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SUMMARY

Serotonin directly regulates bacterial growth in a species-
dependent manner and indirectly via b-defensins. Higher
gut mucosal serotonin levels select for a more colitogenic
microbiota, resulting in increased severity of colitis. We
show that serotonin-microbiota axis plays an important role
in gut inflammation.

BACKGROUND & AIMS: Serotonin (5-hydroxytryptamine [5-
HT]) is synthesized mainly within enterochromaffin (EC) cells
in the gut, and tryptophan hydroxylase 1 (Tph1) is the rate-
limiting enzyme for 5-HT synthesis in EC cells. Accumulating
evidence suggests the importance of gut microbiota in intesti-
nal inflammation. Considering the close proximity of EC cells
and the microbes, we investigated the influence of gut-derived
5-HT on the microbiota and the susceptibility to colitis.

METHODS: Gut microbiota of Tph1-/- and Tph1þ/- mice were
investigated by deep sequencing. Direct influence of 5-HT on
bacteria was assessed by using in vitro system of isolated
commensals. The indirect influence of 5-HT on microbiota was
assessed by measuring antimicrobial peptides, specifically b-
defensins, in the colon of mice and HT-29 colonic epithelial
cells. The impact of gut microbiota on the development of
dextran sulfate sodium–induced colitis was assessed by trans-
ferring gut microbiota from Tph1-/- mice to Tph1þ/- littermates
and vice versa, as well as in germ-free mice.

RESULTS: A significant difference in microbial composition
between Tph1-/- and Tph1þ/- littermates was observed. 5-HT
directly stimulated and inhibited the growth of commensal
bacteria in vitro, exhibiting a concentration-dependent and
species-specific effect. 5-HT also inhibited b-defensin produc-
tion by HT-29 cells. Microbial transfer from Tph1-/- to Tph1þ/-

littermates and vice versa altered colitis severity, with micro-
biota from Tph1-/- mice mediating the protective effects.
Furthermore, germ-free mice colonized with microbiota from
Tph1-/- mice exhibited less severe dextran sulfate
sodium–induced colitis.

CONCLUSIONS: These findings demonstrate a novel role of gut-
derived 5-HT in shaping gut microbiota composition in relation
to susceptibility to colitis, identifying 5-HT–microbiota axis as a
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potential new therapeutic target in intestinal inflammatory
disorders. (Cell Mol Gastroenterol Hepatol 2019;7:709–728;
https://doi.org/10.1016/j.jcmgh.2019.01.004)
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S(5-HT), is a biogenic amine that has been widely
studied for its neuropsychological and cognitive roles in the
central nervous system. What is often underappreciated is
that the vast majority of 5-HT in the body is found in the
gastrointestinal (GI) tract. The GI tract contains about 95%
of the body’s 5-HT, which is synthesized mainly within the
enteric endocrine cells (EECs).1 Enterochromaffin (EC) cells
are the best characterized subset of EECs and are the main
source of 5-HT in the gut. EC cells are dispersed among
epithelial cells in the mucosal layer of the GI tract and
release 5-HT apically into the gut lumen, as well as baso-
laterally, in response to various mechanical and chemical
stimuli.2–4 EC cells synthesize 5-HT from its precursor
L-tryptophan. Tryptophan hydroxylase (Tph) catalyzes the
synthesis of 5-HT.5 Two isoforms of Tph enzymes regulate
5-HT synthesis; these areTph1, mainly present in EC cells,5

whereas Tph2 predominates in the brain stem and enteric
neurons.6–8

Changes in EC cell numbers and intestinal 5-HT content
have been observed in experimental colitis and the 2 major
forms of inflammatory bowel disease (IBD), Crohn’s disease
(CD) and ulcerative colitis (UC).9–14 In a seminal study, we
demonstrated that Tph1-deficient (Tph1-/-) mice, which
have significantly reduced 5-HT amount in the gut, exhibit
reduced severity of colitis in 2 well-defined models of colitis
(dextran sulfate sodium [DSS] and dinitrobenzene sulfonic
acid [DNBS]).12 We also revealed that 5-HT plays a key role
in the activation of immune cells to produce proin-
flammatory cytokines.12,15 These findings are supported by
findings that the severity of chemical-induced colitis or
spontaneous colitis associated with interleukin (IL) 10
deficiency is increased when combined with 5-HT
enhancing effects of serotonin reuptake transporter defi-
ciency,16 highlighting 5-HT as an important signaling
molecule in the pathogenesis of colitis. However, the precise
mechanisms by which 5-HT influences the disease patho-
genesis remain to be determined.

The mammalian GI tract is colonized by a complex,
heterogeneous, and dynamic microbial ecosystem, and in
humans, the GI tract contains up to 1 � 1014 colony-forming
units of bacteria,17 with colonization occurring soon after
birth. Commensal microorganisms within the GI tract play
crucial roles in GI physiology, aid in digestion, provide
competitive barriers to pathogen invasion, and contribute to
the development of the host immune system.18,19 In addi-
tion, gut microbiota are located at the complex interface of
the epithelial barrier, and they are sensitive to changes in
response to environmental factors, such as diet and drugs,
and signals derived from the intestinal immune system,
such as antimicrobial peptides (AMPs).18
There is now growing evidence that gut microbiota plays
an important role in the pathophysiology of IBD. Fecal and
intestinal mucosa-associated microbiota of IBD patients are
characterized by decreased biodiversity and disruption of
the microbe-host equilibrium.20 Contribution of intestinal
microbiota in the disease pathogenesis is further demon-
strated by using gnotobiotic mice, whereby colitis is not
induced in the absence of microbes.21 Because of strategic
location of EC cells in the epithelial lining of the mucosa and
the emerging role of 5-HT in gut pathology, it is very likely
that 5-HT from EC cells plays an important role in the
modulation of gut microbial composition in the context of
gut pathology and pathophysiology. However, little is
known regarding the precise relationship between 5-HT
signaling and gut microbiota.

In this study, by using in vitro system of commensal
bacteria culture and in vivo system using Tph1-/- and germ-
free (GF) mice, we investigate the role of gut-derived 5-HT
in the regulation of gut microbiota composition and high-
light a key role for 5-HT–microbiota axis in the pathogenesis
of experimental colitis. Our study demonstrates that 5-HT
selects for a more colitogenic microbiota directly by regu-
lating the growth of bacteria in a species-dependent manner
as well as indirectly by inhibiting b-defensin production
from colonic epithelial cells, which altogether leads to
perpetuation of gut inflammation.
Results
Tph1-/- Mice Have Altered Gut Microbiota

To determine whether mucosal 5-HT plays a role in
selecting the microbiota, we analyzed the microbial
composition of Tph1-/- and Tph1þ/- mice, which have
different levels of 5-HT in gut, with Tph1-/- mice having the
lower amount. To minimize the genetic influence, we used
Tph1þ/- mice. We compared the cecal bacterial profiles of
Tph1-/- and Tph1þ/- offspring (F1 mice) from crosses
of Tph1þ/- offspring parents, as well as Tph1-/- mice from a
breeding colony of Tph1-/- mice (Inbred). The 3 groups of
mice were separated into distinct clusters as shown by
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visualization of Bray-Curtis diversity by principal coordinate
ordination (PCoA) (Figure 1A). Although the 2 groups of
Tph1-/- mice (Inbred and F1 offspring of Tph1þ/- crosses)
separated into distinct clusters, they appeared more similar
in composition (Figure 1B). To confirm the functional effect
of the altered microbiota in Tph1-/- mice, we next analyzed
the short-chain fatty acid (SCFA) concentrations within the
feces of naive Tph1-/- and Tph1þ/- mice by using gas
chromatography–mass spectrometry. We observed lower
levels of acetate, butyrate, and propionate in Tph1-/- mice
(Figure 1C).

