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Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two major
neurodegenerative diseases. FTD is the second most common cause of dementia
and ALS is the most common form of motor neuron disease. These diseases are now
known to be linked. There are no cures or effective treatments for FTD or ALS and so
new targets for therapeutic intervention are required but this is hampered by the large
number of physiological processes that are damaged in FTD/ALS. Many of these
damaged functions are now known to be regulated by signaling between the
endoplasmic reticulum (ER) and mitochondria. This signaling is mediated by
“tethering” proteins that serve to recruit ER to mitochondria. One tether strongly
associated with FTD/ALS involves an interaction between the ER protein VAPB and
the mitochondrial protein PTPIP51. Recent studies have shown that ER-mitochondria
signaling is damaged in FTD/ALS and that this involves breaking of the VAPB-
PTPIP51 tethers. Correcting disrupted tethering may therefore correct many other
downstream damaged features of FTD/ALS. Here, we review progress on this topic
with particular emphasis on targeting of the VAPB-PTPIP51 tethers as a new drug
target.
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INTRODUCTION

Frontotemporal Dementia and Amyotrophic Lateral Sclerosis
FTD is the second most common form of presenile dementia after Alzheimer’s disease and is
clinically, genetically and pathologically linked to the most common form of motor neuron disease,
ALS. Thus, significant proportions of FTD and ALS patients display features of both diseases
(Ringholz et al., 2005; Wheaton et al., 2007). Likewise, both diseases have a genetic overlap and
pathogenic variants in the same genes can cause familial dominantly inherited forms of both FTD
and ALS (Ling et al., 2013; Robberecht and Philips, 2013; Abramzon et al., 2020). Finally, both
diseases can display similar pathological phenotypes and notably, the accumulation of abnormal
aggregates of TAR DNA-binding protein 43 (TDP43) in affected neurons (Arai et al., 2006;
Neumann et al., 2006).
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Like other major neurodegenerative diseases, there are no
cures or even effective treatments for either FTD or ALS and so
there is much interest in strategies to identify new therapeutic
targets. However, a large number of cellular and physiological
processes are damaged in FTD/ALS. These include damage to
mitochondria, the endoplasmic reticulum (ER), Ca2+ signaling,
lipid metabolism, autophagy, axonal transport and finally both
diseases display inflammatory responses within the nervous
system (Paillusson et al., 2016; Lau et al., 2018; Markovinovic

et al., 2022). This makes it difficult to select which damaged
function to prioritise as a drug target. Recently, alterations to
signaling between the ER and mitochondria has been a focus of
interest and this is because ER-mitochondria signaling regulates
many of the damaged functions seen in FTD/ALS (Paillusson
et al., 2016; Lau et al., 2018; Markovinovic et al., 2022). This has
led to the notion that targeting the ER-mitochondria axis may be
a route to correct many damaged FTD/ALS functions and achieve
effective disease modification.

FIGURE 1 | The VAPB-PTPIP51 tethers regulate delivery of Ca2+ from ER stores to mitochondria and phospholipid synthesis. These primary functions are believed
to impact upon a number of other downstream physiological processes many of which are damaged in FTD/ALS. The VAPB-PTPIP51 interaction facilitates Ca2+ transfer
from ER to mitochondria via IP3R-GRP75-VDAC1. Phospholipid synthesis involves initial production of phosphatidylserine (PS) in MAM by PS synthase 1 and 2 (PSS1/
2); this is transferred to mitochondria where PS decarboxylase (PSD) converts it to phosphatidylethanolamine (PE). PE can be transferred back to the ER, where
phosphatidylethanolamine N-methyltransferase (PEMT) converts it to phosphatidylcholine (PC). Finally, PC can be also transferred back to mitochondria. ER,
endoplasmic reticulum; IMM, inner mitochondrial membrane; IP3R, inositol 1,4,5-trisphosphate receptor; GPR75, glucose-regulated protein 75; MCU, mitochondrial
Ca2+ uniporter; OMM, outer mitochondrial membrane; Sig1R, Sigma-1 receptor; VDAC1, voltage-dependent anion-selective channel.
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ER-Mitochondria Signaling Regulates a
Broad Number of Physiological Functions
It is now widely accepted that organelles communicate with
each other; this permits them to respond dynamically to
changes in the cellular environment in an orchestrated
manner (Cohen et al., 2018; Gordaliza-Alaguero et al.,
2019). Communications between the ER and mitochondria
represent a particularly important component of organelle
signaling since this regulates several key cellular processes.
These include bioenergetics, Ca2+ homeostasis, lipid
metabolism, mitochondrial biogenesis and trafficking,
apoptosis, ER stress responses, autophagy and inflammation
(Rowland and Voeltz, 2012; Krols et al., 2016; Paillusson et al.,
2016; Csordas et al., 2018; Rieusset, 2018; Perrone et al., 2020;
Markovinovic et al., 2022). Additionally, in neurons ER-
mitochondria signaling regulates synaptic activity and
damage to synaptic function is a defining feature in
neurodegenerative diseases including FTD/ALS (Herms and
Dorostkar, 2016; Hirabayashi et al., 2017; Spires-Jones et al.,
2017; Gomez-Suaga et al., 2019).

