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Abstract: Environmental sensing is a key technology for the development of unmanned cars,
drones and robots. Many vision sensors cannot work normally in an environment with insufficient
light, and the cost of using multiline LiDAR is relatively high. In this paper, a novel and inexpensive
visual navigation sensor based on structured-light vision is proposed for environment sensing.
The main research contents of this project include: First, we propose a laser-stripe-detection neural
network (LSDNN) that can eliminate the interference of reflective noise and haze noise and realize
the highly robust extraction of laser stripes region. Then we use a gray-gravity approach to extract
the center of laser stripe and used structured-light model to reconstruct the point clouds of laser
center. Then, we design a single-line structured-light sensor, select the optimal parameters for it
and build a car–platform for experimental evaluation. This approach was shown to be effective in
our experiments and the experimental results show that this method is more accurate and robust in
complex environment.

Keywords: structured-light vision sensor; laser stripe extraction; semantic segmentation

1. Introduction

With the development of computer vision and navigation technologies, UGV (unmanned ground
vehicle) and MAV (micro aerial vehicle) have come to be widely used in underground inspection,
military reconnaissance and device detection [1–3]. Global positioning system (GPS) is one of the
most popular method for robot navigation tasks. However, for some special circumstances, such as
underground mines, under-lit indoors, there is almost no GPS signal due to the enclosed environment.
Therefore, it is impossible to use satellite to locate robot. LiDAR scanning allows three-dimensional
reconstruction of the surrounding environment but building multiline LIDAR system is way too
expensive for the given task.

Considering the above factors, visual sensors are widely used in UGVs and MAVs because of its
portability and inexpensiveness. The visual sensors can be categorized into two types: active visual
sensors and passive visual sensors. The passive visual sensors are dependent on the ambient light
and will fail if the features in the captured image are sparse. As a typical method of active vision,
structured-light, due to its low cost, fast acquisition, simple system design, large visual field, has shown
great advantages over other methods [4–7]. Over the course of the past 40 years, many researchers
have applied structured-light vision to different tasks. Izquierdo et al. presented a sub-pixel method to
measure 3D surfaces based on structured-light projector and calibrated camera [8]. Xie et al. proposed
a new approach to calibrate structured-light sensor and apply it to measure the geometric size of
certain objects [9]. Liu et al. achieved real time and accurate measurement of rail profile [10]. Fan et al.
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use line structured light to detect the defect of weld seam [11]. A simple structured-light sensor usually
consists of two parts: a camera and a laser projector. The laser projector projects a certain pattern of
laser stripes on the objects and the camera will capture the image of the stripe modulated by the front
objects. By calibrating the camera initially to get its parameters, we can acquire the objects’ surface
information [12–15]. In structured-light vision inspection, 3D reconstruction and depth measurement
can be categorized by the different kind of laser used, such as point laser, line laser and grid laser.
This study focuses on the application of single-line structured light.

Locating the laser stripe accurately is a key step for the acquisition of the object depth. However,
as the laser beam usually has a certain width of several pixels in the image, we need to extract its
center first. Many studies have been conducted for the aim of achieving high precision, applicable
efficiency and strong robustness when dealing with complicated environments [16]. These studies can
be classified into two following procedures, namely detection and extraction.

The first step is to detect the location of the laser stripe. To date, none of the methods proposed
is perfect and far from being ready to be applied to complicated environments. What caused the
noises and bring difficulty to this detection process is that the intensity of the laser stripe that the
camera captured is modulated by the interreflections between different surfaces in the environment,
the saturation of the laser stripes, some materials like polished metal has extreme reflection capabilities,
the incident angles between different surfaces and the uneven surfaces and the discontinuity of line
caused by the randomly placed objects in the environment [17]. In other cases, the laser will scatter
due to the haze, resulting in the irregular shape of the laser stripe in the image acquired by the camera,
as shown in Figure 1.
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Figure 1. Different laser stripes in real images.

