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Abstract: We evaluated the validity of sixteen predictive energy expenditure equations for resting
energy expenditure estimation (eREE) against measured resting energy expenditure using indirect
calorimetry (REEIC) in 153 critically ill children. Predictive equations were included based on weight,
height, sex, and age. The agreement between eREE and REEIC was analyzed using the Bland–
Altman method. Precision was defined by the 95% limits of the agreement; differences > ±10%
from REEIC were considered clinically unacceptable. The reliability was assessed by the intraclass
correlation coefficient (Cronbach’s alpha). The influence of anthropometric, nutritional, and clinical
variables on REEIC was also assessed. Thirty (19.6%) of the 153 enrolled patients were malnourished
(19.6%), and fifty-four were overweight (10.5%) or obese (24.8%). All patients received sedation
and analgesia. Mortality was 3.9%. The calculated eREE either underestimated (median 606, IQR
512; 784 kcal/day) or overestimated (1126.6, 929; 1340 kcal/day) REEIC compared with indirect
calorimetry (928.3, 651; 1239 kcal/day). These differences resulted in significant biases of −342 to
592 kcal (95% limits of agreement (precision)−1107 to 1380 kcal/day) and high coefficients of variation
(up to 1242%). Although predicted equations exhibited moderate reliability, the clinically acceptable
±10% accuracy rate ranged from only 6.5% to a maximum of 24.2%, with the inaccuracy varying
from −31% to +71.5% of the measured patient’s energy needs. REEIC (p = 0.017) and eREE (p < 0.001)
were higher in the underweight compared to overweight and obese patients. Apart from a younger
age, malnutrition, clinical characteristics, temperature, vasoactive drugs, neuromuscular blockade,
and energy intake did not affect REEIC and thereby predictive equations’ accuracy. Commonly
used predictive equations for calculating energy needs are inaccurate for individual patients, either
underestimating or overestimating REEIC compared with indirect calorimetry. Altogether these
findings underscore the urgency for measuring REEIC in clinical situations where accurate knowledge
of energy needs is vital.

Keywords: resting energy expenditure; indirect calorimetry; prediction equations; critically ill;
intensive care; children; validation; accuracy; nutrition

1. Introduction

Accurate determination of resting energy expenditure (REE) in critically ill patients is
vital because underfeeding and overfeeding are both associated with undesirable conse-
quences. Cross-sectional and longitudinal studies have shown that mechanically ventilated
children do not increase their metabolic rate during the acute phase of critical illness [1].
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This finding supports the hypothesis that growth ceases during the metabolic response
to critical illness or injury in children while little or no spontaneous respiratory effort or
physical activity has an additional negative effect.

Predictive methods commonly used to estimate resting energy expenditure (eREE) in
critically ill children are very imprecise and may lead to over- or underfeeding. Suggested
equations for use in healthy children and adolescents are the Harris and Benedict [2],
FAO/WHO/UNU [3], Institute for Medicine of the National Academies and Food and
Nutrition Board (IOM) [4], and Schofield (height and weight, WHO) [5] equations, and the
Henry (Oxford with weight and height) [6], Lawrence (Equation (3)) [7], and Kaneko [8]
equations. Among the predictive equations based on age, weight, height, and sex in the
pediatric population with overweight or obesity, the Dietz [9], Maffeis [10], Molnár [11],
Muller [12], and Lazzer (Equation (1)) [13] equations have been reported [14]. In addition,
the Mifflin equation [15] has been recently shown to be an accurate eREE equation in girls
and boys without or with obesity [16]. Simplified equations reported for use in mechanically
ventilated children [14,17] were the Caldwell–Kennedy equation [18], the White (Equation
(2)) [19], and the Meyer (equation-C) [20]. Other equations have been either established for
use in specific situations, such as anorexia nervosa or burn injuries, or were using changing
indices, such as organ failures or non-standard anthropometric measurements [14]. Still,
there are units using the Recommended Dietary Allowances (RDA) [21] for estimating REE
in pediatric patients.

Recent nutritional guidelines recommend cautious use of estimating equations and
increased surveillance for unintended caloric underfeeding and overfeeding [22]. Instead,
REE should be measured by indirect calorimetry whenever possible [23,24]. Indirect
calorimetry is a personalized noninvasive method that circumvents many of the problems
associated with other modes of REE assessment. Since this method directly measures the
conversion of energy to heat, there is no need to apply age-related, population-based data to
individual critically ill children. Breath-by-breath indirect calorimeters measure volumetric
oxygen consumption (VO2) and carbon dioxide production (VCO2) at 21–85% FiO2 reliably
but with bias at 85% FiO2 [25]. We have previously shown that the E-COVX metabolic
module connected to a CARESCAPE™ R860 ventilator could reliably record spirometry
and metabolic indices as early as 5 min after suctioning using different ventilatory modes
in sedated, mechanically ventilated children [26,27].

There are few external cross-validation studies of predictive energy expenditure (eREE)
equations in critically ill children or adolescents [23,28,29]. The aim of the present study
was to externally cross-validate simplified predictive equations in critically ill children,
using online continuous REEIC measurements through indirect calorimetry. A secondary
objective was to identify anthropometric, nutritional, or clinical factors that might influence
REEIC, further affecting the accuracy of predictive equations in the acute phase of illness or
injury.