The mechanisms by which ER-mitochondria communications
impact on all these different cellular processes are not properly
understood but the two primary functions of ER-mitochondria
signaling are delivery of Ca2+ from ER stores to mitochondria and
the synthesis of phospholipids (Rowland and Voeltz, 2012;
Vance, 2015; Paillusson et al., 2016; Csordas et al., 2018;
Markovinovic et al., 2022). It is likely that these primary
functions impact on the other downstream roles of ER-
mitochondria signaling (Figure 1). Mitochondria require Ca2+

to generate ATP and this is because dehydrogenases in the
tricarboxylic acid cycle are Ca2+ dependent. In addition,
mitochondrial Ca2+ is involved in the activation of Ca2+-
regulated mitochondrial carriers (CaMCs) located in the inner
mitochondrial membrane (IMM) (Del Arco et al., 2016). The
major route for delivery of this Ca2+ involves its release from ER
stores via inositol 1,4,5-trisphosphate (IP3) receptors and uptake
into mitochondria by the outer mitochondrial membrane located
voltage-dependent anion-selective channel-1 (VDAC1) and the
inner membrane located mitochondrial calcium uniporter
(MCU) (Rowland and Voeltz, 2012; Paillusson et al., 2016;
Csordas et al., 2018). As such, ER-mitochondria signaling
regulates bioenergetics and indeed, changes in metabolic
demand have been shown to stimulate ER-mitochondria
signaling (Gomez-Suaga et al., 2019) (Figure 1). Aside from
its release from IP3 receptors, Ca2+ can also be released from
Ryanodine receptors in ER for uptake by mitochondria (Csordas
et al., 2018). There are also several other subunits to the MCU
channel; together these other proteins can all influence ER-
mitochondria Ca2+ exchange (Feno et al., 2021).

The second primary function is to synthesise phospholipids.
Although most phospholipids are produced in the ER, some are
synthesised by enzymes that are located in both ER and
mitochondria; for these, precursor exchange between the two
organelles is required. Indeed, two of the most abundant
phospholipids in mammalian cells, phosphatidylcholine and
phosphatidylethanolamine are produced at the ER-

mitochondria axis (Rowland and Voeltz, 2012; Vance, 2015;
Paillusson et al., 2016; Csordas et al., 2018) (Figure 1).

