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Cognitive workload is one of the widely invoked human factors in the areas of human–
machine interaction (HMI) and neuroergonomics. The precise assessment of cognitive
and mental workload (MWL) is vital and requires accurate neuroimaging to monitor and
evaluate the cognitive states of the brain. In this study, we have decoded four classes
of MWL using long short-term memory (LSTM) with 89.31% average accuracy for
brain–computer interface (BCI). The brain activity signals are acquired using functional
near-infrared spectroscopy (fNIRS) from the prefrontal cortex (PFC) region of the brain.
We performed a supervised MWL experimentation with four varying MWL levels on 15
participants (both male and female) and 10 trials of each MWL per participant. Real-
time four-level MWL states are assessed using fNIRS system, and initial classification is
performed using three strong machine learning (ML) techniques, support vector machine
(SVM), k-nearest neighbor (k-NN), and artificial neural network (ANN) with obtained
average accuracies of 54.33, 54.31, and 69.36%, respectively. In this study, novel deep
learning (DL) frameworks are proposed, which utilizes convolutional neural network
(CNN) and LSTM with 87.45 and 89.31% average accuracies, respectively, to solve
high-dimensional four-level cognitive states classification problem. Statistical analysis,
t-test, and one-way F-test (ANOVA) are also performed on accuracies obtained through
ML and DL algorithms. Results show that the proposed DL (LSTM and CNN) algorithms
significantly improve classification performance as compared with ML (SVM, ANN, and
k-NN) algorithms.

Keywords: convolutional neural network, long short-term memory, functional near-infrared spectroscopy, mental
workload, brain–computer interface, deep neural networks, deep learning

INTRODUCTION

Neuroergonomics is a research field that is focused on the estimation of the brain responses
generated as a result of human behavior, physiology, emotions, and cognition; in general, it is the
study of human brain and its behavior at work (Mehta and Parasuraman, 2013; Curtin and Ayaz,
2018; Ayaz and Dehais, 2019). Passive brain–computer interface (pBCI) is one of the important
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research areas of neuroergonomics. pBCI is designed using
the arbitrary brain signals to decode user intentions (Khan
and Hong, 2015). These signals may be decoded from fatigue,
mental workload (MWL), drowsiness, vigilance, stress, anxiety,
and so forth. The passive brain activities are decoded for
monitoring applications to ensure a reliable decision-making
process. Among these passive brain activities, MWL is a complex
function that involves neurophysiologic processes, perception,
short-term memory (STM), long-term memory (LTM), and
cognitive functions (Bergasa et al., 2018). Exceeded limits of
MWL are mostly the cause for irrational decision making that can
lead to errors and safety hazards (Byrne et al., 2013). Drowsiness,
one of the passive brain activities, is a major cause of traffic
accidents (Bioulac et al., 2017). In the present realm of human–
machine interaction (HMI), modern technology requires even
greater cognitive demands from users and operators for ensuring
safety and maximizing the effectiveness (Saadati et al., 2019a).

There are different approaches toward estimation of MWL:
subjective rating, performance, and physiological measures are
the most common techniques. The performance rating method
keeps track of a person’s progress by using two metrics,
namely, accuracy (a person’s deviation from fixed procedure)
and reaction time (how fast task is done), whereas the
subjective rating methods use questioners that are designed
by evaluators to assess the emotional and cognitive states of
the subject. Also, self-reporting and opinions of the subjects
during the experimentation are also considered to measure
the MWL (Chen et al., 2019). Several research studies use
tests like National Aeronautics and Space Administration’s Task
Load Index (NASA-TLX) and subjective workload assessment
technique (SWAT) to measure the cognitive load (Noyes and
Bruneau, 2007). A limitation of subjective method is the
self-reporting protocol that is dependent on the respondent’s
opinion, which may be affected by self-feelings, biasedness,
low motivation, ambivalence, and mistakes in interpreting
environment changes (Paulhus and Vazire, 2007). In addition,
these methods may not consider the physical work associated
with the activities involving movement of a person’s arms,
legs, feet, or entire body (Cain, 2007). On the other hand,
physiological methods provide a real-time assessment and higher
feasibility. The physiological techniques also require a smaller
sample size to estimate reliable cognitive load states (Tran
et al., 2007). Physiological sensors, such as electroencephalogram
(EEG), heart rate variability (HRV), eye response measurement,
functional magnetic resonance imaging (fMRI), and functional
near-infrared spectroscopy (fNIRS) are most commonly used for
the monitoring of the MWL (Hong and Santosa, 2013; Tong et al.,
2016; Curtin et al., 2019).