To predict microbiota that is likely to be strongly influ-
enced by the Tph1-/- genotype, we identified those taxa that
were significantly different from the Tph1D/- heterozygous
mice shared by both groups of Tph1-/- mice. Using Kruskal-
Wallis non-parametric test, 32 operational taxonomic units
(OTUs) are significantly different (P < .025, adjusted for
false discovery rate [FDR]). This included 10 of the top 50
most abundant OTUs. Nine of 10 of these differences
were increased in the relative abundance on the Tph1-/-

mice relative to the Tph1þ/- mice, including an increase in
the 5 OTUs within the Bacteroidetes (OTUs representing
Prevotella, Bacteroides, and 3 OTUs classified only to Bac-
teroidales), 2 taxa in the Firmicutes (Oscillospira, Lachno-
spiraceae), and 1 Proteobacteria OTU (Helicobacter). Within
the Tenericutes, one OTU of Allobaculum was increased and
another decreased (Figure 2). Further investigations will be
required to validate these findings and determine the
mechanisms that alter these taxa in the knockout mice.

5-Hydroxytryptamine Directly Influences Gut
Bacteria Growth In Vitro

EC cells release 5-HT apically into the gut lumen as well
as basolaterally. To explore whether EC cell–derived 5-HT
can directly modulate gut microbial composition, we next
sought to explore the direct effect of 5-HT on the growth of
gut bacteria. We assessed the growth rate by using in vitro
growth of 12 bacterial strains representing the major gut
phyla groups: Bacteroidetes, Firmicutes, and Proteobacteria
(Figure 3). According to the literature, 0.01 mg/L is the
physiological concentration of 5-HT in the gut lumen.22

Among the 12 strains tested, we observed a
concentration-dependent modulation of bacterial growth by
5-HT, and the effect was species-specific in 10 strains. In
general, the anaerobic Bacteroides were more sensitive to
5-HT than the facultative anaerobes, although specific
strains may exhibit enhanced growth at low concentrations.
No significant effect on the growth of the strain of Clos-
tridium bolteae or C ramosum was observed. These findings
demonstrate that 5-HT can directly alter gut microbiota
composition.

5-Hydroxytryptamine Attenuates b-defensin
Production From Colonic Epithelial Cells

On the basis of our previous finding that Tph1-/- mice
exhibit attenuated severity of DSS-induced colitis,12 we
explored whether 5-HT can influence gut microbiota indi-
rectly via AMPs. We found total b-defensin levels in naive
Tph1-/- mice, which have reduced 5-HT in gut, are higher,
compared with wild-type (WT) (Tph1þ/þ) littermates
(Figure 4A). Restoration of 5-HT levels by 5-HT precursor,
5-hydroxytryptophan (5-HTP), in Tph1-/- mice12 reduced
b-defensin production in the colon (Figure 4A). Total
b-defensin levels were also higher in the colon of Tph1-/-

mice as compared with WT littermates post-DSS (57.8215 ±
2.970896 and 35.70425 ± 2.672975, respectively).

Because mouse b-defensin (mBD)-1 and mBD-3 levels
were decreased on 5-HTP administration in the colon of
Tph1-/- mice (Figure 4B), we decided to further investigate
the role of 5-HT in b-defensin production by using HT-29
colonic epithelial cells. Human b-defensin (hBD)-1 (human
orthologue of mBD-1) and hBD-2 (human orthologue of
mBD-3) have been investigated extensively, which are
expressed constitutively or induced under inflammatory
conditions, respectively.23 In addition, we have previously
found reduced severity of DSS-induced colitis in mice on
inhibition of 5-HT7 receptor activation by a selective
antagonist (SB-269970).24 In the present study, treatment
with SB-269970 prevented 5-HT–induced down-regulation
of b-defensin 1 and 2 (Figure 4C and D). We also used
5-HT7 receptor deficient (5-HT7R

-/-) mice and found that
these mice exhibit higher levels of mBD-1 and mBD-3 in the
colon (Figure 4E).

5-HT inhibits peroxisome proliferator-activated receptor
gamma (PPAR-g) expression in various cells,25,26 whereas
PPAR-g activates b-defensin in human colonic epithelial
cells.27 We investigated PPAR-g expression in Tph1-/-

mice. These mice expressed higher PPAR-g expression in
the colon, whereas 5-HTP administration attenuated the
expression (Figure 4F). In HT-29 cells, 5-HT inhibited PPAR-
g expression, whereas SB-269970 restored the expression
(Figure 4G). To examine whether an increased expression of
mBD-1 and mBD-3 is mediated through PPAR-g, Tph1-/-

mice were intraperitoneally treated with either vehicle
(dimethyl sulfoxide [DMSO]) or PPAR-g antagonist, GW-
9662. The antagonist-treated mice showed lower levels of
both b-defensins (Figure 4H). It has been shown that 5-HT
inhibits PPAR-g expression through extracellular signal-
regulated kinase-1 and -2 (ERK1/2) pathway in pulmo-
nary artery smooth muscle cells.28 We observed similar
finding in HT-29 cells that pre-treatment with MEK
inhibitor (PD98059) masked the inhibitory effect of 5-HT
(Figure 4I). These findings altogether suggest that 5-HT
down-regulates PPAR-g via 5-HT7 receptors and subse-
quently inhibits the production of b-defensins from colonic
epithelial cells.
Mucosal 5-Hydroxytryptamine Induced Changes
in Gut Microbiota Alter Susceptibility to Colitis

Tph1-/- mice exhibit reduced severity of colitis.12 We
thus hypothesized that differences in gut microbiota
composition between Tph1-/- and Tph1þ/- mice play a role
in the altered susceptibility to colitis, and that Tph1þ/-

microbiota confer a colitogenic effect. To study the effect
of gut microbiota changes induced by 5-HT, we gavaged
cecal contents from naive Tph1-/- into Tph1þ/- mice and



