteristic of MMBLs, connected by antiparallel strands

propagating from the end of each MMBL domain and lending a

strand to the reciprocal b-prism. The strands contain a tryptophan

residue which forms p-stacking interactions with two other

tryptophans in the b-prism to stabilise the structure (Figure 4A).

This interaction is conserved throughout MMBLs, with most

members of the class utilising it to form either homo- or hetero-

dimers of single MMBL subunits. However, in pyocin L1, as with

the recently described structure of putidacin L1, both domains are

from a single polypeptide chain [23]. Other structural elements are

also common between the two bacteriocins, namely a C-terminal

extension of 30 amino acids and a two-turn a-helix insertion into

loop 6 of the N-terminal MMBL domain (Figure 4B). The overall

root mean square deviation (rmsd) of backbone atoms for pyocin L1

and putidacin L1 is 7.5 Å, which is relatively high due to a

difference in the relative orientation of the two MMBL domains. In

contrast, the relative orientation of the tandem MMBL domains of

pyocin L1 matches those of the dimeric plant lectins very closely,

with alignment of pyocin L1 with the snowdrop lectin homodimer

(pdb ID: 1MSA) giving an rmsd of 4.81 Å. Comparison of the

respective N- and C- terminal domains from pyocin L1 and

Figure 2. Pyocin L1 binds strongly to CPA from P. aeruginosa
PAO1. (A) ITC binding isotherm of pyocin L1 (150 mM) titrated into
isolated LPS-derived polysaccharide (1 mg ml21) from wild-type P.
aeruginosa PAO1. Strong, saturable heats were observed indicative of a
strong interaction. Curve fitted with a single binding site model. (B) ITC
isotherm of pyocin L1 (150 mM) titrated into isolated LPS-derived
polysaccharide (1 mg ml21) from PAO1 wzt. No saturable binding
isotherm was observed.
doi:10.1371/journal.ppat.1003898.g002
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putidacin L1 shows they possess very similar folds with rmsds of

2.77 Å and 2.02 Å, respectively (Figures 4C–D). The higher value

for comparison of the N-terminal domains is due to the presence of

a 2-strand extension to b-sheet two of the putidacin L1 N-terminal

MMBL domain, which is absent from pyocin L1 and other

MMBLs. In order to identify protein structures which share a

similar fold to pyocin L1 we submitted the structure of the DALI

server (http://ekhidna.biocenter.helsinki.fi/dali_server/start). The

DALI server searches the protein data bank (PDB) to identify

proteins structurally related to the query structure [41]. Significant

structural homology was only identified for putidacin L1 and other

proteins previously characterised as containing a MMBL fold such

as the snowdrop lectin. MMBL dimers of plant origin often form

higher order structures, however small angle X-ray scattering of

pyocin L1 showed it to be monomeric in solution (Figure S4).

Electron density maps, derived from both D-mannose and D-

rhamnose soaked crystals show clear density for sugar moieties in

both sites, C1 and C2 (Figure 5). The sugars refined well in these

densities at full occupancy, giving B-factors comparable to the

surrounding protein side chains. The canonical MMBL hydrogen

bonds observed for both D-mannose and D-rhamnose were the

same: Gln to O3, Asp to O2, Asn to O2 and Tyr to O4. In

addition, O6 of D-mannose forms a hydrogen bond with Tyr169 in

C1 and His194 in C2. As D-rhamnose is C6 deoxy D-mannose, it

lacks these interactions (Figure 6). The fact that D-mannose forms

an additional hydrogen bond is counter-intuitive given that pyocin

L1 has a significantly stronger affinity for D-rhamnose, however

Val154, Val163 and Ala166 of C1 and Val184 and Ala191 of C2

form a hydrophobic pocket to accommodate the C6-methyl group

of D-rhamnose (Figure S5).

Figure 3. Pyocin L1 shows specificity for D-rhamnose compared with D-mannose. (A) ITC binding isotherm of D-rhamnose (50 mM) titrated
into pyocin L1 (100 mM). Weakly saturable heats were observed, indicative of binding with modest affinity (Kd ,5–10 mM). (B) ITC binding isotherm
of D-mannose (50 mM) titrated into pyocin L1 (100 mM). Small-weakly saturable heats were observed, indicative of very weak interaction (Kd
,50 mM). Titration of monomeric sugars into 15N-labelled pyocin L1, monitored using 1H-15N HSQC NMR spectroscopy. Shifts within spectra were
converted to chemical shift perturbation (CSP) values using equation Dppm = ! [DdHN+(DdN*aN)2]. CSP values are plotted against sugar concentration
in (C) and (E) and visualised in (D) and (F). Peak positions, which correspond to backbone amide signals, at selected sugar concentrations (blue: no
sugar, green: 60 mM, red: 100 mM) are shown. Perturbation of peak position (ppm) is indicative of association between ligand and protein molecules
in solution.
doi:10.1371/journal.ppat.1003898.g003
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Weak density was observed for both sugars at site N1, however

given the high concentrations used in the soak and the overall low

binding affinity of pyocin L1 for monomeric sugars, it is unlikely

that N1 represents a primary binding site for D-rhamnose (Figure

S5). The conserved residues in site N2 form interactions with the

C-terminal extension of the protein and as such are inaccessible.