Some traditional methods detect the region of laser stripe by using RGB color space [18]. However,
as the white light also has R component, it is impossible to distinguish the stripe by simply using
threshold based on R component. Moreover, there are also some other red pixels due to the interreflection
between objects. Hong Nam Ta proposed a novel method [19] to solve the problem of saturation in his
study. He takes advantage of YCbCr color space and the laser’s physical properties in order to enhance
laser signal and reduce the effects of white ambient light. It also automatically estimates the saturation
of laser light and adjusts the exposure by capturing a sequence of images with different exposures.
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Some work simply uses the experimental threshold to do the binarization processing, and the
result is far from satisfactory. Sun, Q.C. et al. proposed a method using Sobel operator to detect the
edge points of laser stripe first [20]. It can only work in ideal environments because Sobel operator
cannot distinguish the laser stripe from the noises. Jia Du and Wei Xiong introduced a different
approach. They first, propose a ridge segment detector (RSD) which is inspired by LSD to extract the
potential laser regions and then rank these regions to find the most possible one [21]. This method is
more robust than simply depending on the color information, but still lacks reliability when dealing
with the specular reflection area.

Chmelar et al. [22] introduced a novel method of the laser line detection by using well-chosen
Gaussian mixture model (GMM). GMM is a method utilizing machine learning. It trains a dataset
by giving labels to different pixels. This method is able to solve the problem brought by the different
laser intensity in the whole image and reduce saturation’s influence. GMM is based on probability,
it ignores the interconnections of pixels and their interior connections, only focusing on the simple
information of the pixel itself.

According to the above discussion, these existing methods of extracting the laser stripe center line
have some nonnegligible limitations. In recent years, with the rapid development of deep learning, it is
common to use deep learning methods to complete advanced visual tasks [23,24]. Krizhevsky et al. [25]
proposed AlexNet which is an eight-layer-deep convolutional neural network to solve the problem of
image classification, and won the first place in the ILSVRC 2012 competition. AlexNet proved that
deep convolutional networks can extract more advanced and effective semantic features in images than
traditional methods. Fully convolutional network (FCN) which is a state-of-the-art framework to the
semantic segmentation is proposed by Long et al. [26]. Olaf Ronneberger [27] proposed U-net which is
an end-to-end semantic segmentation convolutional network in electron microscopic stacks. They won
the ISBI cell tracking challenge 2015 in some categories. Kaiming He [28] introduced Mask–R–CNN
for instance segmentation. The network first detects the location of the target and then sorts the
pixels in the box of target. Vijay Badrinarayanan [29] proposed SegNet which consists of an encoder
network and a decoder network. SegNet achieves semantic pixelwise segmentation and encoder
network of SegNet extracts rich features. The decoder network’s mission is to map the low-resolution
encoder feature maps to full input resolution feature maps for pixelwise classification. Deeplabv3+

is also an encoder–decoder neural network proposed by Liang-Chieh Chen [30]. Deeplabv3+ used
ResNet [31] as encoder network to extract features and designed a simple and efficient decoder to
restore object boundaries.

Some researchers focus on applying deep learning method to structured-light vision.
Li et al. proposed a novel method combining convolution neural network with structured-light
measurement [32]. They use deep learning method to achieve stereo matching in occluded environments
and can calculate the depth more accurate than traditional methods. Similarly, Du et al. designed
SLNet to extract and match features more effectively [33]. This method can also realize real-time
depth acquisition. Tao et al. set up a system to measure the box volume based on line structured
light and deep learning [34]. They proposed IHED network to extract the edge in the captured image.
This method can extract straight line from image efficiently but cannot distinguish laser stripe from
other edges.

Though deep learning method has achieved important breakthroughs in semantic segmentation
from complex images, few studies have attempted to locate the laser stripe, because there are no
big public data set that is adequate to train the deep convolutional neural network well. Moreover,
the shape of the laser stripe is relatively slender, and the intersection between the noise region and the
laser stripe region is not easy to distinguish. Inspired by DeepLab [30], we propose a novel network to
realize highly robust laser stripe region positioning and noise filtering.

The 3D measurement coordinates of real scene are obtained from the image coordinates of the laser
stripe’s center according to the measurement model of the structured-light sensor that are described in
Section 2. The measurement accuracy of the sensor is highly dependent on the detection accuracy of the
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light stripe. Moreover, the various interference in complicated environment, such as the pseudo-light
and the haze, will severely influence the location and detection of the real laser stripe. Therefore,
in practical applications, it is very important and necessary to extract laser stripe center with high
robustness and reconstruct 3D point clouds of the stripe position.

In this study, our contributions can be summarized into three aspects:

(1) A laser stripe region segmentation framework based on semantic segmentation network is
proposed, which can eliminate the interference of reflective noise and haze noise and realize the
highly robust extraction of laser stripes region for the first time;

(2) A dataset representing different noises in sophisticated environments and propose a new strategy
for labeling images with laser stripe is set up;

(3) The structured-light vision sensor with single line stripe is designed, selected the optimal
parameters for it and built a car-platform for experimental evaluation.