712 Kwon et al Cellular and Molecular Gastroenterology and Hepatology Vol. 7, No. 4



Figure 2. OTUs differ significantly between the heterozygous mice and the 2 groups of Tph1-/- mice. Those OTUs that
differed with the Tph1þ/- mice and shared between each group were selected, and only those present in the top 50 most
abundant OTUs are shown (n ¼ 10). Kruskal-Wallis non-parametric test was used, with FDR corrected P values <.025 used as
a threshold. Box-whisker plots of relative abundance and log (relative abundance) for visualization purposes for each OTU are
presented. Note that for the log transformed plots only 0 values were converted to a relative abundance of 10–6. Only OTU 2
(Tph1þ/-) and OTU 12 (Tph1-/- inbred) were affected by this conversion.
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vice versa and induced colitis with 5% DSS (Figure 5A).
Adoptive transfer of microbiota from Tph1þ/- to Tph1-/-

mice increased the severity of colitis of the recipient mice as
reflected by increase in macroscopic (Figure 5B) and
histologic damage scores (Figure 5C and D) and myeloper-
oxidase (MPO) activity (Figure 5E), compared with Tph1þ/-

mice that received microbiota from Tph1-/- mice. Notably,
Figure 1. (See previous page). Tph1-/- mice have an altered g
16S partial sequencing profiling analysis of cecal content of 3
(F1)) bred from heterozygous parents were compared with homo
colony of heterozygous parents and mice from a breeding colon
dissimilarity revealed each group of mice had distinct microbiot
along the PCoA1 axis and from each other along the PCoA2 a
genus level revealing greater similarity between the 2 groups o
onate, and lactate in the feces of Tph1þ/- and Tph1-/- mice. D
experiments performed. Data are presented as mean ± standar
IL1b is a mucosal inflammatory marker in IBD, and recent
studies reveal caspase-8, in addition to caspase-1, is
involved in IL1b regulation.29–32 We found an increased
cleavage of caspase 8, when microbiota from Tph1þ/- mice
was transferred to the recipient mice (Figure 5F), which
correlated to an increase in IL1b levels (Figure 5G). More-
over, there were higher levels of IL6 and IL17A in the colon
ut microbiota compared with heterozygous Tph1D/- mice.
groups of mice was carried out. Heterozygous mice (Tph1þ/-

zygous knockout mice (Tph1-/- (F1)) also bred from the same
y of knockout mice [Tph1-/- (inbred)]. (A) PCoA of Bray-Curtis
a. The 2 groups of Tph1-/- mice separated from Tph1þ/- mice
xis. (B) Taxonomic summaries (average of each group) at the
f Tph1-/- mice. (C) Concentration of acetate, butyrate, propi-
ata are from 1 representative experiment of 2 independent

d deviation from 4 mice per group; *P < .05 by Student t test.
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of the recipient mice that received microbiota from Tph1þ/-

mice (Figure 5G).
To further confirm the colitogenic effect of Tph1þ/-

microbiota in increasing the susceptibility to DSS-induced
colitis, we treated both Tph1þ/- and Tph1-/- mice with
broad-spectrum antibiotics (Abx) in drinking water for 10
days before the induction of colitis (Figure 6A). Abx treat-
ment abrogated the differences in the colitis susceptibility
between these mice as shown by similar macroscopic
(Figure 6B) and histologic scores (Figure 6C and D), MPO
activity (Figure 6E), as well as proinflammatory cytokine
levels (Figure 6F). Altogether, these findings suggest that
5-HT perturbs and configures microbiota to a colitogenic
microbiota, which subsequently increases host susceptibil-
ity to colitis.
Transfer of Gut Microbiota From Tph1-/-

Mice Exhibits Up-regulation of Gut Barrier
Integrity and Down-regulation of Inflammation
in Germ-free Mice

To further elucidate the role of gut 5-HT–microbiota axis
in the pathogenesis of colitis, we transferred microbiota
from either Tph1-/- or Tph1þ/- littermates into GF mice and
examined the development of DSS-colitis (Figure 7A).
Although there was no difference in EC cell number and
5-HT levels on day 5 post-DSS (Figure 7B and C), in-
vestigations on the parameters of colitis revealed lower
macroscopic scores, histologic damage score, MPO activity,
and proinflammatory cytokines (IL1b and IL6) in GF mice
colonized with microbiota from the Tph1-/- mice, as
compared with those colonized with microbiota from
Tph1þ/- mice (Figure 7D–H). Recently, it has been shown
that IL17C produced by epithelial cells plays an important
role in the protection of DSS-colitis by inducing hBD-2.33

There was an increase in IL17C levels in GF mice with
microbiota from Tph1-/-, supporting a protective role of
IL17C in DSS-induced colitis (Figure 7I). However, we did
not observe difference in IL23 levels (Figure 7J). Next, we
investigated the expression of gut barrier components.
There was a higher expression of mBD-3 (Figure 8A), ZO-1
(Figure 8B), but not occludin (Figure 8C), in GF mice with
Tph1-/- microbiota, as compared with the GF mice with
microbiota from Tph1þ/- littermates. GF mice with Tph1-/-

microbiota exhibited up-regulated Muc2 and Muc5ac
expression, compared with GF mice with Tph1þ/- microbiota
(Figure 8D). Together, these findings reveal microbiota of
Tph1-/- mice have the ability not only in maintaining the gut
barrier integrity but also in reducing the severity of colitis.
Tph1-/- and Tph1þ/- Microbiota Transferred to
Germ-free Mice Result in Distinct Microbiota
Before and After Dextran Sulfate Sodium
Administration

Analysis of microbial composition in GF mice colonized
with gut microbiota from Tph1þ/- and Tph1-/- mice revealed
distinct microbiota before and after DSS treatment. Principal
coordinate analysis (PCoA) of Bray-Curtis dissimilarity
revealed that the microbiota of the Tph1þ/- and Tph1-/- mice
is separated into 2 distinct groups (permutational multi-
variate analysis of variance, P < .01). DSS administration
shifted the microbial communities as expected, but GF mice
colonized by Tph1þ/- microbiota still exhibited distinct
microbiota, compared with that in GF mice colonized by
microbiota from Tph1-/- mice (Figure 9A). At the phylum
level, DSS administration induced an expansion of Proteo-
bacteria in both groups and reduction in Bacteroidetes/
expansion of Firmicutes in the GF mice receiving microbiota
from Tph1þ/- mice, but GF mice receiving Tph1-/- microbiota
were protected from this microbial shift (Figure 9B). In
addition, investigations at the OTU level revealed reduction
of 2 distinct Bacteroidales OTUs in the GF mice colonized by
Tph1-/- microbiota compared with the GF mice colonized
by Tph1þ/- microbiota, whereas the GF mice colonized by
the Tph1þ/- microbiota exhibited less Akkermansia
(Figure 9C). The increased abundance of Akkermansia in the
GF mice colonized by Tph1-/- microbiota was further
confirmed by testing the direct effect of 5-HT on the growth
rate of the bacterium, whereby 5-HT inhibited the growth in
a concentration-dependent manner (Figure 9D).
Discussion
5-HT is a key enteric mucosal signaling molecule influ-

encing gut physiology (motor and secretory function) and
thus maintaining GI homeostasis. Dysregulated 5-HT
signaling is observed in many GI diseases including IBD,
functional disorders such as irritable bowel syndrome,
colorectal cancer, and in various enteric infections.2,9–14

During the past decade, more studies are enlightening gut
function as well as pathology rely on interactions with gut
microbiota. Healthy microbiota is thought to collaborate
with host to maintain the intestinal barrier, and disruption
of this relationship can compromise the gut function.
Because of close proximity of gut microbiota and 5-HT
producing EC cells in the gut mucosal layer, cross-talk
between them is likely to play a critical role in maintain-
ing intestinal homeostasis. Whereas recently gut bacteria
have been shown to stimulate the release of 5-HT from EC
cells,34 the converse effect of 5-HT on microbiota remained
to be determined. This study illustrates that 5-HT plays a
key role in the regulation of gut microbial composition and
that the direct and indirect influence of 5-HT on microbial
composition affect the susceptibility to experimental colitis.