2. Materials and Methods
2.1. Study Design

Critically ill children admitted to the academic Pediatric Intensive Care Unit (PICU) at
the University Hospital, School of Medicine, University of Crete, Heraklion, from Septem-
ber 2014 through September 2018, and mechanically ventilated for ≥3 days were potential
candidates to be enrolled in the study. The Ethics Committee of the Institutional Review
Board approved the study (approval ID14494/2011/9-1-2012). All data were de-identified,
and parents or guardians gave informed written consent. The study was conducted in accor-
dance with the 1975 Declaration of Helsinki, as revised in 2013, following the International
Conference on Harmonization (ICH)/Good Clinical Practice (GCP) standards [30].

In reporting this study, we used the STROBE Statement−Checklist for cross-sectional
studies. Inclusion criteria: Hemodynamically stable, adequately sedated (Ramsey > 3),
mechanically ventilated patients, with a Fractional Inspired Oxygen (FiO2) < 60%, a respi-
ratory rate below 35 breaths-per-minute, and an endotracheal tube (ET) leak below 10%
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(inspiratory tidal volume (TVi) − expiratory tidal volume (TVe)/inspiratory TV × 100)
were eligible for the study. Exclusion criteria: (1) Patients expected to be extubated within
48 h of admission; (2) on renal replacement therapy; (3) metabolic or endocrine disorders;
(4) use of drugs known to affect energy expenditure, such as levothyroxine; (5) respira-
tory quotient (RQ) < 0.67 or > 1.3; and (6) unexpected interruption of the measurement
(destabilization, need for intervention in the ventilation settings, or other).

2.2. Clinical Data

At the time of each metabolic measurement, the admission diagnosis, temperature,
blood pressure, heart rate, sedation level by Ramsey scale, and main sedatives and va-
soactive agents or inotropes were recorded. The last recorded temperature on a patient’s
vital signs flowchart just before the REEIC measurement was documented. The severity
of illness was assessed using the PRISM-III and the PELOD-2 scores [31], and the amount
of care was assessed using the Therapeutic Intervention Scoring System (TISS) [32]. The
ventilatory settings at the time of the measurement and the route of nutrition support,
and the total calories received for the 24-h period before metabolic measurement were
also recorded. Energy intake was calculated from recorded intakes of enteral or parenteral
nutrition and glucose-containing maintenance fluids. Underfeeding and overfeeding were
defined according to the European Society for Clinical Nutrition and Metabolism (ESPEN)
guidelines as intakes of <70% or >110% of REEIC, respectively [33].

2.3. Anthropometry

The following anthropometric parameters were identified: age, sex, actual weight,
ideal weight, height, and body mass index (BMI). Weight was measured using calibrated
electronic bed scales. Ideal weight was defined as the weight for the 50th percentile of
the actual height of each patient. BMI was calculated as kg/m2. Standard deviations
scores, known as z-scores, of weight, height, and BMI for sex and age were calculated
using WHO and CDC calculators [34]. Malnutrition indices were derived from the BMI
for age and sex z scores obtained at admission. Underweight was defined as BMI for
sex and age z-score < −1.644, normal weight as −1.644 ≤ BMI z-score < 1.036, overweight
as 1.036 ≤ BMI z-score < 1.644, and obesity as BMI z-score ≥ 1.644.

2.4. Indirect Calorimetry

An integrated gas exchange module (E-COVX) into the ventilator (Carescape R860; GE
Healthcare, Milwaukee, WI, USA) was used to measure REEIC through indirect calorimetry
on PICU day 3 or 4. This module is able to reliably record spirometry and metabolic indices
as early as 5 min after suctioning at different modes of ventilation [26,27]. It has no mixing
chamber and sampling takes place with every breath. It has a fast differential paramagnetic
O2 and infrared CO2 analyzer and a pneumotachograph housed in a connector, which
measures inspired and expired volumes. In the P-Lite (15–300 mL) or D-Lite (>300 mL)
flow sensor, located proximate to the Y-piece to the patients’ ET tube the flow measurement
is based on the pressure drop across a special proprietary turbulent flow restrictor. It
uses mathematical integration of flow and time-synchronized continuous gas sampling
to provide data. The gas sample is continuously drawn from the connector to the gas
analyzer unit of the module. Both O2 and CO2 measures are based on the side-stream
principle. The E-COVX relies on tidal volume measurement for VO2 calculation. The
pneumotachograph derives the tidal volume from the pressure difference across a fixed
orifice, potentially influenced therefore by acute changes of resistance in the spirometry
tubing and undetected leaks in the system. We consistently used a heat- and moisture-
exchange filter alone, avoiding heated water bath humidification, followed by regular
checks on the spirometry tubing and checks for tidal volume consistency between the
module and the ventilator.

Measurements were made between 9 am and 12 pm when there had been a minimum
of 45 min with no major physical activity, such as physiotherapy or dressing change. After
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an initial 10-min stabilization period, REEIC was measured for 30 min, during which time
there was no interference with the child. The module uses the modified Weir formula
(REEIC (kcal/day) = [3.941 × VO2 + 1.106 × VCO2] × 1440 and displays a 5-min average for
REEIC but can display the 1-min averages with the S/5 Collect 1.0 software (Datex-Ohmeda,
GE Healthcare, USA). Steady state was defined as a period of at least 5 min with less than
10% fluctuation in VO2 and VCO2, and less than 5% fluctuation in respiratory quotient
(RQ), which is the ratio of VCO2: VO2. Measurements with RQ outside the physiologic
range (>1.3 or <0.67) were excluded.