The rest of this paper is organized as follows: Section 2 introduces the measurement model of
structured-light sensor. We also design a structured-light sensor, optimize its parameter and finish
the calibration process. Section 3 presents the details of our laser-stripe-detection neural network
and detection and extraction process in complicated environments. We design and compare different
structure of neural network, conduct the performance evaluation test and demonstrate the robustness
and availability of our method based on the results of our experiment in Section 4. Section 5 is the
conclusion of our work.

2. Measurement Model and Design of Structured-Light Sensor

We build a structured-light sensor for robot navigation in the dark and narrow environment at
low cost. The hardware part is composed of a monocular camera and a line structured light projector
placed next to it and the software part uses the processor to process the raw image to get the point
clouds at the position of the light bar, thereby obtaining the information of the environment.

The measurement model of the structured-light sensor is shown in Figure 2a. oc − xcyczc is the
3D camera coordinate system. on − xnyn is the normalized image coordinate system. ou − xuyu is the
undistorted image coordinate system. πn is the normalized image plane. πu is the undistorted image
plane. πs is the light plane projected by the laser projector. We set ocxc//ouxu//onxn, ocyc//ouyu//onyn,
oczc⊥πu and πu//πn. We assume that P is an arbitrary point in 3D space. The intersection of the ray
ocP and the normalized image plane is Pn, which is the corresponding perspective projection point in
πn. Similarly, Pu is the ideal projection point in the undistorted image plane. Pd is the real projection
point of P in the normalized plane. The deviation between Pn and Pd is caused by the camera distortion.
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We denote the camera coordinate of P as Xc = [xc, yc, zc]
T and its coordinate in normalized camera

system as Xn = [xn, yn]
T. The ideal coordinate of P in the image plane is denoted as Xu = [xu, yu]

T.
Then the transformation from oc − xcyczc to on − xnyn can be expressed as:

Xn = [xc/zc, yc/zc]
T (1)

We define the focal length in x and y directions are fx and fy.respectively. The coordinate of
principal point in camera coordinate system is (u0, v0). Then the intrinsic parameter matrix A of the
camera can be expressed as:

A =


fx 0 u0

0 fy v0

0 0 1

 (2)

According to the pinhole model of camera the transformation from on − xnyn to ou − xuyu can be
expressed as:

λX̃u = AX̃n (3)

where λ is the scaling factor and X̃n and X̃u are the homogenous coordinate of Xn and Xu, respectively.
The camera we use is not as ideal as the pinhole model. There exist unavoidable distortion and

this will diminish the quality of our captured image. In this paper, we take the radial distortion and
tangential distortion into account. We consider the first three terms of the radial distortion and the first
two terms of the tangential distortion for our model. Moreover, the relationship between Pd and Pu is: xu = xd

[
1 + k1

(
x2

d + y2
d

)
+ k2

(
x2

d + y2
d
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d
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(
x2
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)] (4)

where k1, k2 and k3 are the coefficients of the lens’ radial distortion and p1, p2 are the coefficients of
the lens’ tangential distortion.

In addition, the coordinates of P in camera system suit the laser plane’s equation:

axc + byc + czc + d = 0 (5)

where a, b, c, d represent the coefficients of the laser plane’s equation, respectively.
From the above formula, we can calculate the 3D camera coordinates of the target point independent

from the structure parameters of the sensor such as the base distance and tilt angle. Therefore, it can
achieve higher accuracy and is more applicable in different environments.

Figure 2b shows the structure design of our sensor. b is the base distance of the sensor. The angle
between the laser plane πs and the normalized image plane πn is α. Moreover, the coordinate systems
are same with Figure 2a.

The z coordinate of the line where the light plane intersects the ground is the maximum
measurement depth Zmax, x, y are x coordinate and y coordinate of point pn, respectively. We assume
that the height from the camera’s optical center to the ground is hc and the pixel error of x, y are ∆x, ∆y.

∆ means the overall error of coordinates of the target point P. We take Z = Zmax, y = ymax, then we can
calculate the target point P’s coordinate error, which is shown in Equation (6).

∆max =
Zmax

f

√(
hc

b
+ 1

)2

+
(ymax· Zmax)

2

f 2 + 1 +
Zmax

b2 ·σ (6)

Through the analysis of the calculation formula of ∆, it can be concluded that the error decreases
as the baseline distance increases. According to this conclusion and combined with the actual situation,
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we finally choose the value of b and optimize the Equation (4) to get the optimal parameters of
our sensor.

