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Abstract Chronic obstructive pulmonary disease (COPD)

is a heterogeneous disease that is characterized by chronic

airflow limitation. Unraveling of this heterogeneity is chal-

lenging but important, because it might enable more accurate

diagnosis and treatment. Because spirometry cannot distin-

guish between the different contributing pathways of airflow

limitation, and visual scoring is time-consuming and prone to

observer variability, other techniques are sought to start this

phenotyping process. Quantitative computed tomography

(CT) is a promising technique, because current CT tech-

nology is able to quantify emphysema, air trapping, and large

airway wall dimensions. This review focuses on CT quan-

tification techniques of COPD disease components and their

current status and role in phenotyping COPD.

Keywords Computed tomography � Airway remodeling �
Pulmonary emphysema � Chronic obstructive pulmonary

disease � Quantitative CT

Introduction

Chronic obstructive pulmonary disease (COPD) is cur-

rently simply defined as chronic airflow limitation that is

not fully reversible; however, in reality COPD is a com-

plicated group of disorders with a range of pathological

changes in the lung, extrapulmonary effects, and comor-

bidities, which all may contribute to the severity of the

disease [1–5]. In the lungs, parenchymal destruction

(emphysema), small airways disease, large airways disease,

and possibly other factors contribute to the airflow limita-

tions in varying degrees. Unraveling of this heterogeneity

is challenging but important, because early detection of

these pathologies might enable more accurate and earlier

diagnosis and might lead to more specific therapeutic

options. Quantitative computed tomography (CT) may be a

highly interesting modality to detect these pathologies in

vivo, because its separate analysis of disease components

may allow morphologic phenotyping and visual evaluation

of CT images for pathology is time-consuming and prone

to considerable observer variability [6].

During the past decades, quantitative CT has increas-

ingly been used to assess lung structure [7], and consid-

erable research efforts have been devoted to emphysema

quantification. In addition, several research groups have

worked on tools to quantify large airway wall morphology.

There are strong suggestions that emphysema-dominant

and airway wall thickening-dominant groups of COPD

patients can be separated by quantitative CT [8]. Until

recently, only little work has been presented on the quan-

tification of small airways disease, even though the small

airways are the most important site of airflow obstruction

in COPD [9–12]. This review summarizes and illustrates

the current status of CT quantification methods for the

several COPD components, and we discuss the current
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status and future possibilities of phenotyping COPD by

quantitative CT (Table 1).

Emphysema Quantification

Pulmonary emphysema involves alveolar wall destruction

and apoptosis of epithelial and endothelial cells caused by

repeated injury and repair after inhalation exposure of

cigarette smoke and other noxious particles [1]. Emphy-

sema can be subdivided into centrilobular, panlobular,

bullous, and paraseptal emphysema, which show different

distribution throughout the lung; for example, the lower

lobe predominance of panlobular emphysema in alfa-1-

antitrypsin deficiency (AATD) versus the distal and sub-

pleural distribution of paraseptal emphysema [13]. This

difference in distribution may be of importance when sin-

gle CT images are evaluated; however, in volumetric

assessment of the lungs this is not. In assessment of the

emphysema extent, quantitative analysis should be pre-

ferred over visual scores [14], because quantitative

assessment of emphysema provides a continuous instead of

a categorical score, which is important in disease follow-

up. Emphysema quantification has been shown to be highly

reproducible [15–18]; however, data on the limits of

agreement, which are important to define actual increase in

longitudinal use, are currently still limited. Nevertheless, it

is to be expected that when correction for lung volume is

applied, quantitative CT assessment of emphysema will be

near perfectly reproducible.

The first study to quantify emphysema severity with CT

was performed by Hayhurst and colleagues, who showed

that Hounsfield Unit (HU) frequency distribution curves of

patients with histologically proven emphysema signifi-

cantly differed from patients without emphysema [19].