In recent years, gut microbiota has emerged as a topic of
great interest in biomedical research. Many studies have
demonstrated that disruption of the balanced composition
of the gut microbiota is associated with both GI and non-GI
diseases.35–37 In general, gut microbiota performs several
vital functions for host health, including digestion of com-
plex host-indigestible polysaccharides, pathogen displace-
ment, synthesis of vitamins, and development of immune
system.38 Two major bacterial phyla, Firmicutes and
Bacteroidetes, and 5 minor bacterial phyla, Proteobacteria,
Actinobacteria, Fusobacteria, Cyanobacteria, and Verruco-
microbia, comprise the gut microbiota in adult humans.39 EC
cells, which are dispersed among the epithelial cells, lie in



Figure 3. Direct effect of serotonin (5-HT) on gut microbial communities. In vitro growth of 10 gut commensals in the
presence of serotonin (5-HT) at 0.01, 0.1, and 1 mg/mL was measured by OD at 650 nm relative to control (without 5-HT) at 24
and 72 hours for aerobic and anaerobic bacteria, respectively. Concentration-dependent stimulation and inhibition of bacterial
growth by 5-HT are species-specific. Data are from 1 representative experiment of 3 independent experiments with qua-
druplicates. Data are represented as mean ± standard error of the mean. *P < .05 by Student t test. Significant differences
from negative control (no 5-HT) are indicated by *.
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close proximity to gut microbiota and react to changes in
gut contents by releasing biologically active molecules
including 5-HT.1,40,41 Recently, it has been shown that
microbial-derived metabolites, such as SCFAs (ie, butyrate
and acetate) or secondary bile acids, especially deoxy-
cholate, act on EC cells and up-regulate the expression of
Tph1.34,42,43 In addition, bacterial toxins including cholera
toxin44 and Escherichia coli lipopolysaccharide45 have been
shown to stimulate 5-HT release from EC cells. Taken
together, there is now evidence to postulate a role of
microbiota in 5-HT production from EC cells. In addition to
the effect of gut microbiota on 5-HT production from EC
cells, it is also possible that 5-HT may influence microbiota
in relation to gut function. Indeed, in our studies, we
observed gut microbial composition differs between Tph1-/-

and Tph1þ/- littermates, which have different levels of gut
5-HT, with Tph1-/- mice having the lower amount.
On the basis of previous studies that revealed
importance of littermates in defining host genetic effect
on the gut microbiota composition as well as subsequent
microbial effect on the host susceptibility of DSS-induced
colitis,46,47 we controlled for non-genetic confounders by
generating littermates from Tph1þ/- parents to investi-
gate whether the impact of Tph1 genotype on gut
microbiota is dominant over both parentage and housing
conditions. Here we observed altered microbial compo-
sition in Tph1-/- mice, along with altered SCFA concen-
trations. Interestingly, we observed lower acetate,
butyrate, and propionate levels in the feces of Tph1-/-

mice compared with Tph1þ/- mice. The precise reason for
these lower levels is not clear, but it seems possible that
the lower levels in Tph1-/- mice reflect the differences in
microbial composition between the Tph1-/- and Tph1þ/-

mice.
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Increased mucosal 5-HT content and EC cell hyperplasia
are associated with experimental colitis and IBD.9–12,14,48

Moreover, IBD patients have dysbiotic microbiota with a
decrease in obligate anaerobes.49,50 In our in vitro study
using diverse commensal bacterial strains, there was a sig-
nificant growth inhibition in most of the bacteria tested.
According to the literature, 0.01 mg/L is the physiological
concentration of 5-HT in the gut lumen.22 When we used
higher concentration, there was significant growth inhibi-
tion in most of the bacteria tested, and when affected, the
obligate anaerobes were more sensitive to 5-HT. This pro-
vides evidence that high levels of 5-HT can directly alter the
configuration of gut microbiota.

AMPs shape the composition of the microbiota and help
maintain gut homeostasis. Defensins constitute a major class
and are necessary to fend off microorganisms in the
mucosal layer.51 Abnormal b-defensin production has been
implicated in a number of GI disorders including IBD,27,51,52

whereby diminished antimicrobial activity due to attenu-
ated hBD-1 and hBD-2 expression is associated with colonic
CD patients.52 In addition, 5-HT7 receptor expression is
increased in the inflamed regions of CD patients.53 5-HT7
receptor is also up-regulated in the murine intestine post-
DSS, compared with the controls,24,53 whereas blocking 5-
HT signaling with a selective 5-HT7R antagonist or genetic
deletion of the receptor alleviates colitis in DSS- and DNBS-
colitis.24 Previously, Guseva et al53 found that blocking
5-HT7 receptor exacerbates severity of DSS-colitis. The
authors state that the dose, route of administration, and
housing of animals may account for the difference in the
results.53 In our study, inhibition of 5-HT7 receptors by
selective antagonist restored b-defensin production in
HT-29 cells. 5-HT7R

-/- mice also expressed higher levels of
mBD-1 and mBD-3 in the colon. Recently, it has been
demonstrated that 5-HT4 receptor stimulation via enema
administration has a protective effect in the experimental
colitis but not via intraperitoneal injection, which is shown
to be associated with increased motility.54 Further studies
are warranted to elucidate the role of other 5-HT receptors
expressed on intestinal epithelial cells in b-defensin
production.