Weak density was also observed adjacent to the binding site C1 of

mol B in both the soaks and in mol A of the D-rhamnose form.

This density may correspond to a peripheral binding site utilised in

binding to the carbohydrate chain of LPS, as is observed in the

structure of putidacin L1 bound to oligosaccharides [23].

To test the idea that the observed binding of D-rhamnose to sites

C1 and C2 is reflective of CPA binding and that this binding is

critical to pyocin L1 cytotoxicity, we created pyocin L1 variants in

which the conserved aspartic acids of the QxDxNxVxY motifs of

the C1 and C2 sugar binding sites were mutated to alanine and

compared their cytotoxicity and ability to bind the CPA by ITC

with the wild-type protein. Titrations with wild-type pyocin L1 and

the D150A (C1) and D180A (C2) variants were performed by

titrating protein at a concentration of 100 mM into a solution of

LPS-derived polysaccharide (1 mg ml21) from strain PAO1

(Figure 7). Under these conditions we were able to generate binding

isotherms that enabled us to accurately determine an apparent Kd

of 0.15 (60.07) mM for the wild-type pyocin L1-CPA complex. For

both the D150A (C1) and D180A (C2) variants, affinity for CPA was

reduced. For the pyocin L1 D150A-CPA complex a Kd of 1.52

(60.51) mM was determined, a 10-fold increase in Kd relative to the

wild-type pyocin L1-CPA complex. However, CPA binding to the

D180A variant was severely weakened and although heats of

binding were still observed the Kd for this complex, which could not

be accurately determined, is likely .500 mM. We also produced a

double mutant in which both D150A and D180A mutations were

present. For this double mutant, no binding to CPA was observed

by ITC. These data show that both the C1 and C2 sugar binding

motifs are required for full CPA binding, but that the C2 binding

site is the major CPA binding determinant. The killing activity of

these sugar binding motif variants showed a good correlation with

their ability to bind the CPA. Both the D150A and D180A variants

showed reduced cytotoxicity against PAO1 relative to pyocin L1,

with the D150A showing a greater reduction in activity and for the

D150A/D180A variant very low levels of cytotoxicity were

observed (Figure 7).

Putidacin L1 binds to P. syringae LPS and D-rhamnose
Pyocin L1 targets sensitive strains of P. aeruginosa through

binding to LPS and utilises this as a cell surface receptor. To

determine if LPS binding is common to the homologous and

previously characterised lectin-like bacteriocin putidacin L1, we

purified this protein and determined if the susceptibility of a

number of strains of P. syringae correlated with the ability of

putidacin L1 to bind to LPS-derived carbohydrates from these

strains.

From the five strains of P. syringae tested, LMG 5456 and LMG

2222 were found to be highly susceptible to putidacin L1 with

killing down to concentrations of 0.3 and 7.6 nM respectively.

DC3000 and NCPPB 2563 showed complete resistance and LMG

1247 was highly tolerant (killing down to 0.6 mM). Binding of

putidacin L1 to the isolated LPS-derived polysaccharides of the

Table 1. Crystallographic data collection and refinement statistics.

Sugar Free Form D-Rhamnose Soak D-Mannose Soak

Data collectiona

Space group C2221 C2221 C2221

Cell dimensions, a, b, c (Å) 53.41, 158.40, 147.67 52.99, 160.65, 150.57 53.42, 162.1, 152.5

Resolution (Å) 36.42 - 2.09 (2.14 - 2.09) 54.99 - 2.37 (2.43 - 2.37) 55.53 -2.55 (2.67 - 2.55)

Solvent content (%) 56 55 56

No. of unique observations 37131 (2751) 26242 (1922) 22096 (2901)

Multiplicity 4.8 (4.9) 4.4 (4.5) 5.5 (5.7)

Completeness (%) 99.0 (99.8) 99.1 (99.5) 99.9 (100.0)

Rmerge (%) 7.2 (59.2) 5.9 (83.0) 7.1 (85.6)

Rpim (%)b 4.1 (33.0) 3.4 (44.9) 3.3 (39.2)

Mean I/sigma (I) 14.3 (2.1) 19.0 (2.1) 13.3 (2.3)