Electroencephalogram is commonly used modality for
monitoring passive brain activities (Frey et al., 2014). In the
domain of functional neuroimaging, EEG has certain robust
advantages over the other techniques (J. Ph Lachaux et al.,
2003; Harrison and Connolly, 2013; Wang et al., 2019) and
used extensively in cognitive neuroscience and BCI applications.
However, EEG has some limitations owing to its low spatial
resolution and is usually constrained to measure the region-
specific brain activities (Strait and Scheutz, 2014). fMRI does offer

higher spatial resolution, but it limits the subject’s portability
and struggles in temporal resolution (Canning and Scheutz,
2013). fNIRS, on the other hand, offers balanced spatial and
temporal resolution as compared with other neurophysiological
modalities and is widely used for MWL estimation (İşbilir et al.,
2019). fNIRS systems are described in comparison with other
modalities and used as a compromise between fMRI and EEG
in relation to spatial and temporal resolution, respectively.
Portability requirement of fNIRS system is primarily for its
use in neuroergonomic applications (MWL) in ecological
environment. fNIRS is also less prone to electro-psychological
artifacts, easy to wear, portable, and lightweight (Naseer and
Hong, 2015; Hong and Khan, 2017). Several recent studies
have used fNIRS for classification of cognitive tasks and events
(Abibullaev and Jinung, 2012; Ayaz et al., 2018; Asgher et al.,
2019; Wang et al., 2019). These studies include motor imagery,
mental arithmetic (MA), MWL, vigilance, and motor execution-
based paradigms, which have been experimentally performed
to measure accuracies of system. In these studies, the most
important objective is to improve classification accuracies, which
lead to the exploitation of appropriate classifiers using different
machine learning (ML) techniques. The challenging part in these
conventional ML classification methods is feature engineering,
involving feature extraction, a large number of possible features,
feature selection, their combinations, and dimensionality
reduction from a relatively small amount of data, which leads
to overfitting and biasness (Trakoolwilaiwan et al., 2017; Wang
et al., 2019). These intrinsic limitations make researchers tweak
around and hence results in a lot of time consumed in data
mining and preprocessing. Deep learning (DL) with deep neural
networks (DNNs) has emerged as an alternative to overcome this
challenge by bypassing the need for manual feature engineering,
data cleaning, transformation, and reduction before feeding into
learning machines (Saadati et al., 2019a).

Linear discriminant analysis (LDA), k-nearest neighbor (k-
NN), and support vector machine (SVM) have been rigorously
implemented and are well-studied classification algorithms in
BCI and MWL analyses (Tai and Chau, 2009; Power et al., 2012;
Hortal et al., 2013; Naseer and Hong, 2013; Sumantri et al.,
2019). All these conventional classifiers and ML algorithms are
hampered by complex feature engineering and dimensionality
reduction in order to make data visible to the learning system.
DNNs have recently gained popularity as highly efficient training
classifiers, but limited studies are available so far (Zhang
et al., 2019; Saadati et al., 2019b). Hennrich et al. (2015)
and Naseer et al. (2016) used DNN and other conventional
classifiers to differentiate between two and three cognitive
states using brain fNIRS signals. Some studies used similar
procedures for binary classification to control robot and gender
classification (Ozge Mercanoglu et al., 2017; Huve et al., 2018).
Saadati et al. (2019a,b) employed CNN with hybrid fNIRS–
EEG for MWL classification and neurofeedback. Various studies
(Abibullaev et al., 2011; Ho et al., 2019) modeled deep belief
network (DBN) and CNN framework for discriminating MWL
and left and right motor imagery tasks using multichannel
fNIRS signals. Long short-term memory (LSTM) is one of the
variants of DL–recurrent neural network (RNN) algorithms
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FIGURE 1 | Functional near-infrared spectroscopy (fNIRS)-based mental workload (MWL) classification using machine learning (ML) and deep learning (DL)
algorithms. Data acquisition through fNIRS system (P-fNIRSSyst), data preprocessing, and detailed feature engineering followed with application of ML and DL
classification.

specifically designed for time-series data (Schmidhuber and
Hochreiter, 1997). The only available work on LSTM is that
of Yoo et al. (2018), which is limited to only three class
classifications and has not compared LSTM results with most
employed CNN algorithms.

In this study, we acquired a four-level MWL with varying
difficulty levels using fNIRS from 15 healthy subjects (including
both male and female). Physiological noises and other high-
frequency artifacts were removed using low-frequency bandpass
(fourth-order Butterworth) filter (Santosa et al., 2013). Statistical
significance of data is verified by p- and t-tests. Three ML
classifiers [SVM, k-NN, and artificial neural network (ANN)]
along with two DNN algorithms (CNN and LSTM) are used in
the analysis and classification of four-state MWLs. The major
contribution of this research is that, for the first time, LSTM
is applied directly on four-class MWL-fNIRS sequential data
for classification and comparison with CNN. ML classifiers
couldn’t perform well in comparison with DNN algorithms; and
within the DL paradigm, the LSTM offers significantly better
classification accuracy than does the CNN. The comprehensive
summary of research is depicted in Figure 1.