PPAR-g is essential for maintaining b-defensin expres-
sion in the colon.27 There is now substantial evidence from
Figure 4. (See previous page). 5-HT down-regulates PPAR-g
production. (A) Levels of total b-defensins in the colon of Tph1þ

of mDefb1 (left) and mDefb3 (right) mRNA expression in the co
Quantification of defb1 mRNA expression (left) and measureme
(SB-269970; 1 mmol/L) treatment in HT-29 cells. (D) Quantificatio
peptides (right) after 5-HT7 receptor antagonist treatment. (E
expression in the colon of 5-HT7R

-/- mice. (F) Quantification of P
5-HTP–treated Tph1-/- mice. (G) Quantification of PPAR-g mRN
mmol/L) treatment in HT-29 cells. (H) Quantification of mdefb1
treated with PPAR-g antagonist (GW-9662; 2 mg/kg intraperito
treated mice. (I) Quantification of defb1 (left) and defb4 (right)
(PD98059; 40 mmol/L). In vitro qRT-PCR data are representativ
centration is 10–7 mol/L. In vitro data are represented as me
represented as mean ± standard deviation from 4 to 6 mice per
or 1-way analysis of variance, with Bonferroni multiple compari
experimental models of colitis and IBD patients that PPAR-g
agonists play a role as a key inhibitor of colitis by regulating
immune activation and inflammation.55,56 We found GW-
9662 reduced mBD-1 and mBD-3 expression in Tph1-/-

mice, whereas 5-HT inhibited b-defensin production by
attenuating PPAR-g via 5-HT7 receptors through ERK1/
2-dependent pathway in HT-29 cells. There are studies
showing that Bacteroides thetaiotaomicron and Enterococcus
faecalis activate intestinal epithelial PPAR-g, which de-
creases IL8 and increases IL10 production, respectively.57,58

Our in vitro study using bacterial strains illustrated the
concentration- and species-dependent effect of 5-HT on the
growth of B thetaiotaomicron and E faecalis, providing
further support that 5-HT can also inhibit PPAR-g in a
microbiota-dependent manner. Altogether, these findings
suggest 5-HT released from EC cells directly and indirectly
(via modulation of b-defensin production) plays a crucial
role in regulation of gut microbial composition. These
findings are further supported by the observations of
different gut microbial composition in Tph1-/- and Tph1þ/-

mice.
There is now abundant evidence to postulate a link

between gut microbiota and IBD.59 In CD, fecal stream
diversion reduces inflammation and induces mucosal
healing in the excluded intestinal segment, whereas infu-
sion of intestinal contents reactivates the disease. In UC,
short-term treatment with broad-spectrum Abx rapidly
reduces mucosal inflammation.60 Recently, a randomized
controlled trial has shown that fecal microbiota trans-
plantation induces remission in a significantly greater
percentage of patients with active UC than placebo, with no
difference in adverse events.61 Adoptive transfer of
microbiota from Tph1þ/- to Tph1-/- and vice versa and the
studies using GF mice provide evidence for the important
role of 5-HT–microbiota axis in the pathogenesis of colitis,
with Tph1-/- microbiota mediating protective effect in GF
mice. GF mice express Tph1 and secrete 5-HT at a much
lower level than SPF mice.34 Our finding that there was no
difference in EC cell number and 5-HT levels after transfer
of either Tph1þ/- or Tph1-/- microbiota into GF mice post-
DSS suggests that the difference in the disease severity
can be attributed to the difference in the microbiota
composition.
via 5-HT7 receptors and subsequently inhibits b-defensin
/þ, Tph1-/-, and 5-HTP–treated Tph1-/- mice. (B) Quantification
lon of Tph1þ/þ, Tph1-/-, and 5-HTP–treated Tph1-/- mice. (C)
nt of hBD-1 peptides (right) after 5-HT7 receptor antagonist
n of defb4mRNA expression (left) and measurement of hBD-2
) Quantification of mDefb1 (left) and mDefb3 (right) mRNA
PAR-gmRNA expression in the colon of Tph1þ/þ, Tph1-/-, and
A expression after 5-HT7 receptor antagonist (SB-269970; 1
(left) and mdefb3 (right) mRNA expression in Tph1-/- mice
neally per day for 5 days), compared with vehicle (DMSO)-
mRNA expression in HT-29 cells treated with MEK inhibitor
e of 3 individual experiments with quadruplicates. 5-HT con-
an ± standard error of the mean, whereas in vivo data are
group; *P < .05, **P < .01, and ****P < .0001 by Student t test
son test.
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Consistent with our finding that Tph1þ/- and Tph1-/-

mice carry different microbiota composition, we found
distinct differences in microbiota between GF mice with
Tph1-/- microbiota and GF mice with microbiota from
Tph1þ/- littermates pre- and post-DSS. Deep sequencing at
the genus level revealed that GF mice colonized by Tph1þ/-

microbiota exhibit low abundance of A muciniphila on DSS
treatment, compared with that in GF mice with microbiota
from Tph1-/- mice. We also observed concentration-
dependent direct inhibitory effect of 5-HT on the growth
rate of the A muciniphila. Although the role of A muciniphila
in the pathogenesis of colitis is still unclear, it has been
shown that A muciniphila–derived extracellular vesicles
mediate protective effects in the development of DSS-
induced colitis.62 In addition, A muciniphila adheres to
colonic epithelial cells and strengthens an impaired gut
barrier63 by stimulating enterocyte proliferation and pro-
moting wound restitution,64 thereby suggesting an impor-
tant role of this bacterium in mediating protection in
intestinal inflammation. Higher abundance of A muciniphila
in Tph1-/- microbiota along with the inhibitory effect of high
5-HT in the growth of the bacterium further provide evi-
dence to postulate the influence of 5-HT–microbiota axis in
the pathogenesis of colitis. Altogether, these results high-
light the importance of 5-HT in regulating gut microbial
composition and ultimately altering susceptibility to DSS-
induced colitis.

In summary, this study not only provides novel infor-
mation on 5-HT–microbiota axis in relation to intestinal
immune responses and the pathogenesis of colitis but also
shed light on the bidirectional relationship between EC cells
and microbiota in gut function. Identifying the specific
bacterial species associated with alteration in gut 5-HT
levels in inflammation may ultimately lead to improved
therapeutic strategies using the bacterial species or target-
ing 5-HT signaling in various intestinal inflammatory dis-
orders including IBD.

Methods
All authors had access to the study data and reviewed

and approved the final manuscript.

Mice
All mice used in this study were male and 6–8 weeks old,

except for GF mice, which were male and 10–12 weeks old.
Breeding pairs of Tph1þ/þ (WT) and Tph1-/- mice on
Figure 5. (See previous page). Microbiota from Tph1-/- mic
microbiota transfer, followed by colitis induction with 5% DSS i
DSS. (C) Representative photomicrographs of H&E stained col
Eclipse 80i microscope. Original magnification, �10. (D) Histolo
Western blot analysis performed on protein extracts obtained fro
with DSS. Representative Western blot with b-actin is present
caspase-8. Each lane represents an individual mouse. Result
formed on at least 3 mice per group. (G) Cytokine levels in the co
transfer of gut microbiota from Tph1þ/- mice to Tph1-/- mice an
independent experiments performed. Data are represented as m
.05 by Student t test. (/) denotes microbiota transfer.
C57BL/6 background were obtained from CNRS, Paris,
France. Tph1-/- mice on C57BL/6 background were origi-
nally produced by gene mutation as previously described.65

Briefly, Tph1-/- mice have been generated by substituting
exon 2 of the Tph1 locus by the nlslacZneopolyA cassette.
These mice are viable, express normal amounts of 5-HT in
the brain, and show no observed differences in food intake
or body weight as compared with Tph1þ/þ mice. Tph1þ/-

and Tph1-/- offspring (F1 mice) were generated from
crosses of Tph1þ/- offspring parents, as well as mice from a
breeding colony of Tph1-/- mice (Inbred). Breeding pairs of
5-HT7 receptor–deficient (5-HT7R