ER-Mitochondria Tethering Proteins
ER-mitochondria signaling involves close physical contacts
between the two organelles such that up to approximately 20%
of the mitochondrial surface is closely apposed (distances of
about 10–30 nm) to ER membranes (Csordas et al., 2006;
Paillusson et al., 2016; Csordas et al., 2018; Markovinovic
et al., 2022). These regions of ER are termed mitochondria-
associated ER membranes (MAM). The mechanisms by which
these contacts form are not fully understood but it is generally
agreed that it involves “tethering” proteins that serve to recruit
regions of ER to the mitochondrial surface. A number of
different tethers have now been described and it is possible
that different tethers serve to recruit different domains of ER to
mitochondria e.g., rough and smooth, and sheets and tubules
of ER; also there are proteins that act to regulate the
interactions of tethers and their functions. Such tethers and
regulators have recently been reviewed (Csordas et al., 2018;
Markovinovic et al., 2022). The tethering proteins most
strongly linked to FTD/ALS involve an interaction between
the integral ER protein vesicle-associated membrane protein-
associated protein B (VAPB) and the outer mitochondrial
membrane protein, protein tyrosine phosphatase interacting
protein-51 (PTPIP51) (De Vos et al., 2012; Stoica et al., 2014).
The VAPB-PTPIP51 tethers regulate IP3 receptor mediated
delivery of Ca2+ to mitochondria, phospholipid synthesis and
synaptic activity (De Vos et al., 2012; Gomez-Suaga et al., 2019;
Yeo et al., 2021).

A Number of Genetic Insults That Cause
Familial Forms of FTD/ALS Disrupt
ER-Mitochondria Signaling and the
VAPB-PTPIP51 Tethers
A number of genes have now been identified as causal for
familial inherited forms of FTD/ALS (Abramzon et al., 2020).
Several of these have been shown to disrupt ER-mitochondria
contacts and/or mitochondrial Ca2+ delivery. These include
mutant SIGMAR1 encoding the Sigma-1 receptor, mutant
SOD1 encoding Cu/Zn superoxide dismutase-1 (SOD1),
mutant TARDBP encoding TDP43, mutant FUS encoding
fused in sarcoma and mutant C9orf72 (Figure 2) (Stoica
et al., 2014; Bernard-Marissal et al., 2015; Dafinca et al.,
2016; Gregianin et al., 2016; Stoica et al., 2016; Watanabe
et al., 2016; Dafinca et al., 2020; Gomez-Suaga et al., 2022). The
Sigma-1 receptor is an ER protein that functions as a
chaperone for IP3 receptors to facilitate delivery of Ca2+ to
mitochondria; the disease-causing alterations are loss of
function mutations (Bernard-Marissal et al., 2015;
Gregianin et al., 2016; Watanabe et al., 2016). Mutant
SOD1 damages ER-mitochondria signaling via disruption of
Sigma-1 receptor function (Watanabe et al., 2016). TDP43
accumulations form the hallmark pathology of FTD/ALS but
FUS is now also known to be a widespread pathology of FTD/
ALS (Spires-Jones et al., 2017; Tyzack et al., 2019). Mutations
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in the C9orf72 gene cause most familial FTD/ALS cases
(Dejesus-Hernandez et al., 2011; Renton et al., 2011). The
mutations involve expansion of an intronic hexanucleotide
repeat which is translated into dipeptide repeat (DPR)
proteins, some of which have been shown to be neurotoxic
(Kwon et al., 2014; Mizielinska et al., 2014; Wen et al., 2014).

Mutant C9orf72, TDP43 and FUS all disrupt ER-
mitochondria contacts and Ca2+ exchange via an effect on
the VAPB-PTPIP51 tethers. For C9orf72 this involves the
toxic DPRs (Figure 2) (Stoica et al., 2014; Stoica et al., 2016;
Gomez-Suaga et al., 2022). Moreover, this breaking of the
VAPB-PTPIP51 tethers is an early feature that appears before
disease onset in mutant C9orf72 transgenic mice; early
pathogenic changes are believed to be the most important
so this finding supports the notion that disruption of the

VAPB-PTPIP51 tethers contributes in a major way to disease
(Gomez-Suaga et al., 2022). In addition, damage to the VAPB-
PTPIP51 tethers by mutant TDP43, FUS and C9orf72-derived
DPRs involves activation of glycogen synthase kinase-3β
(GSK3β) (Stoica et al., 2014; Stoica et al., 2016; Gomez-
Suaga et al., 2022) (Figure 2). GSK3β is a modulator of the
VAPB-PTPIP51 interaction; activation disrupts whereas
inhibition stimulates binding (Stoica et al., 2014; Stoica
et al., 2016). GSK3β is strongly implicated in dementia and
ALS and so GSK3β inhibitors may prove to be therapeutic for
FTD/ALS (Llorens-Martin et al., 2014; Lauretti et al., 2020).
Thus, disruption of ER-mitochondria contacts and signaling
is a feature of several familial FTD/ALS linked genes and
where studied, this involves breaking of the VAPB-PTPIP51
tethers.