Refinement statistics

Rwork/Rfree (%) 17.8/22.2 20.9/25.7 19.4/24.8

No. of non-hydrogen atoms 4505 4178 4138

RMSD of bond lengths (Å) 0.02 0.015 0.013

RMSD of bond angles (u) 1.96 1.63 1.70

No. of waters 344 95 27

Mean/Wilson plot B-value (Å2) 40.2/33.8 54.2/43.6 65.9/59.1

Ramachandran plot (%)c

Favoured/Allowed/Outliers 97.2/2.2/0.6 97.4/2.2/0.4 96.6/3.0/0.4

PDB identifier 4LE7 4LED 4LEA

aValues in parentheses refer to the highest resolution shell.
bRpim =Shkl[1/(N21)]1/2Si|Ii(hkl)2,I(hkl).|/ShklSiIi(hkl).
cPercentages of residues in favored/allowed regions calculated by the program RAMPAGE [68].
doi:10.1371/journal.ppat.1003898.t001
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Figure 4. Crystal structure of pyocin L1 reveals tandem MMBL domains and sugar-binding motifs. (A) Ribbon diagram of structure of
pyocin L1 in complex with a-D-rhamnose, amino acids 2-256. N-terminal domain (green), C-terminal domain (pink), C-terminal extension (red), a-D-
rhamnose (spheres) and sugar binding sites containing the conserved or partially conserved QxDxNxVxY motif are highlighted (blue) and are
designated N1, N2 and C1, C2 according to order of appearance in the primary sequence of the N- and C-terminal domains, respectively. Pyocin L1
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above mentioned strains was tested by ITC. Large saturable heats

of binding were observed for putidacin L1 and the LPS-derived

polysaccharides from LMG 5456 and LMG 2222, while no

binding was observed between putidacin L1 and the LPS-derived

polysaccharides from LMG 1247, 2563 or DC3000 (Figure 8).

Thus, there is excellent correlation between putidacin L1 cell

killing and the binding of LPS-derived polysaccharide indicating

that like pyocin L1, putidacin L1 utilises LPS as a surface receptor.

Although P. syringae O-antigens are diverse relative to CPA, the

incorporation of D-rhamnose is widespread and seemingly almost

universal in strains of this species [42,43]. Interestingly, in cases where

D-rhamnose is not a component of P. syringae LPS, L-rhamnose is

present [42]. As with pyocin L1 we utilised ITC and NMR to

characterise the binding affinity of putidacin L1 for D-rhamnose, in

comparison with D-mannose and L-rhamnose. Putidacin L1 exhibited

an affinity of 5–10 mM for D-rhamnose, which is comparable to that

of pyocin L1, and approximately 10-fold stronger than its affinity for

D-mannose (Figure S6). Interestingly, no binding of L-rhamnose to

putidacin L1 or pyocin L1 was observed (Figure S7). It is interesting

to note that in the strains of P. syringae we have tested, the killing

spectrum (but not the potency) of pyocin L1 and putidacin L1 is

identical. This observation combined with the specificity of putidacin

L1 for D-rhamnose, strongly suggests that it also binds to a D-

rhamnose containing O-antigen. Indeed branched D-rhamnose O-

antigens are common in P. syringae [42,43].

Our data for both pyocin L1 and putidacin L1 indicate that D-

rhamnose containing O-antigens are utilised as surface receptors

for lectin-like bacteriocins from Pseudomonas spp. This is an

attractive hypothesis since the inclusion of D-rhamnose in the

lipopolysaccharides from members of this genus is widespread and

residues involved in hydrogen bonding with a-D-rhamnose are shown in stick representation. (B) Sequence and secondary structure (b-
sheets = arrows, a-helices = coils) of pyocin L1 with colours corresponding to the structure in (A). Residues conserved in sugar binding motifs are
shown in bold. (C) Structural alignment of pyocin L1 (green) and putidacin L1 (blue) based on N-terminal MMBL domain in wall-eyed stereo. (D)
Structural alignment of pyocin L1 (green) and Allium sativum agglutinin (1BWU) (pink) based on N-terminal MMBL domain in wall-eyed stereo.
doi:10.1371/journal.ppat.1003898.g004

Figure 5. C-terminal MMBL-sugar binding motifs of pyocin L1 bind D-rhamnose and D-mannose. Electron density (at 1.3 s) with fitted
stick model of pyocin L1 MMBL-sugar binding site C1 with: (A) D-rhamnose (XXR), (C) D-mannose (BMA), (E) no bound sugar, and sugar binding site C2
with: (B) D-rhamnose, (D) D-mannose, (F) no bound sugar. For clarity, electron density is clipped to within 1.5 Å of visible atoms.
doi:10.1371/journal.ppat.1003898.g005
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could form an important component of the genus specific activity

of this group of bacteriocins.