Four years later, an objective method that highlights voxels

below a fixed threshold, the ‘‘density mask,’’ was intro-

duced (Fig. 1) [20]. Emphysema severity is generally

quantified as the ‘‘low attenuation area’’ (LAA) in the lung

with HU less than a fixed density threshold (e.g., -950

HU; LAA-950). Another method is using the nth cutoff-

percentile in the attenuation distribution curve, which

provides the density value in HU under which n% of the

voxels is distributed [7, 21, 22]. Over time, several density

thresholds have been proposed in the literature to separate

emphysematous from nonemphysematous lung [7, 21–23].

The first density threshold proposed by Muller and

coworkers [20] was at -910 HU, because this cutoff value

yielded the best correlation between emphysema in resec-

ted lung tissue and CT measurements in contrast-enhanced

10-mm-thick slices, obtained on a single-slice scanner.

Gevenois et al. later reported the strongest pathologic

correlation with emphysema at macroscopic [24] and

microscopic [25] level at a threshold of -950 HU in 1-mm

noncontrast-enhanced high-resolution filtered images.

More recently, Madani et al. observed that thresholding at

-960 to -980HU best reflects the extent of emphysema

for multidetector CT (MDCT) scans with slice-thicknesses

of 1.25, 5.0, and 10.0 mm, at 20 or 120 mAs [23]. These

thresholds yielded the strongest correlation with macro-

scopic and microscopic extent, although all thresholds

lower than -910 HU were significantly correlated with

Table 1 Current status and future directions of quantitative computed

tomography in COPD

Current status It is now technically possible to quantify

emphysema, air trapping, and large airway

dimensions on CT scans of COPD patients.

Previous studies have shown good correlation

with histology and clinical measures. In

general, more extensive evidence is available

for CT emphysema quantification; less

evidence is available for large airway

dimensions and small airways disease

quantification

Future technical

directions

Future studies could further address the

influence of CT scanning parameters and

volume correction during acquisition

Future clinical

application

More studies are needed on the practical value

of quantitative CT for early diagnosis,

prediction of outcome, and disease

phenotyping

Fig. 1 Quantitative

emphysema measure. Axial CT

images of the thorax in

inspiration showing emphysema

(left) and densitometry overlay

at a threshold of -950

Hounsfield Units (right). Voxels

with attenuation below the set

threshold are colored white
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histopathological indices [23]. For longitudinal emphy-

sema studies, percentile densitometry with the 15th per-

centile is reported to be recommended [26]. Recently,

Madani et al. demonstrated that the first percentile showed

the highest correlation with macroscopic and microscopic

emphysema in 1-mm MDCT images [23]. However, all

cutoffs below the 18th percentile were significantly corre-

lated with histopathology [23]. The above shows that there

is a range of approaches possible, and until today there is

no final consensus regarding the optimal cutoff in percen-

tile method or threshold value, especially not for low-dose

multidetector CT scans [27].

Factors that Influence Quantitative Measurements

Densitometry can be influenced not only by the applied

percentile or density threshold, but also by image recon-

struction algorithm [28–31], section thickness [28, 32],

inspiration level [15, 33], scanner/study centre [15], gravity

[34] and radiation dose [35]. Madani and colleagues

recently showed significant differences in emphysema

measurements at varying inspiration levels, but they sug-

gested that this may not be clinically relevant above 90%

of vital capacity for %LAA-950HU, or above 80% of vital

capacity for the 1st percentile method [33]. Bakker et al.

has stated that CT densitometry is highly reproducible, and

interscan variability of emphysema measurements largely

originates from differences between scanners and severity

of disease, especially when corrected for differences in

total lung volume [15]. Therefore, it is argued that scans

should be corrected for lung volume [36, 37]. When mul-

tiple scanners are involved, scans can be corrected by

calibrating for tracheal air [38]. To correct for the physi-

ological ventrodorsal gradient in lung attenuation due to

gravity, an automatic robust linear fit correction is sug-

gested [34]. Currently, corrections are not widely applied.