The result shows that when the baseline distance b is 50 mm and the tilt angle α is 70◦, our sensor
will minimize the coordinate error and not increase greatly in its volume.

The external interface of the sensor is the USB interface of the camera. The sensor is mounted
on the car. The image of the light stripe is captured and processed, and the relative position of the
UGV and the surrounding environment is obtained, thereby realizing the UGV obstacle avoidance and
navigation. The details are in Section 4.

After designing the sensor, we use the dot target to calibrate the sensor and calculate the intrinsic
parameter matrix of the camera and the plane equation of the structured-light plane in the camera
coordinate system. We also obtain the coefficients of distortion. The quantitative results are shown in
Table 1.

Table 1. Parameters of the sensor.

Hardware Parameters Calibration Result Physical Meaning

Monocular camera

 fx 0 u0
0 fy v0
0 0 1


 1144.5 0 915.8

0 1142.5 512.9
0 0 1

 Camera intrinsic parameters

[k1, k2, k3, p1, p2] [−0.030, 0.00857, 0.00778,
−0.000398, 0.0209] Camera distortion parameters

Line structured light
projector (a, b, c, d) (−0.13, −6.4, 1.0, 303.6) Laser plane L equation coefficients

3. Laser-Stripe-Detection Neural Network and Center Points Localization

3.1. Architecture of System and Laser-Stripe-Detection Neural Network

The overall working process of our system is as follows: First, the structured-light projector is used
to project the structured light into the environment and the monocular camera is used to capture the
image with the light stripe, Second, the region of laser sprite is detected by neural network and then the
pixels in the center of the light stripe are extracted by gray-gravity approach from the image which is
the output of the neural network. Finally, we use mathematical model in structured-light measurement
to reconstruct the point cloud at the light bar to realize the perception of the three-dimensional
environment. Figure 3 shows the schematic diagram of our system and Figure 3a shows the process of
image segmentation and 3D point cloud reconstruction. The detailed description of the neural network
is discussed in Section 3.3.

3.2. Image Labeling

Our structured-light sensor projects the line laser into the environment to form a light stripe.
Due to the existence of smooth surfaces in the environment, such as marble floor and some metals
having extreme surface reflection capabilities, a large number of “pseudo-light stripes” are formed.
These “pseudo-light stripes” have similar morphologic features to the real one. Therefore, morphologic
modeling cannot be directly applied to extract the stripe. There is also a kind of noise resulting from
the scattering of light, usually when there exists haze in the environment. This kind of noise often
floods the stripe, causing some obvious morphologic features of the stripe to disappear, making the
tradition method fail to detect the accurate region of the laser stripe.

In this paper, the convolutional network is applied to classify the pixels in the image. Each pixel is
classified into a certain category. The pixels belonging to the laser stripe area and the pixels belonging to
the background area are distinguished. After we finish the segmentation process, the Steger algorithm
and the gray-gravity method are, respectively used to further extract the center of the stripe.
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which extracts in this part and reconstructs 3D point cloud at the light bar; (b) global fusion: a module 
which uses convolution to merge information with all pixels to enrich detailed information; (c) feature 

Figure 3. Overall architecture of our system. (a) Architecture description of our system. A laser-stripe-
detection neural network which is used to detect the resign of laser stripe and denoise and a process
which extracts in this part and reconstructs 3D point cloud at the light bar; (b) global fusion: a module
which uses convolution to merge information with all pixels to enrich detailed information; (c) feature
fusion: a module which can merge level information and deep level information for better restore
space information.

Since there is a joint between the pseudo-light stripe formed by the reflection and the real light
stripe, only labeling the true light stripe cannot successfully achieve the segmentation task. Therefore,
the real light stripe and different forms of noise are marked into different categories. Figure 4 shows the
schematic diagram of Image Labeling. The real laser stripe part is marked red (first type), the reflective
part is marked green (second type), the background is black (third type), the ambient light is yellow
(fourth type), and the foggy part is marked blue (fifth type). Images are labeled according to the format
of VOC dataset [35].
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3.3. Structure of Laser-Stripe-Detection Neural Network

Laser-stripe-detection neural network (LSDNN) is a semantic segmentation convolutional
neural network which can extract the region of laser stripe. The specific process is as follows:
The image captured by the camera (1920 × 1080 pixels) is used as input. First, the ResNet is used to
extract rich semantic features as encoder and multiscale dilated convolution as decoder outputs the
segmented result.