-/-) mice on C57BL/6
background, originally generated as described by Hedlund
et al,66 were provided by Peter B. Hedlund (Scripps
Research Institute, La Jolla, CA). C57BL/6 mice were pur-
chased from Taconic Biosciences, Rensselaer, NY. GF
mice on the C57BL/6 background were derived and
maintained under gnotobiotic conditions in the Axenic/
Gnotobiotic Unit at McMaster University. All experiments
were approved by the McMaster University animal ethics
committee and conducted under the Canadian guidelines for
animal research.
Experimental Protocol
As previously described,12 5-HTP (Cat. # H9772; Sigma-

Aldrich, St Louis, MO) was administered subcutaneously at a
dosage of 50 mg/kg twice a day for 8 days; control mice
received saline. Tph1-/- mice received daily intraperitoneal
injection of GW-9662 at 2 mg/kg/day for 5 days, and con-
trol mice received DMSO. DSS (molecular mass 40 kDa; Cat.
# 02160110; MP Biomedicals Incorporated, Solon, OH) was
added to drinking water at a final concentration of 5%
(w/v) and 2.5% (w/v) for SPF and GF mice, respectively, for
5 days. Mean DSS consumption was noted per cage each
day. Mice were killed 5 days after the beginning of DSS
administration. Macroscopic damage scores were performed
by using a previously published scoring system for DSS-
colitis.67 Colonic damage was scored on the basis of a
published scoring system that considers architectural
derangements, goblet cell depletion, edema/ulceration, and
degree of inflammatory cell infiltrate.67 MPO (an index of
granulocytes infiltration and inflammation) activity was
determined by using a published protocol.67 Tph1þ/- and
Tph1-/- mice were administered ad libitum with broad-
spectrum Abx, consisting of neomycin (0.5 g l-1), ampi-
cillin (0.5 g l-1), vancomycin (0.5 g l-1), and metronidazole
e attenuates DSS-induced colitis. (A) Schematic of cecal
n sterile drinking H2O. (B) Macroscopic scores on day 5 post-
on cross sections on day 5 post-DSS visualized using Nikon
gic damage scores. (E) MPO activity on day 5 post-DSS. (F)
m the colon homogenates of the recipient mice administered
ed as loading controls. Pro-Casp8, pro-caspase-8; Casp-8,
s are the representative of 3 independent experiments per-
lon of Tph1-/- and Tph1þ/- littermates on day 5 post-DSS after
d vice versa. Data are from 1 representative experiment of 2
ean ± standard deviation from 8 to 10 mice per group; *P <



Figure 6. Pretreatment with broad-spectrum Abx abrogates differential susceptibility to DSS-induced colitis between
Tph1D/- and Tph1-/- mice. (A) Schematic of representation of the treatments. (B) Macroscopic scores on day 5 post-DSS. (C)
Histologic scores on day 5 post-DSS. (D) Representative photomicrographs of H&E stained colon cross sections on day 5 post-
DSS visualized using Nikon Eclipse 80i microscope. Original magnification, �10. (E) MPO activity on day 5 post-DSS. (F) IL1b
(left) and IL6 (right) levels in the colon on day 5 post-DSS. Data are from 1 representative experiment of 2 independent
experiments performed. Data are represented asmean± standard deviation from 4 to 6mice per group; *P< .05 by Student t test.
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(0.5 g l-1) in sterile drinking water for 10 days before the
start of DSS (5%)-colitis and continuing until day 5 post-
colitis; their control groups received sterile drinking water
before the induction of colitis.
Adoptive Microbiota Transfer
For adoptive microbiota transfer experiments, 200-mL

cecal samples from Tph1-/- mice were diluted in sterile
phosphate-buffered saline (PBS) and gavaged to Tph1þ/-



Figure 7. GF mice colonized by microbiota from Tph1-/- mice are resistant to DSS-induced colitis. (A) Schematic of cecal
microbiota transfer, followed by DSS treatment. (B) 5-HT expressing EC cells on day 5 post-DSS. (C) 5-HT levels in the colon
on day 5 post-DSS. (D) Macroscopic scores on day 5 post-DSS. (E) Representative photomicrographs (left) of H&E stained
colon sections on day 5 post-DSS visualized using Nikon Eclipse 80i microscope, original magnification, �10, and histologic
scores (right) on day 5 post-DSS. (F) MPO activity on day 5 post-DSS. (G–J) Cytokines (IL1b, IL6, IL17C, and IL23) in the colon
on day 5 post-DSS, respectively. Data are from 1 representative experiment of 2 independent experiments performed. Data are
represented as mean ± standard deviation from 5 mice per group; *P < .05 and **P < .01 by Student t test. (/) denotes
microbiota transfer.
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Figure 8. Components of intestinal barrier function in GF mice after microbiota transfer. (A) mDefb3, (B) Tjp1, and (C)
OclnmRNA expression in GF mice after transfer of gut microbiota from either Tph1þ/- or Tph1-/- mice. (D) Western blot analysis
of Muc2 and Muc5ac performed on protein extracts obtained from the colon homogenates of the recipient mice administered
with DSS. Representative blots (left) of 3 independent experiments performed on at least 3 mice per group are illustrated.
Western blot with b-actin is presented as loading controls. Each lane represents an individual mouse. Results are repre-
sentative of 3 independent experiments. Bar graph (right) representing Muc2 and Muc5ac protein levels normalized for total
protein levels and b-actin. Data are from 1 representative experiment of 2 independent experiments performed. Data are
represented as mean ± standard deviation from 4 to 5 mice per group; *P < .05, **P < .01, and ***P < .001 by 1-way analysis of
variance, with Neuman-Keuls multiple comparison test. (/) denotes microbiota transfer.
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littermates and vice versa for 7 days beginning 2 days
before induction of DSS (5%)-colitis and continuing until
day 5 post-colitis. GF mice received microbiota (cecal) by
oral gavage from Tph1-/- or Tph1þ/- littermates 7 days
before the induction of DSS (2.5%) colitis.