Further, application of dose reduction is important. When

the radiation dose is reduced, the signal-to-noise ratio is

lowered which could possibly lead to unreliable quantita-

tive measurements. Studies on the effects of radiation dose

are not conclusive; several studies reported that dose

reduction can be applied without clinical importance

[32, 39–41], but others did found a significant difference in

quantitative emphysema measurements between high-dose

and low-dose [35]. Additionally, to lessen the problem of

increased noise in low-dose scanning, the application of a

noise reduction filter may be useful [42]. Taken together,

low dose scanning is feasible, as long as scanning protocol

is taken into account in comparison of results between

different studies or in follow-up.

Besides the technical factors that interact with emphy-

sema quantification, co-existing high-density lung disease

[43, 44] and low-density air trapping (Fig. 2) [10, 45] may

influence the quantitative assessment of emphysema. Inter-

stitial lung disease (i.e. fibrosis) or air trapping can alter the

lung attenuation, ‘masking’ or aggravating emphysema

measurements. This emphasizes the necessity of combined

analysis of the different COPD components (Table 2).

Less Commonly Used Quantification Methods

Several other quantification methods have been reported,

but these are less often used. Coxson et al. [46] described a

method in which the remaining amount of lung tissue is

quantified. They expressed lung inflation as ml of air per

gram lung tissue, and showed that emphysematous lesions

below and above 5 mm diameter corresponded with

6.0–10.2 and [10.2 ml air per gram lung tissue,

Fig. 2 Quantitative air trapping measure. Axial CT images of the

thorax in inspiration (left) and expiration (middle, left) showing air

trapping as sharply defined areas with less than normal increase in

lung attenuation and lack of volume reduction after expiration

(middle), and the densitometry overlay at a threshold between -860

HU and -950 HU (right). Voxels with attenuation within this range

are colored white
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respectively. Others have developed more technical, tex-

ture-based quantification methods, applying parenchymal

classifications and a large number of independent tissue

features [47–52]. Texture-based measurements were

reported to correlate significantly better with PFT than

density-based measurements [51, 52]. Finally, a fractal-

based concept was introduced to assess the size distribution

of low attenuation regions. Mishima et al. determined the

slope of the cumulative frequency-size distributions of

areas below -960 HU on a log–log scale (D-value) [53],

and based on their results they suggest that the D-value is a

robust parameter and powerful index of terminal airspace

enlargement, and a potential method of emphysema

quantification [53]. Its pathological validity is questioned

[54], but Yuan et al. recently showed that D-value is

independently and significantly correlated with histological

measurements of emphysema and that the combination of

cluster analysis and lung densitometry provides a more

accurate result than either measure alone [44].

In conclusion, CT scanning is commonly used for

emphysema quantification, and pathological correlation

studies are available. However, the debate about both the

most appropriate scan technique and algorithm has not

been settled yet. As long as different techniques and set-

tings are used, strict comparison of studies should be per-

formed with great caution, because many factors influence

the automated quantitative results.

Large Airway Measurements

Large airways can be thickened in COPD, an abnormality

shown to correlate with pulmonary function tests [55]. It

also has been shown that bronchial wall thickening is an

independent determinant of airflow obstruction in COPD

subjects [56, 57]. Structurally, the changes in proximal

airways of COPD subjects involve squamous metaplasia of

epithelium and mucus hypersecretion [1]. It has been

suggested that thickening of the wall of larger airways

reflects small airway abnormalities [58], but whether large

airway wall thickening merely reflects small airways dis-

ease or is an independent morphologic phenotype of COPD

remains to be determined.

Initial studies on large airway quantification relied on

manual tracing of airways on CT images [59], but devel-

opments in scanner technology led to the introduction of

multiple techniques [60–69]. The most widely used method

in airway measurements is the ‘‘full-width-at-half-max-

imum’’ (FWHM) principle. Briefly, the FWHM technique

calculates the x-ray attenuation values along rays placed

from the lumen center outwards in all directions (Fig. 3).