Discussion

In this work we have shown that pyocin L1 targets susceptible

cells through binding to the CPA component of LPS and that

primary recognition of CPA occurs through binding of D-

rhamnose at the conserved QxDxNxVxY sugar binding motifs

of the C-terminal lectin domain. The ability of both pyocin L1 and

putidacin L1 to recognise D-rhamnose containing carbohydrates is

an important component of their ability to target sensitive strains

of Pseudomonas spp. The use of the O-antigen as a primary receptor

differentiates the lectin-like bacteriocins from other multidomain

bacteriocins such as colicins and S-type pyocins (colicin-like

bacteriocins) which utilise outer membrane proteins as their

primary cell surface receptors [44]. The colicin-like bacteriocins

also possess a flexible, or natively disordered N-terminal region

that is thought to pass through the lumen of a coreceptor and

interact with the periplasmic Tol or Ton complexes that mediate

translocation of the bacteriocin across the outer membrane

[11,44]. The lack of such a flexible N-terminal region in the

lectin-like bacteriocins suggests that either they do not need to

cross the outer membrane in order to mediate their cytotoxicity or

they do so by a mechanism that is fundamentally different to the

diverse family of colicin-like bacteriocins. Given the extensive

structural homology between the lectin-like bacteriocins and plant

lectins it seems likely that these bacteriocins share a common

ancestor with plant lectins and from an evolutionary perspective

are unrelated to the colicin-like bacteriocins.

In addition to O-antigen recognition, additional factors, as yet

to be determined, are clearly also important in strain and species

specificity among the lectin-like bacteriocins. Indeed, recent work

from Ghequire et al. has shown through domain swapping

experiments that for putidacin L1 (LlpABW) and the homologous

lectin-like bacteriocin LlpA1Pf-5 from Pseudomonas fluorescens, species

specificity is governed by the identity of the N-terminal lectin

domain [23]. Thus, in view of these data and our own data it

seems likely that the C-terminal lectin domain of this class of

bacteriocins plays a general role in the recognition of D-rhamnose

containing O-antigens, with the N-terminal domain interacting

with species-specific factors and thus determining the precise

species and strain specificity of these bacteriocins. Although there

are few clues as to how the lectin-like bacteriocins ultimately kill

susceptible cells, we have established a clear role for the C-

terminal MMBL domain of these proteins. The roles of the N-

terminal MMBL domain and the C-terminal extension remain to

be discovered [23]. However, from the previous work of Ghequire

et al, it is clear that all three of these regions are required for killing

of susceptible cells.

Interestingly, although rhamnose is frequently a component of

plant and bacterial glycoconjugates, such as the rhamnolipids of P.

aeruginosa [45] and pectic polysaccharides of plant cell walls [46], it

is generally the L-form of this sugar that is found in nature.

Although otherwise rare, D-rhamnose is found frequently as a

component of the LPS of plant pathogens and plant associated

bacteria such as P. syringae [42,43], P. putida [47], Xanthomonas

campestris [48] and Burkholderia spp. [49], but is a relatively rare

component of the O-antigens of animal pathogens such as E. coli,

Salmonella and Klebsiella. It is interesting to speculate that since D-

rhamnose is a common component of the LPS of bacterial plant

pathogens, that some of the many lectins produced by plants may

have evolved to target D-rhamnose as part of plant defence to

bacterial pathogens.

The specificity of lectin-like bacteriocins suggests that these

protein antibiotics may be useful in combating plant pathogenic

bacteria, either through the use of bacteriocin expressing

biocontrol strains or by the production of transgenic plants

engineered to express these proteins. The specific targeting

mechanism described here, binding of D-rhamnose containing

polymers, indicates that the lectin-like bacteriocins would not

interact with either plant or animal cells, since these lack D-

rhamnose containing glycoconjugates. In addition, these narrow

spectrum antibiotics would leave the majority of the soil

microbiome and the gut microbiome of plant-eating animals

intact and so would be likely to have minimal environmental

impact and minimal impact on animal health. This latter property

and the potency of these protein antibiotics could also make the

use of lectin-like bacteriocins in the treatment of chronic

multidrug-resistant P. aeruginosa infections in humans an attractive

proposition.