Bacterial Culture
To determine the effect of 5-HT on bacterial growth, the

growth rate of diverse commensal bacterial strains from
human gut isolate library (GIL) in Dr Michael Surette lab
were studied in the presence of 5-HT at varying concen-
trations (0.01 mg/mL, 0.1 mg/mL, 1 mg/mL). Obligate
anaerobic strains included Akkermansia muciniphila (ATCC
BAA-835), Bacteroides fragilis (GIL83), Bacteroides intesti-
nalis (GIL98), Bacteroides thetaiotaomicron (GIL179), Clos-
tridium bolteae (GIL94), Clostridium ramosum (GIL107),
Eubacterium limosum (GIL141), Flavonifractor plautii
(GIL193), and Ruminococcus gnavus (GIL116). Facultative
anaerobic strains included Enterocococcus faecalis (GIL6),
Streptococcus salivarius (GIL9), and Streptococcus australis
(GIL58). Escherichia coli DH5a was used as a control. Strains
were grown in brain-heart infusion broth overnight and
diluted 1:100 into 96-well microplates containing 150 mL of
media supplemented with 5-HT as indicated. Anaerobes
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were incubated at 37�C in an anaerobic environment (5%
CO2, 5% H2, 90% N2) for 72 hours, whereas facultative
anaerobes were incubated at 37�C in 5% CO2 for 24 hours.
Microbial growth was measured by optical density (OD) at
650 nm and normalized to control culture (no 5-HT).
Microbiome Profiling and Analysis
Bacterial profiling was carried out by amplification of the

V3 region of the 16SrRNA gene as described previously.68,69

Amplification products were sequenced on an Illumina
MiSeq Illumina (Farncombe Institute) with 2 � 250 nt



Table 1.Quantitative Real-time Polymerase Chain Reaction Human Primers

Forward (5’-3’) Reverse (5’-3’)

Gapdh CTTAGCACCCCTGGCCAAG TGGTCATGAGTCCTTCCACG

Pparg AAGGCCATTTTCTCAAACGA AGGAGTGGGAGTGGTCTTCC

Defb1 Bio-Rad qHsaCID0015106, PrimePCR SYBR Green Assay Bio-Rad qHsaCID0015106, PrimePCR SYBR Green Assay

Defb4 Bio-Rad qHsaCID0038951, PrimePCR SYBR Green Assay Bio-Rad qHsaCID0038951, PrimePCR SYBR Green Assay
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paired end reads. The data were processed by an in-house
bioinformatics pipeline,70 and analysis was carried using
QIIME71 and PhyloSeq.72 The OTU table was filtered to
remove singletons and those not assigned to bacteria. After
filtering, the minimal number of reads per sample was
21,975, and the samples were rarified to 21,000 reads.

Gas Chromatography–Mass Spectrometry
Analysis of Fecal Short-Chain Fatty Acids

SCFA concentrations of fecal contents were determined
by mass spectrometry. Briefly, fecal samples were acidified
with weight equivalent amount of 3.7% hydrochloric
acid. The tubes were sonicated in methanol for 20 minutes
before use. Internal standards (14.72 mmol/L butyric acid-
d7) were added to the acidified samples, followed by
diethyl ether to obtain diethyl ether-fecal extract. The ether
extracts were then mixed with N-tert-butyldimethylsilyl-N-
methyltrifluoroacetamide (MTBSTFA), followed by deriva-
tization by incubating the organic extract-MTBSTFA mixture
at room temperature for 1 hour. The derivatized samples
were run through 6890N Network GC system (Agilent
Technologies, Mississauga, Canada) equipped with DB-17HT
(30 m � 0.25 mm ID, 0.15 mm film) and 5973N Mass
Selective Detector (Agilent Technologies). Acetic acid, pro-
pionic acid, and butyric acid were quantified and reported
as nmol/mg of fecal sample.

Immunohistochemistry
Formalin-fixed, paraffin-embedded colonic segments

were stained for detection of 5-HT by using a previously
published method.73,74 Colonic tissue sections were depar-
affinized with CitriSolv (Cat. # 04355121; Fisher Scientific,
Markham, Canada) and rehydrated in graded concentrations
of ethanol. Sections were subjected to heat-induced epitope
retrieval, blocked with 3% bovine serum albumin, and
incubated with a polyclonal antibody raised against rabbit
anti-mouse 5-HT (1:5000 dilution; Cat. # 20080;
Figure 9. (See previous page). Analysis of microbial composi
gut microbiota from Tph1D/- and Tph1-/- mice. (A) PCoA of B
Tph1-/-, and GF mice with or without DSS after colonization by
microbiota from Tph1þ/- mice (red) versus Tph1-/- mice (cyan) wi
Tph1þ/- mice (light green) versus microbiota from Tph1-/- mice (
the phylum level in GF mice with or without DSS after coloniza
significant changes at the OTU level in GF mice with or without D
n ¼ 5 mice per group. (D) Concentration-dependent effect of 5
control (without 5-HT) at 72 hours in the presence of seroton
assay data are combined from 2 independent experiments wit
viation. *P < .05 by Student t test. Significant difference from n
ImmunoStar, Hudson, WI) for 1 hour at room temperature.
Sections were washed with PBS/0.5% Tween-20 and incu-
bated with DakoEnVisionþ System-HRP (Cat. # K4003;
Dako, Burlington, Canada). Sections were developed by us-
ing 3,3’-diaminobenzidine solution (SIGMA FAST; Cat. #
079K8208; Sigma-Aldrich), and counterstained with May-
er’s hematoxylin solution (Cat. # MHS1; Sigma-Aldrich).
Sections were visualized by using a Nikon Eclipse 80i mi-
croscope (Nikon Instruments Inc, Melville, NY). The number
of 5-HT positive cells per 10 crypts was counted in 4
different areas for each section.

Drugs and Reagents
5-HT (Cat. # H9523; Sigma-Aldrich), IL1b (Cat. # 200-

01B; Peprotech, Rocky Hill, NJ), rabbit polyclonal anti-b actin
(Cat. # ab8227; Abcam, Cambridge, MA), SB-269970 (5-HT7
receptor antagonist; Cat. # 1612; Tocris Bioscience, Bristol,
UK), GW-9662 (PPAR-g antagonist; Cat. # 22978-25-2; Cay-
men Chemicals, Ann Arbor, MI), and PD98059 (MEK inhibi-
tor; Cat. # 9900L; Cell Signaling Technology, Danvers, MA)
were prepared according to the manufacturer’s manual.

Cell Culture
The human colonic adenocarcinoma HT-29 cells (ATCC

HTB-38) were maintained in Dulbecco modified Eagle me-
dium/F12 (1:1) with 10% (v/v) heat-inactivated fetal
bovine serum, supplemented with modified Eagle medium
and HEPES buffer (pH 7.5) as well as penicillin and strep-
tomycin at 37�C in a humidified 5% CO2 atmosphere. Cell
media were changed every other day. HT-29 cells were
seeded in a 12-well culture plate at a density of 5.0 � 105

cells/mL. Cells were allowed to attach for overnight, which
were then washed twice with PBS and subsequently
replenished with the serum-free media. Cells were stimu-
lated with 5-HT (10–7 mol/L), IL1b (40 ng/mL), or the
medium alone. After the treatment, cells remained viable as
revealed by trypan blue exclusion assay. HT-29 cells were
used between passage numbers 17 and 22.
tion in GF mice with or without DSS colitis after transfer of
ray-Curtis dissimilarity showing distinct microbiota of Tph1þ/-,
either Tph1þ/- or Tph1-/- microbiota. GF mice after receiving
thout DSS (P ¼ .009). GF mice after receiving microbiota from
blue) with DSS colitis (P ¼ .023). (B) Taxonomic summaries at
tion by either Tph1þ/- or Tph1-/- microbiota. (C) Examples of
SS after colonization by either Tph1þ/- or Tph1-/- microbiota.