The airway wall boundaries are considered to be at the

location where attenuation is halfway to the maximum on

the lumen side and halfway to the minimum on the

parenchymal side (Fig. 4) [64, 70]. From the airway wall

delineations, different parameters, such as wall thickness,

lumen area, wall area percentage, and airway perimeters,

can be calculated [71]. Although the FWHM technique is

standardized and straightforward, it systematically over-

estimates airway wall area, especially in small airways

[64]. Several other techniques were described to increase

accuracy. First, a phantom study showed greater accuracy

compared with FWHM in measuring the airway inner and

outer radius of thin-walled airways with the use of a

maximum-likelihood algorithm on the gray level along a

calculated ray [60]. Second, Saba et al. reported a method

of ellipse-fitting to the airway lumen and wall of a phantom

that significantly improves estimation of the luminal edges

and is able to estimate airway geometry to within 4 degrees

in tilt of obliquely cut airways [61]. Third, a score-guided

erosion algorithm showed significantly lower overestima-

tion of airway wall area in a phantom and excised pig lung

compared with manual delineation. Their method com-

bined an edge-finding algorithm with the knowledge that

airways are roughly circular and of high density to lung

parenchyma [62]. Last, Weinheimer et al. presented an

integral based method by which the blurring effect of CT,

especially present in small objects, is minimized. They

showed that their method performed much better than the

FWHM method in a silicon tube phantom. Also, their

method proved repeatable in pigs and was able to dis-

criminate between smokers and nonsmokers in their trial

[63].

Using multiplanar reconstruction, Hasegawa et al. showed

that airway wall dimensions at the sixth generation were more

closely associated with lung function than dimensions of more

proximal generations [67]. This finding is supported by

Table 2 Challenges to be solved in quantitative computed tomography

in COPD

Challenge Specific study

Multicenter studies with CT

scanners from multiple vendors

Suitability and influence of

tracheal air correction on the

quantitative measures of

emphysema and air trapping

Longitudinal data Interscan variability and limits of

agreement of the quantitative

measures. Methods of proper

lung volume control or volume

standardization

Low-dose CT scanning Influence of noise reduction

filtering and iterative

reconstructions on quantitative

CT measures

Lack of consensus on which

measures to use, multiple

software tools

Comparison of the available

quantitative measures against

reference standards
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Achenbach and colleagues who assessed airway wall

dimensions in smokers with COPD and never smokers

with 3D software [68]. They reported moderate correlations

(-0.56\ r \ -0.62) between airway wall measurements

and airflow obstruction (FEV1 and %predictedFEV1), and

demonstrated stronger correlations when only small airways

were analyzed. Matsuoka et al. [69] were the first to perform

airway measurements in expiration, using phantom-validated

3D software. The authors demonstrated that luminal area in

expiration correlated more closely with airflow limitation than

did measurements in inspiration and that the highest correla-

tion was found for the expiration to inspiration ratio of lumen

area. Furthermore, they showed that the correlation

improved from the third to the fifth generation (maximum

0.70\ r \ 0.72) [69]. These results extend the finding by

Hasegawa and suggest that both airway wall and luminal area

show stronger relations to airflow limitation in more periph-

eral airways. Recently, bronchial wall attenuation was intro-

duced as another index for airway abnormality in COPD

subjects; in thin walled structures, such as more peripheral

airways, this peak wall attenuation is thought to represent both

airway wall density and wall thickness [72, 73]. In this study,

Yamashiro et al. further solidifies the observation of stronger

correlations in more peripheral airways, both for the airway

wall attenuation, airway wall dimensions, and luminal area

[73].

Factors that Influence Quantitative Measurements

Technically, quantitative airway measurements may be

influenced by partial volume averaging [74]. Furthermore,

the applied reconstruction kernel significantly affects air-

way wall and luminal measurement results of the FWHM

method, whereas slice thickness and field of view (FOV)

apparently do not [75]. Contrarily, it has been reported by

Fig. 4 Graphical illustration of the full-width-at-half-maximum

(FWHM) method. An illustration of the attenuation profile along an

outwards flowing ray from the luminal center-point through the

airway wall (Fig. 3). In the full-width-at-half-maximum (FWHM)

method, the inner and outer airway wall boundaries are assumed

halfway to the maximum on the lumen side and halfway to the

minimum on the parenchymal side (half-maximum), respectively.