2.5. Prediction Equations

To avoid unpredictable anthropometric alterations and for logistic reasons, predictive
equations were estimated at the same time in the morning, between 9 am–12 pm. The eREE
equations for each patient were calculated using actual (or ideal in obese patients) weight
using the following equations (Table S1, Supplementary Materials): Harris–Benedict [2],
Schofield H-W (WHO) [5], FAO/WHO)/UNU [3], Henry (Oxford) [7], IOM [4], Lawrence
(Equation (3)) [7], Kaneko [8], Dietz [9], Maffeis [10], Molnár [11], Muller [12], Mifflin [15],
Caldwell–Kennedy [18], Lazzer (Equation (1)) [13], and the PICU-specific White (Equation
(2)) [19] and Meyer (Equation (C)) [20]. The accuracy of these equations was defined as
prediction values that fell within 90% to 110% of the measured REEIC (±10% accuracy).
All other predictions falling outside this range were deemed inaccurate. As a control
equation, the age-specific recommended dietary allowances (RDA) for healthy children
were simultaneously calculated [21].

Basal metabolism was calculated based on the Schofield equation. The metabolic state for
each patient was determined using the ratio of measured REEIC to eREE based on the Schofield
equation, as has been previously suggested [35–37]. Patients were classified in the following
metabolic patterns: normometabolic when REEIC/eREESchofield = 90–110%, hypometabolic
when REEIC/eREESchofield < 90%, and hypermetabolic when REEIC/eREESchofiled > 110%.

2.6. Statistical Analysis

The normality of the distribution was assessed using the Shapiro–Wilk test. Descriptive
data are reported as means and standard deviation (SD) or median and interquartile
range (IQR) in case of skewed distributions, or as frequencies and percentages when
appropriate. The accuracy of the eREE compared to REEIC measured by indirect calorimetry
was assessed through the calculation of bias and precision. Bias was defined as the mean
difference between the measurements obtained from the eREE and REEIC. Precision
was defined by the 95% limits of the agreement including both systematic (bias) and
random error. The percentage of predicted values of an equation within 10% of REEIC was
considered a measure of accuracy on a cohort or sub-cohort level. The relative variability
(dispersion) and repeatability were assessed by calculating the coefficient of variation (CV)
which is the ratio of the standard deviation to the mean of the population. The reliability
was assessed by the intraclass correlation coefficient (ICC), calculated using the two-way
mixed (Cronbach’s alpha). ICC was interpreted as follows: below 0.50: poor; between
0.50 and 0.75: moderate; between 0.75 and 0.90: good; above 0.90: excellent [38]. A linear
regression model (backward method) was adopted to examine whether any of the recorded
anthropometric, clinical, and nutritional variables are independently associated with REEIC.
We first used univariate models to test if any of the studied variables were related to REEIC,
with just one explanatory variable at a time; afterward, all variables that had shown a
relaxed p-value of less than or equal to 0.1 were included in the multivariable models. A
two-sided significance level of 0.05 was used for statistical inference. Statistical analysis
software (version 28; SPSS, Chicago, IL, USA) was used for all analyses and GraphPad
Prism 9.0 (GraphPad Software, Inc., San Diego, CA, USA) was used for the Bland–Altman
analyses and illustrations.
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3. Results
3.1. Study Population

During the study period, 735 patients were admitted to the PICU, of which 176 were eli-
gible for inclusion. However, 23 patients were not enrolled due to logistical reasons (n = 12),
technical reasons (n = 7), or no informed consent (n = 4). Demographic, anthropometric,
clinical, and metabolic characteristics are shown in Table 1.

Table 1. Demographic and clinical characteristics.

N = 153

Demographic Clinical Data Indirect
Calorimetry

Age (years) 7.5 (5; 12.5) PRISM score 9 (6; 15) REE (kcal/day) 928 (651; 1238)
Sex (male/female) 108/45,

(70.6%/29.4%) TISS score 41 (36; 46) REE (kcal/kg/day) 32.3 (23.0; 48.3)
Anthropometric PELOD score 7 (2; 18) VO2 (mL/min) 134 (95.5; 176.8)

Body weight (kg) 25 (16.5; 41.5) FiO2 (%) 35 (30; 50) VCO2 (mL/min) 111 (74.6; 153.2)
Height (cm) 130 (111; 148) pH 7.39 (7.35; 7.43) Respiratory

Quotient 0.85 (0.77; 0.91)

BMI (kg/m2) 16.6 (15.2; 20.6) pO2 (mmHg) 96 (87; 111) Metabolic state *
(kcal/day) 88.5 (69.7; 106.7)

z-score weight for age 0.42 (−1.2; 1.2) pCO2 (mmHg) 36 (33.5; 39.1) Metabolic pattern **
z-score height for age −0.03 (−0.54; 0.55) HCO3 (mEq/L) 22.3 (19.6; 24.5) Normometabolic 42 (27.5%)
z-score BMI for age 0.47 (−0.98; 1.65) Heart Rate (bpm) 100 (80: 119) Hypometabolic 82 (53.6%)

BMI nutrition status Respiratory rate
(bpm) 22 (18; 25.8) Hypermetabolic 29 (19%)