In order to successfully determine whether a pixel is in the target region or not, a combination of
large-scale feature, small-scale feature and global feature is needed. Some traditional methods use
multiscale convolution to refine the feature [36]. The accuracy of the network is improved in this
way, but the complexity and train time are also increased. Moreover, when the target object has some
specific features, such structure may not lead to improvement in network performance.

In this paper, we build a single-line structured-light sensor. Given the fact that the horizontal scale
of the laser stripe in image is very large, but its width is relatively small, after extracting feature map
by backbone, we only need large-scale convolution and small-scale convolution to extract the features.
In order to find the best combination of the number and size of the convolution layers, we conduct an
experiment testing different parameters.

Figure 5a is a state-of-the-art structure of pooling module in segmentation [30]. It uses multiscale
atrous convolution as pooling module to extract higher-level features. We design and compare different
structure of the pooling module. The quantitative results are shown in Section 4. The best structure we
select for the laser stripe detection is shown in Figure 5b. It has two dilated convolution layers and one
global fusion module for pooling. The pooling-module-layer 1 contains a dilated convolution layer
which dilation size is 3. It can extract detailed information. The pooling-module-layer 2 contains a
dilated convolution layer which dilation size is 18. It can extract large scale information. The global
fusion module employs global average pooling to capture global context and computes an attention
vector to guide the feature learning. This module can refine the output feature of each stage and
provides rich global space information which is useful for laser stripe segmentation.
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neural network (LSDNN) that has two dilated convolution layers and one global fusion module.

Then feature-fusion module fuse low-level features and high-level semantic features together.
We define the features extracted by ResNet’s first stage as low-level features and the features extracted
by multiscale pooling as high-level semantic features. The input of feature-fusion module is the
combination of low-level features and high-level semantic features. In this module we balance the
scales of the features by the batch normalization and pool the concatenated feature to a feature vector
and compute a weight vector. This weight vector can re-weight the features, which amounts to feature
selection and combination, and the result we get with this module is much better than the result
without it.
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Finally, the feature is decoded by upsampling the 3× 3 convolutional layer and bilinear difference
and a convolution with “1× 1 kernel” as decoder layer outputs the segmented result. The detailed
architecture of LSDNN is represented in Table 2.

Table 2. Architecture of LSDNN.

Layer Name Output Size Architecture

Input 513 × 513 × 3 /
ResNet-conv1 128 × 128 × 64 7 × 7 convolution
ResNet-conv2 128 × 128 × 64 3 × 3 convolution
ResNet-conv3 64 × 64 × 128 3 × 3 convolution
ResNet-conv4 32 × 32 × 256 3 × 3 convolution
ResNet-conv5 32 × 32 × 512 3 × 3 convolution

pooling-module-layer1 32 × 32 × 256 3 × 3 convolution dilation = 3
pooling-module-layer2 32 × 32 × 256 3 × 3 convolution dilation = 18

global fusion 32 × 32 × 256 global pooling & 1 × 1 convolution
feature fusion 512 × 512 × 5 global pooling & 1 × 1 convolution& sigmoid

output 512 × 512 × 3 /

The red region in the segmentation results in the region where the light bar is located, and it is
very easy to extract the red region to achieve the extraction of the light bar region in the original image.
(Filtering out the interference of reflective noise), the next section will show how to extract the center
of the strip from the segment of the stripe.

3.4. Training Process

We denote our training dataset as X = {xi|i = 1, 2, . . .N} and Y =
{
yi
∣∣∣i = 1, 2, . . .N

}
. Set X is

the combination of all laser stripe images in complex environments and set Y is the label image
correspondingly. As the LSDNN we propose is an end-to-end network, we use all images in set X
as the input of our network and the ground-truth image in set Y as the output. This process can be
expressed as:

X LSDNN
→ Y (7)

During the training process, the parameters in our laser-stripe-detection neural network are
updated continuously. Each layer has its independent weight parameter and the fusion module fuse
them all together. The ultimate goal of our training is to minimize the value of the cost function,
which is

L = −
N∑

i=1

y(i)log
(
ŷ(i)

)
+

(
1− y(i)

)
log

(
1− ŷ(i)

)
(8)

here, y(i) represents the i th ground-truth image and ŷ(i) represents the i th prediction image based on xi.