The airway wall thickness is assumed the distance between both

points (full-width)

Fig. 3 Quantitative measurement of the large airway dimensions. An

axial CT image of the right lung at the level of the upper right apical

bronchus (upper left). A magnified image of this airway is shown with

rays flowing out of a center point in the airway lumen in all directions,

as well as the defined inner and outer edge of the airway wall (upper
right). Additionally, two examples are shown with a thickened airway

wall (lower left, black arrow) and a normal airway wall (lower right,
black arrow). The wall area percentage (%WA) is 84% and 65%,

respectively
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Achenbach et al. that the pixel size does affect the accuracy

of the FWHM method [76]. Reconstruction kernel influ-

ence was further investigated by Schmidt et al. who

reported minor bias in measurements across soft and hard

reconstructions [77]. Lowering the radiation dose was

found to affect FWHM-based measurements of lumen

diameter and wall thickness in pig airways [78]. Contrarily,

others found no influence of radiation dose on the accuracy

of their algorithm in low-dose scans at 50 mAs [79]. Evi-

dence on the effect of lung volume on quantitative

assessment of airway dimensions in humans is lacking.

Lastly, longitudinal data for the different airway quantifi-

cation techniques are limited, but variability between CT

measurements may be substantial and impair measure-

ments, especially in smaller airways [80].

In conclusion, the wall of larger airways is directly

visible on CT and can be thickened in COPD patients.

Quantification methodology has developed during the past

decade into automated 3D-programs. Future studies are

required to determine the pathological validity of the newer

3D quantification techniques, and further research should

investigate the influence of CT scan parameters and inter-

scan reproducibility of the different airway quantification

methods available.

Small Airways Measurements

The most important site of airflow obstruction in COPD are

the airways smaller than 2 mm [11, 12]. Structurally, this

involves airway wall thickening, airway narrowing, peri-

bronchial fibrosis, and luminal inflammatory mucous exu-

date [1]. These small airways cannot be visualized directly

using current CT scanners, but the presence of air trapping

on expiratory CT scans can be used as an indirect sign to

evaluate small airways dysfunction. Air trapping is defined

as less than normal increase in lung attenuation and lack of

volume reduction after expiration (Fig. 2) [13]. Quantifi-

cation of air trapping is challenging in COPD patients,

because it should be separated from air remaining in

emphysematous spaces after exhalation [10]. In addition,

air trapping is an unspecific phenomenon, because it is

reported in nonobstructive smokers and healthy individuals

with normal PFT as well [81–86]. Finally, there is no

pathological reference available, because air trapping is an

in vivo phenomenon.

CT quantification of air trapping has not been widely

used in COPD subjects. Recently, the percentage of lung

voxels below -856 HU in expiration has been introduced

as a measure of air trapping in COPD [87]. This expiratory

threshold of -856 HU is a conversion of 6.0 ml/g lung

inflation in inspiration [46], and it has been has been used

before in air trapping quantification in asthmatic children

[88]. The drawback of this single-threshold method is that

it does not compensate for the influence of emphysematous

areas; it combines air trapping and emphysema quantifi-

cation into one measure. Previously, the expiratory to

inspiratory ratio of mean lung density (E/I-ratioMLD), as a

measure of air trapping, was shown to correlate

(0.48 \ r \ 0.68) with clinical parameters of COPD such

as BODE-index [45]. Yamashiro and colleagues [9] used

the expiratory to inspiratory ratio of lung volume (E/I-

ratioLV) and showed that his volume-ratio correlated

almost perfectly (r = 0.95; p \ 0.001) with the E/I-

ratioMLD. Nevertheless, this air trapping measures may

clearly be influenced by the expiratory effort, and scanning

should be performed after standardized instructions.