Underweight 30 (19.6%) Systolic Blood
Pressure (mmHg) 97 (78; 107) Nutrition day 3

Normal BMI 69 (45.1%) Body Temperature
(◦C) 37.2 (36.8; 37.8) Energy intake

(kcal/day) 720 (480; 1000)

Overweight 16 (10.5%) Neuromuscular
blockade, yes 11/66 (16.7%) Energy intake

(kcal/kg/day) 27.4 (16; 41.7)

Obese 38 (24.8%) Vasoactive, yes 40/82 (56.3%) Energy intake/REE
ratio

Clinical diagnosis Lactate (mg/dL) 10.8 (6.3; 18) Energy intake/REE
(%) 88.2 (47.7; 112.9)

Respiratory failure 40 (26.2%) Glucose (mg/dL) 103 (93; 121) Feeding status
Sepsis 27 (17.6%) Albumin (mg/dL) 3.1 (2.7; 3.4) Adequate 40/123 (32.5%)

Surgical 11 (7.2%) C-Reactive Protein
(mg/dL) 8 (1.3; 16) Underfeeding 49/123 (39.8%)

Organ failure 4 (2.6%) Length of Stay
(days) 14 (6.5; 23.5) Overfeeding 34/123 (27.6%)

Trauma 41 (26.8%) Mechanical
Ventilation (days) 12 (5; 18) Underfeeding/Obese 15/27 (55.6%)

Neurologic 30 (19.6%) Mortality 6 (3.9%) Overfeeding/Underweight9/25 (36%)

Continuous variables are reported as 50th (median) and 25th and 75th percentiles (interquartile range, within
brackets). Discrete variables are reported as the number and proportion (within brackets) of subjects with the
characteristic of interest. BMI = Body Mass Index; PRISM, Pediatric Risk of Mortality; TISS = Therapeutic
Intervention Scoring System; PELOD = Pediatric Logistic Organ Dysfunction; REE = Resting Energy Expenditure;
VO2 = Volumetric Oxygen Consumption; VCO2 = Volumetric Carbon Dioxide Production. * Metabolic state = ratio
of measured REEIC to eREE based on the Schofield equation. ** Normometabolic REEIC/eREESchofield = 90–110%;
hypometabolic REEIC/eREESchofield < 90%; hypermetabolic when REEIC/eREESchofield > 110%.

Less than half of the patients (n = 69; 45.1%) had a BMI within the normal range
for their sex and age. Thirty (19.6%) patients were underweight (19.6%), and fifty-four
were overweight (10.5%) or obese (24.8%). All patients received sedation and analgesia.
Mortality was 3.9%. Nutritional support was provided enterally (90.9%) or parenterally
(9.1%). Patients’ feeding status on PICU day three revealed that two-thirds of the patients
were either underfed (39.8%) or overfed (27.6%). Normal weight patients received targeted
nutrition in only 36.7%, while 36.7% were underfed and 26.7% were overfed. In contrast,
55.6% of obese patients were underfed whereas 36% of underweight patients were overfed
(Table 1).

3.2. Performance of Predictive Equations

The calculated eREE either underestimated (median 606, IQR 512; 784 kcal/day) or
overestimated (1126.6, 929; 1340 kcal/day) REEIC compared with indirect calorimetry
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(928.3, 651; 1239 kcal/day). Comparison analysis between resting energy expenditure
measured by indirect calorimetry and calculations through individual predictive equations
are presented in Table 2.

Table 2. Comparison analysis between resting energy expenditure measured by indirect calorimetry
and calculations through predictive equations (kcal/day).

REE (kcal/Day) Agreement-Precision * Paired Differences-Variability #

Compared
Equation IQR 25th Median IQR

75th
Mean
Bias SD Limits of

Agreement
Medan of

Differences
IQR

25th; 75th CV (%) p Value

n = 153

Indirect
Calorimetry 651.35 928.30 1238.39

Harris–Benedict 920.17 1083.41 1263.46 142 391 −624; 908 174 −48; 388 275 <0.001
Schofield H-W 864.58 1057.30 1439.47 185 427 −652; 1021 191 −41; 469 231 <0.001

FAO/WHO/UNU 727.13 935.25 1216.50 146 398 −634; 926 142 −32; 430 273 <0.001
Henry (Oxford) 739.37 860.654 1172.30 −47 383 −798; 703 5 −236; 176 809 0.421

IOM 937.55 1090.30 1404.64 209 409 −593; 1011 205 21; 481 196 <0.001
Lawrence 885.64 995.93 1296.82 81 384 −672; 834 130 −119; 342 475 <0.002
Kaneko 1016.62 1122.27 1357.78 209 387 −549; 967 211 21; 468 185 <0.001

Dietz 919.61 1072.04 1393.22 181 397 −598; 959 219 −25; 434 220 <0.001
Maffeis 921.37 1048.95 1215.10 87 388 −673; 846 127 −134; 396 448 <0.002
Molnar 929.43 1126.62 1339.89 −32 393 −802; 739 −8 −207; 235 1242 0.843
Muller 869.15 1062.50 1471.10 96 393 −674; 866 111 −120; 352 410 <0.001
Mifflin 561.30 769.90 1050.96 −159.9 393.3 −966.8; 575 −926 −1235;