3.5. Evaluation Method

IoU (intersection over union) is a general evaluation index of semantic segmentation tasks.
It represents the ratio of the intersection of two set and their union.

IoU =
ground truth∧ prediction
ground trutht prediction

(9)

When we need to evaluate the accuracy of the task which includes more than one class of object,
mIoU contains more information because it calculates the mean value of IoU over different classes.
In our task, as the different categories in the image often have some area of overlaps, we need to focus
on the overall segmentation precision instead of just on laser stripe region. fwIoU (frequency weight
intersection over union) is another indicators which uses the frequency of occurrence of each category
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as the weight. The mathematical expression of mIoU and fwIoU are as follow, where k is the number of
object categories, pi j represent the number of pixels whose ground truth are i, but predicted result are j.

mIoU =
1

k + 1

k∑
i=0

pii∑k
j=0 pi j +

∑k
j=0 p ji − pii

(10)

f wIoU =
1∑k

i=0
∑k

j=0 pi j

k∑
i=0

pii∑k
j=0 pi j +

∑k
j=0 p ji − pii

(11)

mIoU is regarded as one of the most important indicators in segmentation tasks. Except mIoU and
fwIoU we also use Acc (pixel accuracy), Acc class (pixel accuracy of class), as the assessment criteria
of our experiment. Acc represents the correct percentage of pixels and Acc class represents the mean
value of Acc of each category. The mathematical expression of Acc, Acc class, are as follows:

Acc =

∑k
i=0 pii∑k

i=0
∑k

j=0 pi j
(12)

Acc class =
1

k + 1

k∑
i=0

pii∑k
j=0 pi j

(13)

3.6. Post Processing Algorithm

The output of the convolutional neural network is a color image of three channels of RGB, wherein
the objects of different labels are different in color. When we train the data set, the label of the laser
stripe to be tested is designed to be a specific color. Then we only need to traverse all pixels of the
output picture and mark the pixel points with specific R channel, G channel and B channel values,
the position of the light bar can be accurately extracted. Moreover, the unrelated noise is also filtered
out in this way. Because the size and type of the output image are exactly the same as the original
image, we can simply filter the stripe area on the basis of traversal and remove other parts to get an
image only containing the needed laser stripe.

The intensity distribution of the cross section of the laser tripe usually approximates the gaussian
formula [37]:

G(x) =
1

√

2πσ2
exp[−

(x− µ)2

σ2 ] (14)

µ is the mathematical expectation and σ is the standard deviation.
For the area to be measured, the normal direction at each place can be obtained by Hessian matrix.

The maximum absolute eigenvalue and the corresponding eigenvector of Hessian matrix can be solved
to obtain the normal direction of laser stripe and the second derivative in this direction. In addition,
Taylor series expansion can be carried out along the normal direction of the stripe since the normal
direction is the direction in which the gray scale changes most greatly. Then we can get the center of
the stripe by calculating the partial derivative.

Another method for extracting the center line is gray-gravity method (GGM). Similar to the
definition of the center of mass in mathematics, each pixel in the image is considered a mass block
and the gray value is taken as the mass of each pixel. Each column consists of several pixels can be
considered as a “stick”, so the barycentric coordinates of each “stick” is the center line of the laser
stripe of this column. Assume the image we get has n rows and m columns. The gray value of the
pixel at the i th row and j th column is denoted as I(i, j). Then the center of laser line in the j th column
can be expressed as:

U j =

∑
i=0 i× I(i, j)∑

i=0 I(i, j)
(15)
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In this paper, the single-line structured light is used, so there is only one horizontal laser stripe in
Figure 6. By using gray-gravity method, the center position of the light stripe in each column can be
calculated easily.Sensors 2020, 20, x FOR PEER REVIEW 11 of 19 
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Here, we use the above methods to extract the center line of the laser stripe. Steger method is
robust, but it is time-consuming. By segmenting the stripe first, we can eliminate the unnecessary time
cost as we only need to convolute the selected region of image. The gray-gravity method is fast, but as
it takes all pixels into account, it is easily influenced by the noises in image. However, these noises can
be filtered from the image by utilizing our method. Figure 6 shows the comparison of our method and
Steger method. It can be seen that Steger method fail to detect some part of laser stripe when the haze
flooded the target region.

4. Experimental Results

We independently set up a platform for the unmanned car, which is controlled by a single chip
microcomputer called Arduino and can be moved remotely by Bluetooth. The structured-light sensor is
mounted on the vehicle, and the structured light is projected forward for environmental reconstruction
and information perception. The platform is shown in Figure 7.