Matsuoka et al. [10, 89] developed a density-based quan-

tification method for air trapping that is designed specifi-

cally to quantify air trapping outside emphysematous areas.

To exclude emphysema, all voxels with attenuation lower

than -950 HU were excluded from inspiration and expi-

ration scans. In these limited lungs, a threshold of -860

HU delivered the highest correlation with spirometry and

RV/TLC. They subsequently calculated the relative volume

change between -860 HU and -950 HU (RVC-860 to

-950) using the formula: RVC-860 to -950 = expiratory

volume between -860 and -950HU—inspiratory volume

between -860 and -950HU. Their measure correlated

significantly with lung function parameters of airflow

obstruction and air trapping (r = 0.50–0.80) in subjects

with either minimal-to-mild emphysema or moderate-to-

severe emphysema [10]. In a feasibility study, Torigian

et al. [90] attempted to register accurately inspiration and

expiration scans to obtain a colored ‘‘difference-image.’’

Further research into this method is required to improve

precision and accuracy. To date, no comparison of the

published quantitative CT measures of air trapping has

been performed, and the optimal quantitative measure has

yet to be identified.

Factors that Influence Quantitative Measurements

Quantification of air trapping in expiratory scans is clearly

influenced by the level of expiration, but the influence of

suboptimal expiration on air trapping quantification has not

been studied. Scanning should be performed after strict

breathing instructions, but standardization of expiration

level also could be achieved by using spirometric-gated

scanning, a technique that is technically cumbersome and

not widely used in clinical practice. It is currently not

known whether such standardization will improve the

repeatability of quantitative assessment of air trapping.

Furthermore, noise in low-dose scans may influence the

quantitative measurements similar to emphysema quanti-

fication. At the moment, no noise reduction filter is
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validated to eliminate the influence of increased image

noise for air trapping quantification. No studies have

addressed section thickness and other scan parameters on

quantitative CT measurements of air trapping. Last, pres-

ence of emphysematous areas may influence quantitative

assessment of air trapping. Techniques that compensate for

emphysema are theoretically preferred; however, to date no

studies are available that compare corrected and uncor-

rected quantitative CT air trapping measures.

In conclusion, small airways cannot be directly visual-

ized with current CT technology, but air trapping quanti-

fication at end-expiratory CT scans can be used as an

indirect measure of small airways disease. Literature in this

relatively new research area is still limited, and it is yet

unknown what is the optimal quantitative CT air trapping

method in COPD.

Other Possible Quantifiable Abnormalities

The extent of airflow limitation in COPD may not be fully

explained by emphysematous tissue loss, small airways

disease, and large airway remodeling alone. Hence, several

other morphologic CT signs (e.g., intrapulmonary airway

collapse [91], tracheobronchomalacia [92], mucous plug-

ging, bronchiectasis, or interstitial lung disease) might be

involved and could possibly be quantified. However, to our

knowledge, these components have not been investigated

with quantitative CT techniques so far.

Use of Quantitative CT in COPD

Correlation with Disease Parameters

A small number of studies, as summarized below, have

investigated the relationship between quantitative CT

measures and some commonly used clinical measurements.

The number of publications limits the interpretation on

which CT parameters correlated best with a certain clinical

parameter. Quantitative CT emphysema has been shown to

be associated with osteoporosis [93, 94], exercise capacity

(6-minute walk distance, 6MWD) [45, 95], and the BODE

index (a multicomponent parameter that includes BMI,

FEV1, dyspnoe-score and exercise capacity as measured

with the 6MWD) [45, 96]. Additionally, it has been shown

that quantitative CT air trapping is associated with 6MWD

[45] and that quantitative CT measurements of airway wall

thickness and emphysema are associated with exacerbation

frequency in COPD subjects [97]. Also, CT measurements

of emphysema and airway wall thickness are independently

related to patient reported respiratory symptoms [98].