Materials and Methods

Bacterial strains, plasmids and growth conditions
Strains and plasmids utilised in this study are presented in

Supplementary Table S1. Strains of P. aeruginosa were grown in LB

at 37uC, P. syringae were grown in King’s B Media (KB) (20 g

Figure 6. Hydrogen-bonding interactions between pyocin L1 MMBL sugar-binding motif C1 with D-rhamnose and D-mannose.
Hydrogen bonds between protein side chains with (A) D-rhamnose and (B) D-mannose are shown; all distances are in Å.
doi:10.1371/journal.ppat.1003898.g006
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Figure 7. Binding of the CPA at the C-terminal sugar binding motifs, C1 and C2, is critical to pyocin L1 cytotoxicity. ITC binding
isotherms of (A) wild-type (B) D180A (C) D150A and (D) D150A/D180A pyocin L1 all at (100 mM) titrated into isolated LPS-derived polysaccharide
(1 mg ml21) from wild-type P. aeruginosa PAO1. Fit to a single binding site model is shown. (E) Spot tests to determine cytotoxic activity of wild-type
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peptone, 10 g glycerol, 1.5 g MgSO4, 1.5 g K2HPO4 per liter

adjusted to pH 7.5) at 28uC.

Cloning and purification of lectin-like bacteriocins
Pyocin L1 was amplified from the genomic DNA of the

producing strain P. aeruginosa C1433 [50] by PCR using primers

designed to introduce an NdeI site at the start of the pyoL1 gene

(ACA GAT CAT ATG AAG TCT CCA AAC AAA AGG AGG)

and an XhoI site at the end of the gene (ACA GAT CTC GAG

GAC CAC GGC GCG CCG TCG TGG ATA GTC GTG GGG

CCA A). The PCR product was ligated into the corresponding

sites of the E. coli expression vector pET21a to give pETPyoL1

which encodes pyocin L1 with a C-terminal His6 tag separated

from the C-terminus of pyocin L1 by a 6 amino acid linker

(RRRAVV). Pyocin L1 was overexpressed from E. coli

BL21(DE3)pLysS carrying the plasmid pETPyoL1. Five litres of

LB broth was inoculated (1:100) from an overnight culture and

cells were grown at 37uC in a shaking incubator to an

OD600 = 0.6. Protein production was induced by the addition of

0.3 mM isopropyl b-D-1-thiogalactopyranoside (IPTG), the cells

were grown at 22uC for a further 20 hand harvested by

centrifugation. Cells were resuspended in 20 mM Tris-HCl,

500 mM NaCl, 5 mM imidazole (pH 7.5) and lysed using an

MSE Soniprep 150 (Wolf Laboratories) and the cell debris was

separated by centrifugation. The cell-free lysate was applied to a 5-

ml His Trap HP column (GE Healthcare) equilibrated in 20 mM

Tris-HCl, 500 mM NaCl, 5 mM imidazole (pH 7.5) and pyocin

L1 was eluted over a 5–500 mM imidazole gradient. Pyocin L1

containing fractions were identified by SDS PAGE, pooled and

dialyzed overnight into 50 mM Tris-HCl, 200 mM NaCl, pH 7.5

and remaining contaminants were removed by gel filtration

chromatography on a Superdex S75 26/600 column (GE

Healthcare) equilibrated in the same buffer. The protein was

concentrated using a centrifugal concentrator (Vivaspin 20) with a

molecular weight cut off of 5 kDa and stored at 280uC until

required. The putidacin L1 open reading frame was synthesised

(DNA 2.0) and cloned into pET21a via 59 NdeI and 39 XhoI

restriction sites. The stop codon was removed in order to utilise the

pET21a C-terminal His6 tag. Purification of putidacin L1 was

performed as for pyocin L1. Constructs to express the pyocin L1

mutants D31A, D97A, D150A and D180A were created using the

QuikChange Site Directed Mutagenesis Kit (Stratagene) utilising

pETPyoL1 as a template. The primers used were CAA ATT GGT

CAT GCA AGC GGC TGG CAA CTT GGT CCT TTA CG

and CGT AAA GGA CCA AGT TGC CAG CCG CTT GCA

TGA CCA ATT TG for D31A, GCG TAC CTG AAT CTT

CAA GAT GCT GGG GAC TTC GGT ATA TTT TC and

GAA AAT ATA CCG AAG TCC CCA GCA TCT TGA AGA

TTC AGG TAC GC for D97A, CGC CTA GCG TTT CAG

GGA GCT GGC AAC CTA GTG ATC TAT C and GAT AGA

TCA CTA GGT TGC CAG CTC CCT GAA ACG CTA GGC

G for D150A and GAT AGA GCA GTA GTG CAA GAG GCT

GGA AAT TTT GTT ATC TAC AAA G and CTT TGT AGA

TAA CAA AAT TTC CAG CCT CTT GCA CTA CTG CTC

and pyocin L1 variants against of P. aeruginosa PAO1. Purified protein (starting concentration 400 mg ml21 with 2-fold sequential dilutions) was
spotted onto a growing lawn of P. aeruginosa PAO1. Clear zones indicate pyocin L1 cytotoxicity.
doi:10.1371/journal.ppat.1003898.g007