-HT on the growth of A muciniphila. OD at 650 nm relative to
in (5-HT) at 0.01, 0.1, and 1 mg/mL. In vitro bacterial killing
h triplicates. Data are represented as means ± standard de-
egative control (no 5-HT) is indicated by *.



Table 2.Quantitative Real-time Polymerase Chain Reaction Mouse Primers

Forward (5’-3’) Reverse (5’-3’)

18S GTAACCCGTTGAACCCCATT CCATCCAATCGGTAGTAGCG

Defb1 GGTGTTGGCATTCTCACAAG ACAAGCCATCGCTCGTCCTTTATG

Defb3 GGATCCATTACCTTCTGTTTGC ATTTGAGGAAAGGAACTCCAC

Ocln ATGTCCGGCCGATGCTCTCTC CTTTGGCTGCTCTTGGGTCTGTAT

Pparg CTGCTCAAGTATGGTGTCCATGA ATGAGGACTCCATCTTTATTCA

Tjp1 ACCCGAAACTGCTGCTGTGGATAG AAATGGCGGGCAGAACTTGTGTA
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Quantitative Real-time Polymerase Chain
Reaction

Total RNA from HT-29 cell lines and colonic tissues from
naive Tph1þ/- and Tph1-/- mice, GF and DSS-induced GF
mice colonized by cecal microbiota from either Tph1-/- or
Tph1þ/- mice was extracted by using TRIzol Reagent (Cat. #
15596026; ThermoFisher, Waltham, MA). Complementary
DNA was prepared from 1 mg total RNA using iScript cDNA
Synthesis Kit (Cat. # 1708891; Bio-Rad Laboratories, Mis-
sissauga, Canada). Quantitative real-time polymerase chain
reaction (qRT-PCR) was performed by using SsoFast Eva-
green SYBR Green PCR Master Mix (Cat. # 1725201; Bio-Rad
Laboratories) and CFX96 qRT-PCR system (Bio-Rad).
Primers were used at a concentration of 10 mmol/L
(Tables 1 and 2). Each reaction mixture contained
cDNA, SsoFast Evagreen SYBR Green PCR Master Mix, and
1 mmol/L of primers. Values of target mRNA were corrected
relative to the housekeeping gene coding for human glyc-
eraldehyde 3-phosphate dehydrogenase and mouse 18S.
The data were analyzed according to the 2-DDCT method and
expressed as relative abundances (mean ± standard error of
the mean).

Enzyme-Linked Immunosorbent Assay
5-HT levels were measured by using commercially

available enzyme-linked immunosorbent assay (ELISA) kits
(Cat. # IM1749; Beckman Coulter, Fullerton, CA). Briefly,
colonic tissues were weighed and were homogenized in
0.2 N perchloric acid. After centrifugation at 10,000g for
5 minutes, the supernatants were collected, and the pH was
neutralized by using 1 mol/L borate buffer. The superna-
tants were used for analysis of 5-HT levels using commer-
cially available ELISA kit (Beckman Coulter). 5-HT content
was expressed as a function of tissue weight (ng/mg). For
intestinal cytokine and b-defensin measurement, colonic
tissues were homogenized in Tris-buffered saline containing
a protease inhibitor mixture (Cat. # P8340; Sigma-Aldrich,
Oakville, Canada). Samples were centrifuged for 5 minutes
at 3300g, and the resulting supernatants were frozen at
–80�C until use. Total protein levels were quantified in the
colon homogenates by using DC Protein Assay Kit (Cat. #
5000111; Bio-Rad Laboratories). Cytokine levels (IL1b, Cat.
# SMLB00C; IL6, Cat. # SM6000B; IL17A, Cat. # SM1700;
and IL23, Cat. # M2300) were determined according to the
manufacturer’s instructions (Quantikine Murine; R&D Sys-
tems, Minneapolis, MN). IL17C levels were measured by
using a commercially available ELISA kit (Cat. # SED347Mu;
Cloud Clone Corp, Katy, TX). Levels of mouse total
b-defensins, human b-defensin 1 and 2 peptide were
measured by using commercially available ELISA kits (Cat. #
MBS9315750, MBS052463, and MBS703403, respectively;
Mybiosource, Cedarlane, Burlington, Canada).

Western Blot
Colons isolated from mice were homogenized in Tris-

buffered saline containing protease inhibitor (Cat. #
P8340; Sigma-Aldrich). Equal amounts of protein homoge-
nates from each group were loaded and electrophoresed
onto 7-20% sodium dodecyl sulfate–polyacrylamide gel
electrophoresis and transferred to a polyvinylidene
difluoride membrane by using Transblot turbo transfer
system (Bio-Rad) as per manufacturer’s instructions.
Membranes were blocked with 3% bovine serum albumin
blocking buffer for 1 hour at room temperature and incu-
bated with primary antibodies against Procaspase-8
(1:1000) (Cat # 4927; Cell Signaling Technology), Cleaved
Caspase-8 (1:1000) (Cat # 8592; Cell Signaling Technology),
Muc2 (0.2 mg/mL) (Cat # sc-15334; Santa Cruz Biotech-
nology, Santa Cruz, CA), and Muc5ac (1:1000) (Cat. #
M5293; Sigma-Aldrich) for overnight at 4�C. Membranes
were washed, incubated with either anti-rabbit horseradish
peroxidase–linked antibody (1:5000, Cat. # 7074; Cell
Signaling Technology) or anti-mouse horseradish
peroxidase–linked antibody (0.08 mg/mL, Cat. # sc-2318;
Santa Cruz Biotechnology) for 1 hour at room tempera-
ture. Proteins were visualized by use of SuperSignal West
Femto Maximum Sensitivity Substrate (Thermo Fisher Sci-
entific). b-actin was used as a loading control. Densitometric
analysis was performed on Western blots with ImageJ
software (version 1.48), normalized to total actin. Total
protein concentration of homogenized tissue was deter-
mined by using DC Protein Assay Kit (Bio-Rad).

Statistical Analysis
Data are represented as means ± standard deviation or

means ± standard error of the mean. Where appropriate,
data were analyzed by using unpaired Student t test, 1-way
analysis of variance, followed by Newman-Keuls, Bonferroni
multiple comparison post hoc tests, or Mann-Whitney tests
using GraphPad Prism version 5 (GraphPad Software, La
Jolla, CA). Bacterial community structures were assessed by
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using Bray-Curtis beta diversity measures after rarefication
to normalize for variable number of reads per sample.
Permutational multivariate analysis of variance was used to
analyze statistical differences in beta diversity using the
vegan package in R.75 Results were visualized by using PCoA
plots. Calculations of taxa that differed significantly between
mice groups were computed by using DESeq276 (considered
significant, if the P value was <.01 after adjustment for
multiple testing via DESeq2’s implementation of the
Benjamini-Hochberg multiple testing adjustment proced-
ure). An associated P value <.05 was considered statistically
significant in this study.
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