Recently, it has been shown that the combination of

quantitative CT emphysema and CT air trapping explains a

large part of the variation in airflow limitation in COPD

[99]. Finally, it has been reported that CT assessed

emphysematous changes correlated with respiratory mor-

tality in various stages of COPD [100]. These are all

interesting findings that may lead the way to a clinical

application of quantitative CT; however, all studies are

relatively small and need further validation. Future studies

will have to expand the knowledge on the associations

between quantitative CT measures and relevant disease

parameters.

Clinical Application

Possible clinical application of quantitative CT has been

studied in lung volume reduction surgery (LVRS) patients.

Cederlund et al. [101] used densitometry at -950 HU to

separate heterogeneous from homogeneous distribution of

emphysema and suggested further research to determine its

value in patient selection and postoperative outcome in

LVRS. Nakano et al. [102] showed that LVRS candidates

with emphysema distribution in the rind of upper lung

fields had greater benefit from this treatment than those

with emphysema at other locations. Additionally, Flaherty

et al. found that upper zone emphysema was the best

predictor of FEV1 increase after surgery [103], and

Martinez et al. [104] showed that lower zone predominance

was predictive of mortality. Furthermore, it was demon-

strated that CT measurements of emphysema before LVRS

predict postsurgery cardiopulmonary exercise capacity

[105]. These results all support the promising role of

quantitative CT assessment in patient selection and out-

come prediction in LVRS; however, it is questionable

whether a preoperative radiological measure alone can

sufficiently predict functional outcome of LVRS; it is more

likely that CT will serve as an additive tool.

Longitudinal studies regarding both clinical and quan-

titative CT data are important in requiring insight into the

structural changes over time, the contribution of different

disease components to functional decline, and the effect

throughout different stages of the disease. In this area,

quantitative CT measures have been used recently as out-

come measure; Stockley et al. showed that alpha-1-anti-

trypsine augmentation significantly reduces CT lung

density decline, which represented emphysema increase

and may therefore reduce mortality risk [106]. Parr et al.

showed that sputum markers of neutrophilic inflammation

in COPD correlated with disease progression, indicated as

quantitative CT measures [107]. Using quantitative CT

emphysema measures as outcome variable originates from

the study by Dirksen et al. [108], which showed that spi-

rometry is less sensitive than CT lung density for the
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detection of emphysema progression. Later studies under-

lined this superiority of quantitative CT over spirometry for

the detection of disease progression in alfa-1-antitrypsine

deficiency [109–111]. Other longitudinal studies into CT

emphysema quantification provided information that

quantitative measurements of overinflation [112] and

emphysema [38] at baseline predict greater decline in lung

function over time. These data illustrate the expanding use

of CT emphysema assessment in longitudinal research, and

it is to be expected that quantitative CT will increasingly be

used to monitor disease progression and therapy effects.

However, although some studies have reported on the

reproducibility of emphysema measurements [15–18],

more knowledge on the limits of agreement is needed

before widespread use of quantitative CT emphysema

measures in longitudinal studies.

Also of interest is the longitudinal assessment of airway

dimensions and air trapping using quantitative CT. Ohara

et al. [113] found that annual changes in airway thickening

correlated with annual decline in lung function; however,

there is very little evidence and certainly no consensus on

how to obtain and compare data on large and small airways in

COPD. Future studies should establish a general approach,

validation against pathology, and elucidate the reproduc-

ibility and limits of agreement of different quantification

methods. Additionally, they should provide further data on

the association between clinical parameters and airway wall

thickening and air trapping, and on the predictive value of

these measures for lung function decline.

Possible Role in Phenotyping

It has become a widespread belief that different phenotypes

exist within COPD and that these phenotypes may require

different management and treatment. Quantitative CT

might be a good starting point because well-known rele-

vant pathology can be detected in vivo. Nakano et al. [70]

quantified the airway wall of the upper right apical bron-

chus and emphysema extent in 114 subjects and found that

both airway dimensions and parenchymal destruction are

independent contributors to lung function. They further

showed that most subjects showed either airway- or

emphysema-dominant disease [8, 70].