Figure 8. Putidacin L1 binds strongly to LPS-derived polysaccharides from susceptible but not tolerant or resistant P. syringae
isolates. ITC isotherm of LPS-derived polysaccharides (3 mg ml21) from strains highly sensitive to putdacin L1: (A) P. syringae LMG 2222, (B) P.
syringae LMG 5456 titrated into putidacin L1 (60 mM). Large, saturable heats are indicative of binding. LPS-derived polysaccharides (3 mg ml21) from
strains non-sensitive to putidacin L1: (C) P. syringae NCPPB 2563, (D) P. syringae DC3000, or highly tolerant (E) P. syringae LMG 1247 to putidacin L1,
show no heats of binding when titrated into putidacin L1 (60 mM).
doi:10.1371/journal.ppat.1003898.g008
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TAT C for D180A. Mutant proteins were purified as described

above for wild-type pyocin L1.

Pyocin sensitivity assays: Overlay spot plate method
Soft agar overlay spot plates were performed using the method

of [35]. 150 ml of test strain culture at OD600 = 0.6 was added to

6 ml of 0.8% soft agar and poured over an LB or KB agar plate.

5 ml of bacteriocin at varying concentrations was spotted onto the

plates and incubated for 20 h at 37 or 28uC.

Isolation of pyocin L1 tolerant mutants
1.5 ml of a culture of P. aeruginosa E2 (OD600 = 0.6) was

centrifuged and resuspended in 100 ml of LB, to which 100 ml

(8 mg ml21) of purified pyocin L1 was added. The culture was

grown for 1 h, plated onto a LB agar plate and incubated for 20 h

at 37uC. Isolated colonies were identified as P. aeruginosa using 16S

PCR as described previously [51].

Whole genome sequencing
The genomes of P. aeruginosa E2 and derived pyocin L1 tolerant

mutants were sequenced at the Glasgow Polyomics Facility,

generating paired-end reads on an Illumina MiSeq Personal

Sequencer. Reads were mapped to the previously sequenced

parent genomes of P. aeruginosa E2 using the CLC genomics

workbench, MAUVE and RAST to create an ordered annotated

genome. The CLC genomics workbench was used for genome

comparisons and the identification of SNPs/INDELs.

LPS purification and isolation of LPS-derived
polysaccharide

LPS was purified from 1 litre cultures of P. aeruginosa and P.

syringae strains as described previously, with modifications includ-

ing the omission of the final trifluoroacetic acid hydrolysis and

chromatography steps [52]. Cells were grown for 20 h at 37uC
and 28uC for P. aeruginosa and P. syringae respectively, pelleted by

centrifugation at 6000 g for 20 min, and resuspended in 50 mM

Tris, pH 7.5 containing lysozyme (2 mg ml21) and DNase I

(0.5 mg ml21). Cells were lysed by sonication and the cell lysate

was incubated at 20uC for 30 min before EDTA was added to a

final concentration of 2 mM. An equal volume of aqueous phenol

was added and the solution was heated at 70uC for 20 min, with

vigorous mixing. The solution was then cooled on ice for 30 min,

centrifuged at 7000 g for 20 min and the aqueous phase extracted.

Proteinase K was added to a final concentration of 0.05 mg ml21

and dialysed for 12 h against 265 L H2O. LPS was pelleted by

ultracentrifugation at 100,000 g for 1 h, resuspended in H2O and

heated to 60uC for 30 min to remove residual proteinase K

activity. LPS-derived carbohydrates were isolated by heating LPS

in 2% acetic acid for 1.5 h at 96uC. Lipid A was removed by

centrifugation at 13,500 g for 3 min followed by extraction with

an equal volume of chloroform. The aqueous phase was then

lyophilised.

SDS-PAGE, silver staining and immunoblotting
Purified LPS from wild-type and mutant samples were resolved

by electrophoresis on 12% SDS-polyacrylamide gels. The LPS

banding patterns were visualised by the Invitrogen ultrafast silver

staining method. For immunoblotting LPS was transferred onto

nitrocellulose membranes and western immunoblotting was

performed as previously described using the CPA-specific mono-

clonal antibody N1F10 and alkaline phosphatase-conjugated goat

anti-mouse Fab2 as the secondary antibody [39]. The blots were

developed using SIGMAFAS BCIP/NBT tablets.