−650 201 <0.001
Lazzer (equation

1) 1346.00 1548.00 1831.00 592 402 −196; 1380 627 385; 869 68 <0.001

Caldwell–
Kennedy 539.55 806.37 1378.03 44 524 −983; 1071 35 −213; 291 1187 0.358

White (equation 2) 512.07 606.06 784.21 −342 390 −1107; 422 −282 −520;
−69 114 <0.001

Meyer (equation
C) 800.56 1054.00 1302.86 47 442 −820; 915 137 −264; 382 935 0.058

RDA 880.00 1320.00 2365.00 742 940 −1101; 2585 568 58; 1210 127 <0.001

Continuous variables are reported as median (interquartile range). Abbreviations: IQR = interquartile range;
SD = Standard Deviation; CV = Coefficient of Variation; REE = Resting Energy Expenditure.* Bland–Altman;
# Wilcoxon matched pairs signed rank test. Statistical significance was considered for p < 0.05.

The calculated age and sex-specific RDA, grossly overestimated REEIC )median 1320
(IQR 880; 2365) kcal/day). These differences resulted in significant biases of −342 to
592 kcal (95% limits of agreement (precision) −1107 to 1380 kcal/day). Even predictive
equations with small bias (Molnar, Caldwell–Kennedy, Henry (Oxford), Meyer) exhibited
extended dispersion of values as visualized by the 95% limits of agreement in the Bland–
Altman plots (Figure 1). Compared to indirect calorimetry, old or new equations, irrelevant
to the established age, nutrition, race, or illness-related status, presented a large bias and
small precision, indicated by the wide 95% limits of agreement in the Bland–Altman plots
(Figures S1–S3).

Paired eREE–REEIC differences were significant for most predictive equations (Wilcoxon
matched-pairs signed rank test, medians of differences −282 to +627, p < 0.002) except for
the Molnar, Caldwell–Kennedy, Henry (Oxford), Meyer equations (−8 to +137, p > 0.05).
These equations, however, were also inaccurate, presenting a wide dispersion of values as
expressed by a high coefficient of variation (809–1242%), in accordance with their high bias
and limits of agreement (Table 2).

The equations’ reliability, as assessed by the ICC, although significant (p < 0.001),
varied at moderate levels between 0.51 and 0.74 and was consistent across sub cohorts of
obese, overweight, and underweight patients (Cronbach’s alpha, Table 3).
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Figure 1. Bland–Altman plot whereby estimated by predicted equations’ resting energy expenditure
(eREE) is compared to REE measured by IC (REEIC) at ICU Day-3 or 4. (A). Molnar eREE compared
to REEIC. (B). Caldwell–Kennedy eREE compared to REEIC. (C). Henry (Oxford) eREE compared to
REEIC. (D). Meyer equation-C eREE compared to REEIC. The solid line indicates the percentage of
agreement bias (%) and the light shade with the fine dotted lines indicates the limits of agreement (bias
± (1.96 × SD) = precision). Dark shade represents the 95% confidence intervals of the mean (bias).

Despite the moderate reliability, the 10% accuracy rate ranged from 6.5% to a maximum
of 24.2%, and it was significantly lower than an expected minimum accuracy overall and
across nutrition status sub-cohorts (Table 3). Inaccuracy profile varied from underestimation
(White, median −31%, IQR −44%; −9.5%) to overestimation (Lazzer, median 71.5%, IQR
28.6%; 138%) of the patient’s energy needs (p < 0.001) (Figure 2).
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Table 3. Reliability by intraclass correlation coefficient (average measures) and 10% accuracy of the studied equations of predicted energy expenditure in comparison
to the resting energy expenditure measured by indirect calorimetry.

Reliability ˆ Accuracy #

Compared
Equation

All
n = 153 Underweight n = 30 Normal Weight

n = 69 Overweight n = 16 Obese
n = 38

ICC (Average
Measures) p Value Within

±10% <−10% >+10% p Value * Within
±10% p Value* Within

±10% p Value * Within
±10% p Value * Within

±10%
p Value

*

Harris–Benedict 0.699 (0.58;
0.78) <0.001 20.3 20.9 58.8 <0.001 2/28 <0.001 13/56 <0.001 5/11 0.134 11/27 <0.01

Schofield 0.73 (0.63; 0.80) <0.001 17.6 19 63.4 <0.001 5/25 <0.001 13/56 <0.001 2/14 0.003 8/30 <0.001
FAO/WHO/UNU 0.74 (0.64; 0.81) <0.001 14.4 19 66.7 <0.001 3/27 <0.001 12/57 <0.001 1/15 <0.001 7/31 <0.001

Henry (Oxford) 0.70 (0.59; 0.78) <0.001 21.6 37.9 40.5 0.008 3/27 <0.001 17/52 <0.001 2/14 0.003 12/26 0.023
IOM 0.72 (0.61; 0.79) <0.001 15.7 17.6 66.7 <0.001 4/26 <0.001 12/57 <0.001 3/13 0.012 7/31 <0.001

Lawrence 0.65 (0.52; 0.75) <0.001 20.9 24.8 54.2 <0.001 6/24 <0.001 12/57 <0.001 5/11 0.134 9/329 <0.001
Kaneko 0.67 (0.55; 0.76) <0.001 20.3 15.7 64.1 <0.001 6/24 <0.001 10/59 <0.001 3/13 0.012 12/26 0.023