Makita et al. showed that emphysema extent varies

widely within the same disease stage, suggesting that there

are subjects with emphysematous disease and small air-

ways disease [114]. Patel et al. provided further evidence

for phenotypes by showing that airway wall thickening and

emphysema dominance follows familial aggregation [57].

Within emphysema, small airway wall thickening has been

shown to occur in both centrilobular and panlobular phe-

notypes, however, is more closely associated with

emphysema and airflow limitation in the centrilobular

phenotype [115]. It also has been reported that emphyse-

matous COPD subjects have a different disease phenotype

compared with nonemphysematous COPD subjects; i.e.,

lower spirometry, diffusion constant, radiological scores of

chronic bronchitis, and more sputum lymphocytes [116].

Regarding airway-dominant phenotypes, it has been shown

that COPD subjects with chronic bronchitis had thicker

airway walls than COPD subjects without chronic bron-

chitis [117]. Finally, Alford et al. reported a more mech-

anistically oriented phenotyping method based on

heterogeneity of pulmonary perfusion in emphysema sus-

ceptible smokers [118].

As the literature shows, different characteristics have

been named phenotypes over time. Recently, a clear defini-

tion was proposed to classify COPD subjects in relation to

clinically meaningful outcomes [119]. In line with this, it has

been shown that increase in CT emphysema and airway wall

thickness is associated with exacerbation frequency, which

suggests that quantitative CT may help in the identification

of subgroups with exacerbations for targeted research or

phenotype specific therapy [97]. Such phenotyping and

focused intervention is likely to be clinically meaningful;

therapeutic intervention directed against inflammation of

airways may be useful in airway dominant COPD; however,

it might be useless or theoretically even harmful in subjects

with an emphysema dominant phenotype. Fujimoto and

Kitaguchi [120, 121] underline this rationale by demon-

strating different responsiveness to drugs in patients with

visual predominant airway, emphysema, or mixed disease.

Future studies should provide more evidence on phenotyping

and clinical outcomes. Currently, large studies, such as

ECLIPSE, COPDgene, and SPIROMICS, are on their way to

gather data systematically for COPD subjects and to provide

new information to further unravel this complex disease.

Additional Diagnosis of COPD

With the increased use of CT in both daily practice and

lung cancer screening trials, where pulmonary function

testing is not performed routinely, quantitative CT might

become a useful tool for the detection of new COPD

subjects. First, given the strong relationship between air-

flow limitation and quantitative CT measurements of

emphysema and air trapping [99], quantitative CT may be

used additionally to identify airflow obstruction from CT

scans obtained for another reason [122]. Second, CT holds

the potential to predict lung function decline [38, 112] and

to identify COPD cases still in their subclinical stage (i.e.,

normal pulmonary function test) based on morphologic CT

features [38]. However, evidence on the additive value for

COPD detection in CT is still limited and more research is

warranted to further explore this application of CT data.
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Radiation Exposure in Quantitative CT

Radiation dose and risks are important issues in studies

involving CT imaging. Image noise is an important related

issue for quantitative CT on low-dose scans. Briefly, noise

represents random fluctuations of the measured CT number

in scans; thus, image noise will increase when radiation

dose is lowered. Quantitative CT is possible with low-dose

protocols with effective dose around 0.5-1.5 mSv (annual

background radiation in the United States is around 3 mSv)

[123]. Even when individuals are exposed multiple times

(e.g., lung cancer screening trials), the cumulative dose

remains fairly low. However, risk should always be bal-

anced to expected benefit.

Conclusions

The detection of relevant COPD phenotypes is a chal-

lenging and exciting research priority. Since quantification

techniques have been improved during the past decades,

CT can now measure the well-known disease components

in COPD, such as emphysema, small airways disease, and

large airways disease; this makes quantitative CT very

promising in COPD research. However, a lot of work

remains, especially in the quantitative assessment of small

airways dysfunction. Quantitative CT might gain an

important role in both phenotyping and (early) diagnosis of

COPD patients, which might lead to the detection of

treatable COPD subgroups and prevention of morbidity and

mortality due to this disease.
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