FIGURE 2 | Genetic insults linked to familial FTD/ALS disrupt ER-mitochondria signaling and the VAPB-PTPIP51 interaction. C9orf72-derived toxic DPRs, mutant
TDP43 and mutant FUS all activate GSK3βwhich in turn disrupt binding of VAPB to PTPIP51. Mutant Sigma1 receptor perturbs IP3 receptor mediated delivery of Ca2+

from ER to mitochondria. Mutant SOD1 may act directly on the Sigma-1 receptor and/or target the IP3 receptor-VDAC1 interaction.

Frontiers in Cell and Developmental Biology | www.frontiersin.org May 2022 | Volume 10 | Article 9159314

Martín-Guerrero et al. Targeting ER-Mitochondria-Signaling in Neurodegenerative Diseases

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


ER-Mitochondria Signaling as aDrug Target
for FTD/ALS
The findings that several FTD/ALS linked genes disrupt ER-
mitochondria signaling and that this signaling regulates many
damaged functions, suggests that correcting this disruption may
remedy other downstream disease features (Paillusson et al., 2016)
(Figure 1). Enhancing ER-mitochondria contacts and signaling may
therefore be broadly therapeutic. GSK3β inhibitors provide an
obvious solution but whilst a number of these have shown
beneficial effects in disease models, none have so far made it to
the clinic as treatments for neurodegenerative disorders. Thismay be
because GSK3β has functions outside of the nervous system and
inhibition of these other functions may be detrimental. Another
route involves use of Sigma-1 receptor agonists since loss of
SIGMA1R causes familial FTD/ALS (Bernard-Marissal et al.,
2015; Gregianin et al., 2016; Watanabe et al., 2016). Several
Sigma1 receptor agonists have proved to be beneficial in cell and
animal models of neurodegenerative diseases including FTD/ALS
and one, Anavex2-73 is being tested in clinical trials (Watanabe et al.,
2016; Ryskamp et al., 2019). A further route involves identifying
novel agents that stimulate ER-mitochondria contacts and screens
for the identification of such molecules are discussed below.
However, it must be stressed that a strong reinforcement of ER-
mitochondria tethering is likely to be detrimental to neurons as it
could induce Ca2+ overload in mitochondria which can be a signal
for apoptosis (Paillusson et al., 2016; Csordas et al., 2018;
Markovinovic et al., 2022).

Assays for Monitoring the Strength of
ER-Mitochondria Tethering, Contacts and
Signaling
A number of cellular assays for monitoring the strength of ER-
mitochondria contacts and signaling have been devised and
reported. The first involves use of split or dimer-dependent
fluorescent proteins such as enhanced green fluorescent
protein (EGFP). Here, split or dimer dependent EGFP
moieties are directed to ER and mitochondria respectively via
ER and mitochondria targeting sequences. Close associations
between the EGFP moieties at MAM analogous to those seen
in fluorescence resonance energy transfer (FRET) assays generate
signals which can be quantified after application of potential
therapeutics to the media in drug screens (Alford et al., 2012;
Cieri et al., 2018; Kakimoto et al., 2018; Yang et al., 2018; Calì and
Brini, 2021). Such assays have already facilitated the identification
of the flavonoid luteolin as a stimulator of ER-mitochondria
contacts; luteolin was identified via its ability to stimulate
mitochondrial ATP production but a secondary split-EGFP
assay was used to show it influences ER-mitochondria contacts
(Naia et al., 2021).