Isothermal titration calorimetry
ITC experiments were performed on a VP-ITC microcalorim-

eter (MicroCal LLC). For monosaccharide binding, titrations were

carried out at 299 K with regular 15 ml injections of ligands into

60–100 mM pyocin L1 or putidacin L1 at 300 s intervals. 50 mM

D-rhamnose, D-mannose or L-rhamnose were used as titrants and

reactions were performed in 0.2 M sodium phosphate buffer,

pH 7.5. D-rhamnose (.97%) was obtained from Carbosynth

Limited (UK) and D-mannose and L-rhamnose (.99%) from

Sigma-Aldrich (UK). For O-antigen-pyocin L1 binding reactions,

pyocin L1 or pyocin L1 variants were used as titrant at 100 or

150 mM with cleaved O-antigen sugars dissolved at 1 mg ml21 in

the chamber. For curve fitting we estimated the molar concen-

tration of LPS-derived CPA containing carbohydrate chains at

20 mM based on an estimated average molecular weight of 10 kDa

for CPA containing polysaccharides and estimating the percentage

of total LPS represented by CPA containing carbohydrates as 20%

of the total by weight [53]. This value may not be accurate and as

such the stoichiometry implied by the fit is likely to be unreliable.

However, the use of this estimated value has no impact on the

reported parameters of DH, DS and Kd. For O-antigen-putidacin

L1 binding reactions, O-antigen was used as the titrant at

3 mg ml21 with 60 mM putidacin L1 in the chamber. Reactions

were performed in 20 mM HEPES buffer pH 7.5. All samples

were degassed extensively prior to the experiments. Calorimetric

data were calculated by integrating the area under each peak and

fitted with a single-site binding model with Microcal LLC Origin

software. The heats of dilution for each titration were obtained

and subtracted from the raw data.

NMR titration experiments
NMR chemical shift perturbation analysis of sugar binding by

pyocin L1 and putidacin L1 was carried out at 305 K and 300 K

respectively. Fast-HSQC spectra [54] were recorded using 15N

labelled proteins (0.1–0.2 mM) and unlabelled ligands, D-rham-

nose and D-mannose (100 mM), on a Bruker AVANCE 600 MHz

spectrometer. Protein samples were prepared with and without the

sugars present and volumes were exchanged at fixed ratios,

making sure the protein concentration remained unchanged. The

spectra were processed with Topspin and analysed with CCPNmr

analysis [55].

Crystallisation and data collection for pyocin L1
Purified pyocin L1 at a concentration of 15 mg ml21 was

screened for crystallisation conditions using the Morpheus and

PGA crystallisation screens (Molecular Dimensions) [56]. Screens

were prepared using a Cartesian Honeybee 8+1 dispensing robot,

into 96-well, MRC-format, sitting drop plates (reservoir volume of

80 ml; drop size of 0.5 ml of protein and 0.5 ml of reservoir

solution). Clusters of needle shaped crystals grew in a number of

conditions in each screen over 3 to 7 days. Two of these

conditions, condition 1 (20% v/v ethylene glycol, 10% w/v PEG

8000, 0.03 M CaCl2, 0.03 M MgCl2, 0.1 M Tris/Bicine, pH 8.5)

and condition 2 (20% PEG 550 MME, 20% PEG 20 K, 0.03 M

CaCl2, 0.03 M MgCl2 0.1 M MOPS/HEPES, pH 7.5) from the

Morpheus screen were selected for optimisation by vapour

diffusion in 24 well plates (reservoir volume 500 ml, drop size

1 ml protein and 1 ml reservoir solution). Clusters of needles from

these trays grew after 3–7 days and were mechanically separated.

The un-soaked crystals were from condition 1, while soaked

crystals were from condition 2. Un-soaked crystals were looped

and directly cryo-cooled to 110 K in liquid nitrogen; D-mannose

and D-rhamnose soaked crystals were soaked for 2–12 min in
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artificial mother liquor containing 4 M D-mannose or 2 M D-

rhamnose, before cryo-cooling to 110 K. X-ray diffraction data

were collected at the Diamond Light Source, Oxfordshire, UK at

beam lines I04, I04-1 and I24. Automatic data processing was

performed with Xia2 within the EDNA package [57].

Structure solution and refinement for pyocin L1
A dataset from an un-soaked pyocin L1 crystal was submitted to

the Balbes pipeline along with the amino acid sequence for pyocin

L1 [58]. Balbes produced a partial molecular replacement solution

based on the structure of Galanthus nivalis agglutinin (PDB ID:

1MSA). Initial phases from Balbes were improved via density

modification and an initial model was built using Phase and Build

from the Phenix package [59]. The model was then built and

refined using REFMAC5 and Coot 0.7 [60,61]. Validation of all

models was performed using the Molprobity web server and

Procheck from CCP4-I [62,63]. Two structures of sugar soaked

pyocin L1 were solved by molecular replacement using Phaser

[64], with the sugar-free pyocin L1 as the search model.