Dietz 0.72 (0.61; 0.79) <0.001 21.6 17 61.4 <0.001 5/25 <0.001 10/59 <0.001 5/11 0.134 11/27 0.009
Maffeis 0.62 (0.47; 0.72) <0.001 17.6 26.1 56.2 <0.001 5/25 <0.001 12/57 <0.001 4/12 0.046 6/32 <0.001
Molnar 0.68 (0.56; 0.77) <0.001 24.2 23.5 52.3 <0.001 6/24 <0.001 14/55 <0.001 5/11 0.134 12/26 0.023
Muller 0.67 (0.55; 0.76) <0.001 19 20.9 60.1 <0.001 3/27 <0.001 11/58 <0.001 3/13 0.012 12/26 0.023
Mifflin 0.68 (0.57; 0.77) <0.001 13.1 55.6 31.4 <0.001 5/25 <0.001 10/59 <0.001 2/14 0.003 3/35 <0.001

Lazzer (equation 1) 0.69 (0.58; 0.77) <0.001 9.8 4.6 85.6 <0.001 4/26 <0.001 7/62 <0.001 0/16 - 4/34 <0.001
Caldwell–Kennedy 0.72 (0.61; 0.79) <0.001 17 38.6 44.4 <0.001 7/23 <0.001 7/62 <0.001 5/11 0.003 7/31 <0.001
White (equation 2) 0.60 (0.46; 0.71) <0.001 6.5 75.2 18.3 <0.001 2/28 <0.001 4/65 <0.001 1/15 <0.001 3/35 <0.001
Meyer (equation C) 0.51 (0.32; 0.64) <0.001 12.4 30.7 56.9 <0.001 2/28 <0.001 11/58 <0.001 0/16 - 6/32 <0.001

RDA 0.58 (0.42; 0.69) <0.001 10.5 14.4 75.2 <0.001 8/22 0.011 4/65 <0.001 1/15 <0.001 3/35 <0.001

Continuous variables are reported as median (interquartile range). Abbreviations: RDA = Recommended Dietary Allowances; ICC = Intraclass Correlation Coefficient. ˆ Reliability by
the Intraclass Correlation Coefficient using the two-way mixed consistency (average ICC measures identical to Cronbach’s Alpha values); # Clinically significant percentage error
(REEVCO2 − REEIC)/REEIC (%); * Nonparametric x2 test; Statistical significance was considered for p < 0.05.
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3.3. Malnutrition and Factors Independently Associated with REEIC

Measured by indirect calorimetry, REEIC (kcal/kg/day) was higher in the underweight
and lower in the obese compared to other sub-cohorts (p = 0.017). All predicted equations
also calculated higher kcal/kg/day in the underweight compared to overweight and obese
patients (p < 0.001) (Figure 3).
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Figure 3. Measured by indirect calorimetry resting energy expenditure (REEIC) (kcal/kg/day) was
higher in the underweight and lower in the obese compared to other sub-cohorts (p = 0.017). All
predicted equations also calculated higher kcal/kg/day in the underweight compared to overweight
and obese patients (p < 0.001). Numbers in the white boxes indicate the medians of the equations.

Paired eREE-REEIC differences did not differ among malnutrition groups for most
predicted equations, apart from the Mifflin (p = 0.016), Caldwell–Kennedy (p = 0.039),
Meyer (p = 0.042), and RDA (p < 0.01) equations (Figure 4).
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Figure 4. Paired estimated by predicted equations’ resting energy expenditure (eREE) and REE
measured by IC (REEIC) differences did not differ among malnutrition groups for most predicted
equations, apart from the Mifflin (p = 0.016), Caldwell–Kennedy (p = 0.039), Meyer (p = 0.042), and
RDA (p < 0.01) equations. The bold black line in box plots indicates the median per group, the bottom
of the box indicates the 25th percentile and the top of the box represents the 75th percentile; the T-bars
(whiskers) and horizontal lines show minimum and maximum values of the calculated non-outlier
values; circles are the outliers, asterisks are the extreme outliers.
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In a linear regression model (stepwise, backward method), only a younger age
(Beta −0.49, p < 0.001) was independently associated with the measured REEIC. None
of the BMI nutrition status (overweight, obesity), the severity of illness (PRISM, TISS,
PELOD), diagnostic category, outcome, temperature, heart rate, lactate, vasoactive drugs,
neuromuscular blockade, or energy intake were independently associated with the REEIC.

4. Discussion

The accurate determination of energy needs in critically ill children is vital because un-
derfeeding and overfeeding are both associated with undesirable consequences. Although
IC is considered the gold standard for assessing REE in ICU patients, several predictive
equations, developed from measured energy expenditure based on various numbers of
healthy non-hospitalized subjects, are commonly used in clinical practice. In this study, we
evaluated commonly used previously validated equations and found that even the most
accurate equations had an unacceptably high error. We showed that recommended or not,
PICU-related or not, the older or newly predictive equations presented large biases and
small precisions, as indicated by the wide 95% limits of agreement in the Bland–Altman
plots, significant paired differences, and high coefficients of variation. We also showed
that although sixteen predicted equations exhibited moderate reliability, the clinically
acceptable 10% accuracy rate ranged from only 6.5% to a maximum of 24.2%, with the
inaccuracy varying from −31% to +71.5% of the measured patients’ energy needs. Finally,
we demonstrated that, apart from a younger age, malnutrition, clinical characteristics,
temperature, vasoactive drugs, neuromuscular blockade, and energy intake did not affect
REEIC and thereby eREE.