An extension of such cellular assays involves monitoring how
potential therapeutics might influence the interaction of known
tethering proteins involved in FTD/ALS such as VAPB and
PTPIP51. Here, split or dimer dependent EGFP moieties are
fused to VAPB and PTPIP51 and signals again quantified after
application of drugs to themedia. Similar approaches could involve
bioluminescence resonance energy transfer (BRET) assays such as

Nanoluc Binary Technology (NanoBiT) luciferase
complementation assays (Dale et al., 2019). Nanoluc is derived
from Oplophorus gracilirostris (deep sea shrimp) luciferase and is
genetically engineered for minimal size and optimal performance
in luciferase assays. Complementation assays to monitor the
strength of protein-protein interactions involve fusion of
fragments of Nanoluc (LargeBiT and SmallBiT) to the proteins
of interest (VAPB and PTPIP51). Readouts for NanoBiT assays are
performed without cell lysis so the signals obtained represent the
strength of protein-protein interaction in living cells.

Finally, proximity ligation assays (PLAs) can be used quantify
the strength of ER-mitochondria contacts and the VAPB-
PTPIP51 interaction in drug screens. The distances detected
by proximity ligation assays are similar to those detected by
FRET (i.e., approximately 30 nm) (Soderberg et al., 2006). Such
proximity ligation assays have already been used to quantify ER-
mitochondria contacts and binding of VAPB to PTPIP51 (De Vos
et al., 2012; Hedskog et al., 2013; Stoica et al., 2014; Bernard-
Marissal et al., 2015; Stoica et al., 2016; Gomez-Suaga et al., 2019;
Gomez-Suaga et al., 2022).

One disadvantage of the above cellular assays is that the
primary target of any novel drug is not clear. For example, it
could be the VAPB-PTPIP51 interaction itself or some upstream
regulator such as GSK3β. Deconvolution of the mechanism of
action of any identified drug is thus required and this can be time
consuming.

As an alternative to the above cellular assays, in vitro
binding assays with purified recombinant tethering proteins
such as VAPB and PTPIP51 can be employed to screen for
small molecules that enhance the interaction. Clearly, such
assays only identify molecules that act directly on the tethers so
further deconvolution work is less labour intensive. One route
would be to use FRET based methods to monitor the strength
of the VAPB-PTPIP51 interaction in vitro after application of
drug. As an extension, fragment-based drug discovery
methods could also be applied. Traditional small molecule
drug screens involve use of millions of compounds but
fragment-based screens utilise much smaller libraries
containing very low molecular mass molecules termed
“fragments”. These have low complexity which can enable
them to bind to key areas of the protein(s) of interest. Once
lead “fragments” have been identified, they can then undergo
medicinal chemistry to increase affinity and biological potency
(Erlanson et al., 2016). Modulating protein-protein
interactions is considered a relatively difficult drug target
but the use of fragment based methods is enabling rapid
progress in this area (Modell et al., 2016; Valenti et al., 2019).

DISCUSSION

New drug targets for FTD/ALS are required and ER-
mitochondria signaling represents a particularly attractive one.
This is because: 1) ER-mitochondria signaling is damaged in
FTD/ALS and where studied is an early disease feature; early
pathogenic changes are believed to be the most important. 2) ER-
mitochondria signaling regulates many of the other damaged
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features of FTD/ALS so correcting this damage may be broadly
beneficial. 3) VAPB and PTPIP51 have been identified as ER-
mitochondria tethers that are disrupted in FTD/ALS (Stoica et al.,
2014; Bernard-Marissal et al., 2015; Dafinca et al., 2016;
Gregianin et al., 2016; Stoica et al., 2016; Watanabe et al.,
2016; Dafinca et al., 2020; Gomez-Suaga et al., 2022). The
VAPB-PTPIP51 interaction thus represents a defined
molecular target for drug intervention.

Interestingly, damage to ER-mitochondria tethering and
signaling has also been described for other neurodegenerative
diseases including Alzheimer’s disease and Parkinson’s disease
(Paillusson et al., 2016; Markovinovic et al., 2022). However, for
these diseases there is evidence that damage may involve
increased or reduced ER-mitochondria contacts and signaling
(Paillusson et al., 2016; Markovinovic et al., 2022). Thus, it is
possible that inhibitors of ER-mitochondria tethering may also

have therapeutic potential. Whatever the precise mechanism, the
screens described above may be beneficial in identifying such
molecules.
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