Additional electron density corresponding to bound sugars, was

observed in both 2Fo-2Fc and Fo-Fc maps [65]. Sugars were fitted

and structures refined using Coot 0.7 and REFMAC5. b-D-

mannose (PDB ID: BMA) corresponded best to the density of

bound D-mannose. The density in the D-rhamnose complex best

corresponded to a-D-rhamnose, for which no PDB ligand exists; a

model for a-D-rhamnose was prepared by removing the oxygen

from carbon 6 of a-D-mannose and submitting these PDB

coordinates to the Prodrg server, which generated the model

and modeling restraints [65]. The resultant a-D-rhamnose was

designated with the PDB ID: XXR.

Small angle X-ray scattering
SAXS was carried out on the X33 beamline at the Deutsches

Elektronen Synchrotron (DESY, Hamburg, Germany). Data were

collected on samples of Pyocin L1 in the range of 0.5–5 mg ml21.

Buffer was read before and after each sample and an average of

the buffer scattering was subtracted from the sample scattering.

The data obtained for each sample were analysed using PRIMUS

[66], merging scattering data at low angles with high angle data.

The distance distribution function, p(r), was obtained by indirect

Fourier transform of the scattering intensity using GNOM [67]. A

Guinier plot (ln I(s) vs s2) was used to calculate the molecular

weight at I(0) and radius of gyration, Rg, of PyoL1. Ab initio models

of the protein in solution were built using DAMMIF [68],

averaged with DAMAVER [69] and overlaid with the available

crystal structure using SUPCOMB [70].

Supporting Information

Figure S1 Sequence alignment of pyocin L1 and previ-
ously reported MMBL-like bacteriocins. Dark blue shading

designates sequence identity, light blue designates chemically

conserved residues. The three conserved MMBL sugar-binding

motifs (N1, C1 and C2) and the partially conserved motif (N2) are

boxed in red.

(JPG)

Figure S2 Genetics of CPA biosynthesis in P. aerugi-
nosa. (A) CPA operon, annotated with location of P. aeruginosa E2

tolerant mutant (M4 and M11) deletion and PAO1 transposon

insertion mutants. (B) Summary of CPA biosynthetic pathway,

showing function performed by genes, shown to induce pyocin L1

tolerance or resistance.

(TIF)

Figure S3 1H-15N HSQC spectra of 15N-labelled pyocin
L1 in presence (red) and absence (black) of 100 mM (A)

D-rhamnose and (B) D-mannose, showing distinctive

chemical shifts upon addition of associating sugars.
Chemical shift changes specific to a small number of cross-peaks

illustrates association of the sugars with a small subset of amino

acids, which likely correspond to the residues within the binding

sites. Analogous changes are observed for D-rhamnose and D-

mannose titrations indicative that the same sites are binding both

ligands. Greater shift magnitude is observed for D-rhamnose,

indicative of a greater affinity towards this monosaccharide. Boxed

regions include cross-peaks used for chemical shift perturbation

analysis as shown in Figure 3.

(TIF)

Figure S4 Small angle X-ray scattering of pyocin L1. (A)

Ab initio model of pyocin L1 computed with DAMMIF overlaid

with the crystal structure. (B) Guinier plot of scattering data

indicates that the protein is monomeric in solution (I(0) gives a

molecular mass of 29.53 kDa) by extrapolation of scattering

intensity to zero scattering angle. Radius of gyration is 2.72 nm,

indicative of a folded, globular monomeric particle in solution.

(TIF)

Figure S5 Coordination of D-rhamnose in C1, C2 and N2
binding sites of pyocin L1. (A) Stereo view of D-rhamnose

coordination by binding site C1 (A), C2 (C) and N1 (E), from D-

rhamnose soak data. Core binding motif residues (blue) and

additional residues contributing to the pocket (white) are shown.

Omit map density for D-rhamnose in binding site C1 (B), C2 (D),

N1 (F) calculated by refinement of data from D-rhamnose soaked

crystal with model built from unsoaked crystal. Density for all sites

contoured to 0.15e/Å3.

(TIF)

Figure S6 Putidacin L1 shows specificity for D-rham-
nose, compared with D-mannose. (A) ITC isotherm of D-

rhamnose (50 mM) titrated into putidacin L1 (0.1 mM). Weakly

saturable heats are indicative of binding with modest affinity (Kd

,5–10 mM). (B) ITC isotherm of D-mannose (50 mM) titrated

into putidacin L1 (0.1 mM). Binding is undetectable under

reaction conditions.

(TIF)

Figure S7 Putidacin L1 and pyocin L1 do not bind L-
rhamnose. ITC isotherms of L-rhamnose (50 mM) titrated into

putidacin L1 (A) and pyocin L1 (B) both at (0.1 mM). Binding is

undetectable under these conditions.

(TIF)

Table S1 Strains and plasmids used in this work.
(PDF)

Text S1 References for supplementary information.
(DOCX)
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