Experiment in the corridor outside the laboratory and make our own data set for laser strip
extraction. Deep learning experiments are conducted using four GTX 2080Ti video cards and other
programs are completed under Visual studio 2017.
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4.1. Discussion and Comparison about Different Structure of LSDNN

We build a dataset independently to train and test LSDNN. There are 5976 images in our dataset in
total. We collect and annotate part of the images and the rest images are produced by data augmentation
methods. Of the data set, 85% was used for training and 15% for validation.

We use SGD (stochastic gradient descent) as optimizer. ReLU is selected as the activation function
in each layer of LSDNN. Table 3 presents the hyper-parameters we used in training process.

Table 3. Hyper-parameters.

Learning Rate Batch Size Optimizer Activation Function Loss Function Epoch

0.007 8 SGD ReLU cross entropy 300

LSDNN has two parts, one is backbone for extracting rich semantic features, the other is multiscale
dilated convolution as decoder outputs the segmented result. ResNet is one of the best backbones of
neural network. We use ResNet which is recognized as a good feature extractor as backbone part of
the LSDNN.

The other part of LSDNN consists of multiscale dilated convolution and global fusion module
and feature fusion module discussed in Section 3.3. When we classify the different pixels into different
categories to successfully detect the laser stripe region, we need to fuse all levels of information together.
Multiscale analysis is one of the most powerful tools for extracting different levels of information and
augmenting the details of the image. As for our targeted task, the horizontal scale of the laser stripe
in image is very large, but its width is relatively small. Therefore, we can combine the small-scale
features and large-scale features to achieve higher mIoU. The results of different multiscale convolution
layer are shown in Table 4. We can see that the performance of LSDNN is not always better when the
convolution module increases. In fact, when we conduct the dilated convolution process, we only
need small and large receptive field size. The medium size cannot lead to improvement in mIoU
as the specific features of the laser stripe we discussed above. Therefore, we choose the multiscale
convolution module with the dilation 3 and 18. Moreover, the global fusion part we design is also
essential as it combines the detailed information with overall information.

In addition to ResNet, Xception and MobileNet were also very useful backbones. We tested these
three different backbones. Although mIoU and Acc class fluctuated as the epoch increased, the overall
trend of the curve also increased. The results are shown in Figure 8. We found that ResNet performed
best among the three backbones. Table 4 is the quantitative comparison result after 300 epochs.

Table 4. Architecture after backbone.

Conv1×1 Conv3×3 Conv3×3 Conv3×3 Conv3×3 Conv3×3 Global
Fusion

mIoUDilation = 1 Dilation = 1 Dilation = 3 Dilation = 6 Dilation = 12 Dilation = 18

/ / /
√

/
√ √

73.86%
/ / / /

√ √ √
73.10%

√
/ /

√
/ /

√
74.23%

√
/

√
/ / /

√
73.29%

/
√

/ / /
√ √

74.08%
/ /

√
/ /

√ √
74.31%

√
/ / / /

√ √
72.77%

√
/

√ √ √ √
/ 72.78%

Table 5 shows the quantitative results of changing different backbones. According to the above
discussion, ResNet worked best. We selected ResNet as the backbone of LSDNN. During the training
process, we optimized the loss function to acquire parameters of each layer. We compared two loss
functions: cross-entropy loss function and focal loss function. Figure 9 shows the result. We found that
cross-entropy loss function achieved a higher value of mIoU, and the overall trend of the curve was
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smoother. The cross-entropy loss function was more suitable for the target task. Therefore, we selected
cross-entropy loss function for further training.Sensors 2020, 20, x FOR PEER REVIEW 13 of 19 
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Table 5. Backbone comparison.

Backbone mIoU

ResNet 74.31%
MobileNet 70.04%
Xception 63.14%
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After determining the structure of LSDNN, we conducted experiment to further evaluate the
performance of our method. Here we used the label image as the ground truth. Then, we calculated
the average pixel error of our method and Steger method. The average pixel error was obtained by
averaging laser stripe center pixel error in each column. The quantitative results are shown in Table 6.
In addition, we compared our laser stripe extraction approach with traditional ones. The “pseudo
light”, the noise in environment and discontinuity of line added difficulties to the detection task.
Using threshold and morphology method to delete small line and connect some edges was not reliable
as it was not adaptive and failed when the image changed. Image a and Image b had a “pseudo
light stripe” which could not be easily classified as their shape and intensity were similar. Image c
failed to detect and extract some part of laser stripe when the light was cut apart by different objects.
In addition to this, noises in the surrounding environment, such as the crack of the door, also had
similar properties to light stripe. As shown Figure 10, we found that our method performed better than
traditional method and therefore the extraction result could be applied to high-accuracy measurement
and navigation tasks.
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Figure 10. Detection and extraction result of laser stripe center.