A novel finding of this study is that the inaccuracy of the assessed predictive equations
did not correlate with the established time (old or new), age range (pediatric, adult), malnu-
trition status, race, illness-related status (healthy, PICU), or recommendation by scientific
societies (Schofield, WHO, IOM). For predicting energy requirements, the Schofield [5]
and FAO/WHO/UNU [3] equations have been previously recommended for the healthy
pediatric population [39], while in a population with obesity, the Molnár [11] and Dietz [9]
equations performed most accurately. For patients receiving mechanical ventilator support,
the Harris–Benedict predicted more accurately than other equations, but with a wide error
range (±500 kcal) [17]. In our critically ill, mechanically ventilated patients, predicted
equations either underestimated or overestimated REE, compared with measured REEIC.
All predictions presented significant matched paired eREE-REEIC differences, a wide dis-
persion of values as expressed by high coefficients of variation, significant biases of −342 to
592 kcal, and poor precision (−1107 to 1380 kcal/day). Most of the equations overestimated
REEIC, erroneously calculating higher energy needs of critically ill patients. Findings
of previous studies using indirect calorimetry support our conclusion that children do
not become hypermetabolic during critical illness [36] and that improved PICU-specific
prediction methods are still imprecise in critically ill children [23,40–43].

Our data suggest that simple predictive equations may lead to overfeeding in critically
ill children and less often to underfeeding. A U-shaped association between mortality and
energy intake revealed the importance of personalized energy support and the need to
prevent overfeeding and underfeeding [44]. Two recent meta-analyses showed a reduction
in ICU mortality when feeding protocols were based on REEIC [45] compared to eREE [46].
Nutrition guidelines recommend measuring REE using a validated indirect calorimeter to
guide nutritional support in critically ill infants and children after the acute phase [47]. Al-
ternatively, the Schofield equation is recommended to estimate REE [47], which we showed
to be one of the most inaccurate. Imprecise predictive equations that overestimated REEIC
more than others were the RDA (95% limits of agreement −1101 to 2585 kcal/day), Lazzer
(−196 to 1380 kcal/day), IOM (−593; 1011 kcal/day), Kaneko (−549 to 967 kcal/day),
Schofield H-W (−652 to 1021 kcal/day), and Dietz-(598 to 959 kcal/day) equations. Al-
though the FAO/WHO/UNU, Harris–Benedict, Maffeis, Lawrence, and Muller equations’
overestimation bias was smaller, they were inaccurate with wide 95% limits of agreement.
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Finally, the two equations that mostly underestimated REEIC were the White (−1107 to
422 kcal/day) and Mifflin (−966.8 to 575 kcal/day) equations.

In accordance with the results of the Vazquez Martinez study in the early postinjury
period [17], we found the Caldwell–Kennedy equation to be among the four less inaccurate
predictors of energy expenditure in ventilated, critically ill children. However, even the four
predictive equations with the smallest bias, Molnar (−32 kcal/day), Caldwell–Kennedy
(44 kcal/day), Henry (Oxford) (−47 kcal/day), and Meyer (47 kcal/day), exhibited ex-
tended dispersion of values as visualized by a high coefficient of variation (809-1242) and
wide limits of agreement (+539.55; 1378.03 kcal/day). In the absence of IC, American Soci-
ety for Parenteral and Enteral Nutrition (ASPEN) guidelines suggested that a published
predictive equation or a simplistic weight-based equation (25–30 kcal/kg/d) be used in
adults to determine energy requirements [48]. However, if predictive equations are used to
estimate the energy need, hypocaloric nutrition (below 70% of eREE) should be preferred
over isocaloric nutrition for the first week of ICU stay as per ESPEN guidelines [33].

In our series, more than half of the patients were malnourished, whereas two-thirds
were underfed or overfed. In addition, both indirect calorimetry and predicted equations
calculated higher kcal/kg in the underweight compared to overweight and obese patients.
Following the same trend, obese patients were underfed (70.4%), whereas 36% of under-
weight patients were overfed. It has been suggested that patients who are at high nutrition
risk or severely malnourished should be advanced to provide >80% of REEIC or eREE
and protein within 48–72 h to achieve the clinical benefit of early enteral nutrition while
monitoring for refeeding syndrome [48]. Hypocaloric parenteral nutrition dosing (80% of
eREE) with adequate protein (≥1.2 g protein/kg/d) should also be considered in high-risk
or severely malnourished patients requiring parenteral nutrition over the first week in
ICU [48]. Regarding obesity, the guidelines suggest that the goal of enteral nutrition should
not exceed 65%–70% of the target REEIC [48]. Personalized nutritional adjustments may
impact PICU length of stay, readmission rates, quality of life [49], and long-term rehabilita-
tion success [50]. Scientific societies recommend measuring REE by IC in malnourished
children and/or suspected altered metabolism. According to these criteria, more than 70%
of PICU patients are candidates for IC measurement [51]. Our finding that <25% of the
equations predicted REEIC within ±10% of the indirect calorimetry REEIC exaggerates the
results of a systematic review study, showing that no equation predicted REEIC within
±10% in >50% of observations [52].