We ran LSDNN and the postprocessing algorithm on the GPU platform (GTX 2080Ti) and
optimized the algorithm to avoid wasting computational resources. Our algorithm could process one
image in 82 ms on average. It could meet the needs of robot positioning and navigation.

Table 6. The average pixel error of laser stripe center extraction.

Test Image Steger Method/Pixels Our Method/Pixels

Image1 81.8 2.809
Image2 260.9 1.672
Image3 203.6 1.749
Image4 143.6 2.06
Image5 117.8 2.387
Image6 99.45 3.672

4.2. Detection and Extraction of the Laser Stripe

Using the network introduced above, we tested many images in different complicated
environments. The results are shown in Figure 11. The noises in the image were filtered thoroughly in
this way. The “pseudo-stripes” caused by reflection between smooth surfaces were distinguished from
the real one. The discontinuity of the laser stripe, the saturation phenomenon and the disturbance
resulting from haze were also successfully avoided from influencing the detection and extraction of
line center in this way.

4.3. Reconstruction of 3D Clouds

The process to acquire the intrinsic and extrinsic parameters of the camera we used is referred to as
calibration [38,39]. The three-dimensional point cloud at the position of the light bar could be obtained
by intersecting the ray and the light plane. After the center line of the laser stripe was accurately
extracted from the image, we could use the formula mentioned in 4.1 to acquire the three-dimensional
coordinates of the center line, which were further used for navigation. The results are shown in
Figure 12.
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4.4. Accuracy Evaluation of the Structured-Light Vision Sensor

We set the camera coordinate system as Oc −XcYcZc. We selected several points on the intersection
of the structured-light plane and the target plane as control points. Then we used the camera’s
extrinsic parameters to calculate these points’ three-dimensional coordinates

(
Xc

i , Yc
i , Zc

i

)
( i ∈ [1, 7])

in Oc − XcYcZc. The results are displayed as the blue dots in Figure 13. Next, we used the
measurement model we introduce in Section 2 to calculate the corresponding point’s 3D coordinates(
Xs

i , Ys
i , Zs

i

)
i ∈ [1, 7] in the camera coordinate system Oc −XcYcZc which are expressed as the red

dots in Figure 13.
(
Xc

i , Yc
i , Zc

i

)
(i ∈ [1, 7]) was closer to the truth value than

(
Xs

i , Ys
i , Zs

i

)
i ∈ [1, 7] [40].

Moreover, this paper approximates
(
Xc

i , Yc
i , Zc

i

)
(i ∈ [1, 7]) as truth value. We used the error E(X, Y, Z)

calculated by Equation (16) to evaluate the measurement accuracy of the sensor.

E(X, Y, Z) =
1
N

N∑
i=0

[
(
Xc

i −Xs
i

)2
+

(
Yc

i −Ys
i

)2
+

(
Zc

i −Zs
i

)2
] (16)
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Figure 13. Measurement error evaluation of the sensor.

The average distance between the measurement point and the calibrated point on the 12 sets
of graphs was recorded, which was about 4 mm and this measurement accuracy meets the
navigation requirements.

Twelve maps were collected for calibrating the structured-light sensor. Figure 13 shows the
measurement error estimations for each image. The measurement accuracy was higher than kinetic
and was close to the LiDAR. According to the above discussion and evaluation, using structured light
for navigation in the dark environment was a cheap and promising robot navigation method.

5. Conclusions

This paper proposes a robust detection method of the laser stripe in complex environment by using
deep convolutional network, which is able to deal with different kind of noises. We creatively design
the structure of LSDNN and carefully test different structures to achieve the best result. The precision of
the extraction is improved significantly, and the time cost is also reduced. We also carry out modeling
analysis to design the linear structured-light sensor and use it to realize the environmental sensing of
narrow space at low cost and high robustness. In some experimental scenes, the point clouds of the
scene can be reconstructed well to obtain the relative position relationship between the robot and the
environment. Our future research will be focused on dealing with more diverse noises and optimizing
the parameters of our sensor.
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