Most of our patients were hypometabolic, in accordance with previously published
data (5, 6, 15–17). Several factors have been implicated to explain the hypometabolism
of critically ill children, such as coma, mechanical ventilation, analgesia, sedation, neuro-
muscular blockade, and malnutrition. It is the first time, however, to demonstrate that
none of the malnutrition status, the severity of illness, diagnostic category, outcome, tem-
perature, heart rate, lactate, vasoactive drugs, neuromuscular blockade, or energy intake
were independently associated with the REEIC inaccuracy. In agreement with findings
of an adult study in critically ill medical patients [53], we showed that only a younger
age is independently associated with indirect calorimetry measurements in mechanically
ventilated children. Accordingly, except for age, none of the estimated nutritional or clin-
ical confounders might indirectly affect the REEIC-eREE difference. This hypothesis is
further supported by the fact that PICU-related equations did not perform better than other
predictive equations.

One of the limitations of this study is the small sample size, although it is in the
upper range of similar studies, including sixteen predictive equations, older, recent, adult,
pediatric, PICU-related, and nutrition status-related equations. In addition, the timing of
the IC measurements in this prospective cross-sectional study only reflects the acute and
not the recovery metabolic phase of illness. According to the ESPEN guidelines, every
critically ill patient staying for more than 48 h in the ICU should be considered at risk
for malnutrition [33]. We measured REE on ICU Day 3 or 4 since it has been previously
shown that non-inhibitable endogenous energy is produced in the acute phase of critical
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illness due to a catabolic state [50]. Since the non-measurable, adapted to acute illness
endogenous effect dissipates by Day 4 [54], it is recommended to commence early enteral
nutrition within 24 h of admission [55], and to increase it in a stepwise fashion until
the goal for delivery is achieved using a feeding protocol [47], to avoid overfeeding and
mitochondrial exhaustion by targeting REEIC during the acute stress period [49,56]. Adult
guidelines also recommend that hypocaloric nutrition (not exceeding 70% of REEIC) should
be administered in the early phase of acute illness and that isocaloric nutrition should
be progressively implemented after the early phase of acute illness [33]. Because of the
unpredictable effects of a critical illness on metabolism, the considerable variation in REE,
and the progressive hypermetabolism, IC should be used daily in assessing nutrition
in ICU patients [57]. After the acute phase, energy intake should account for energy
deficits, physical activity, or exercise, and growth [47]. Recently developed self-calibrating
and simple-to-operate instruments, with implemented artificial intelligence, have built-in
algorithms for the detection and deletion of aberrant periods of measurements resulting
from breathing variability [58]. Future developments of metabolic cart technology to
reliably monitor REEIC continuously in states of respiratory and circulatory instability,
using various ventilatory settings, including non-invasive ventilation, are expected to
facilitate the daily application of IC in an intensive care setting.

5. Conclusions

All available prediction equations for calculating energy needs are inaccurate for
individual patients, either underestimating or overestimating REE compared with indirect
calorimetry. Apart from a younger age, malnutrition, clinical characteristics, temperature,
vasoactive drugs, neuromuscular blockade, and energy intake did not affect REEIC and
thereby the accuracy of the predictive equations. Sixteen predictive equations may result in
under- or overfeeding and cannot substitute for indirect calorimetry measurement of energy
expenditure in guiding the personalization of nutrition delivery in pediatric intensive care
patients.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu14194149/s1, Table S1: Predicted energy expenditure equations
compared to indirect calorimetry for calculating energy expenditure in critically ill children; Figure S1:
Bland–Altman plot whereby estimated by predicted equations’ resting energy expenditure (eREE) is
compared to REE measured by IC (REEIC) at ICU Day-3 or 4. A. Harris– Benedict eREE compared to
REEIC. B. Schofield (height and weight, WHO) eREE compared to REEIC. C. Mifflin eREE compared
to REEIC. D. Muller eREE compared to REEIC. The solid line indicates the percentage of agreement
bias (%) and the light shade with the fine dotted lines indicates the limits of agreement (bias ± (1.96
× SD) = precision). Dark shade represents the 95% confidence intervals of the mean (bias).; Figure S2:
Bland–Altman plot whereby estimated by predicted equations’ resting energy expenditure (eREE) is
compared to REE measured by IC (REEIC) at ICU Day-3 or 4. A. Maffeis eREE compared to REEIC. B.
White (Equation (2)) eREE compared to REEIC. C. Institute for Medicine of the National Academies
and Food and Nutrition Board (IOM) eREE compared to REEIC. D. Dietz eREE compared to REEIC.
The solid line indicates the percentage of agreement bias (%) and the light shade with the fine dotted
lines indicates the limits of agreement (bias ± (1.96 × SD) = precision). Dark shade represents the
95% confidence intervals of the mean (bias); Figure S3: Bland–Altman plot whereby estimated by
predicted equations’ resting energy expenditure (eREE) is compared to REE measured by IC (REEIC)
at ICU Day-3 or 4. A. FAO/WHO/UNU eREE compared to REEIC. B. Lazzer (Equation (1)) eREE
compared to REEIC. C. Lawrence-3 eREE compared to REEIC. D. Kaneko eREE compared to REEIC.
The solid line indicates the percentage of agreement bias (%) and the light shade with the fine dotted
lines indicates the limits of agreement (bias ± (1.96 × SD) = precision). Dark shade represents the
95% confidence intervals of the mean (bias). References [2–13,15,17–20].
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