METHODS AND METHODOLOGY

Experimental Protocol and
Experimentation
Methodology
In this study, 12 channels [12 oxyhemoglobin (HbO) and
12 deoxyhemoglobin (HbR)] and two-wavelength (760 and

850 nm) continuous-wave fNIRS system, namely, “P-fNIRSSyst”
is used to measure neuronal activity in form of hemodynamic
concentration changes in prefrontal cortex (PFC) (Asgher et al.,
2019). There is a 20-ms delay between reading channels and
triggering light source, and 3 µs is employed to obtain voltage
values of channels. Data samples are acquired at a rate of 8 Hz
(per channel per second), which effectively translates into 192
samples per second [12 channels × 2 (both HbO and HbR) × 8
(per channel sample rate) = 192]. fNIRS optical optodes are
placed in an arrangement as shown in Figure 2.

Experimental Conditions and Participants
Ten male and five female subjects (all right-handed; age range
of 20–27 years, with a mean age 23.5 years and standard
deviation of 5.5 years) participated in this experiment; they
also have an educational background in engineering and
technology. Before the final selection, a medical screening test
is conducted with the supervision of a medical physician.
None of the subjects had any mental, visual, or psychological
disorder. Participants are given the details and procedures
of the experiment prior to the start of the experiment.
All the experiments are conducted in accordance with the
Declaration of Helsinki and are approved by the Ethical Research
Council of RISE at SMME—National University of Sciences
and Technology (NUST). The task environment is designed
such that minimum external interference and artifacts should
entail in readings. The dark and quiet room is selected with
a comfortable back support chair to ensure restful experience
(Hong et al., 2015). After an initial relaxation period, participants
are asked to put on the fNIRS forehead band on the scalp
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FIGURE 2 | The functional near-infrared spectroscopy (fNIRS) (P-fNIRSSyst) system placed to measure participants’ prefrontal cortex (PFC) activity. Optodes are
placed according to the standard 10–20 system.

as shown in Figure 2 and sit in front of the laptop screen.
It is a supervised experiment; participants are observed with
a live stream video camera placed in front of them from
an adjacent room.

Data Acquisition
Experimental Tasks and Paradigm
The experiment is designed to discriminate between four levels
of MWL. The participants are asked to restrict their physical
and head movements as much as possible in order to avoid
the artifacts. At the start of the experiment, participants are
presented with Microsoft Office PowerPoint (version 16.0) slides

shown on the laptop screen placed at 70 cm from nasion. The
MA task is selected to evoke the brain activity and to entail a
certain amount of MWL, which is prominent in case of MA
problems (Power et al., 2011, 2012; Schudlo and Chau, 2013;
Kosti et al., 2018). Here, the objective is to measure the mental
cognition on the basis of the logic and arithmetic and to ascertain
different brain activities with different difficulty levels and their
classification. The participants were required to complete the task
in time with accuracy. In order to set a baseline, an initial 146
(120+ 26) s are given as a rest period to settle all the brain signals
at baseline. The baseline is followed by 20-s MA activity task to
gauge MWL level 1 (MWL-1); next, 20 s is the relax (rest) period
of the brain, and the brain attains baseline reference during the
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FIGURE 3 | Data acquisition and experimental paradigm with experimental trials and trial sequence diagram. After initial rest period, participants are presented
through mental workload (MWL) tasks in phases with increasing difficulty order.

rest period (during the rest period, the participants are asked
not to focus at any point). The first MWL-1 task is designed
such that it induces a minimal amount of MWL (Galy et al.,
2012). Task 1 contains a simple three-number addition such as
769 + 292 and 345 + 229 as MWL-1. Similarly, in phase I, the
participants are again given consecutive second tasks to gauge
MWL-1 for the same period of 20 s followed by a rest period of
20 s. During the rest period, the participants were asked to relax
their mind and place mind at rest (Power et al., 2012; Naseer
and Hong, 2013; Schudlo and Chau, 2013), so that no brain
activity is generated during rest, whereas focusing on a point or
cross in turns could generate a brain activity (Izzetoglu et al.,
2011), which was not required in this study, and that could be
easily differentiated from the mental math task. This pattern is
repeated 10 times, with 10 trials for each participant consisting
of MWL-1. After completion of MWL-1, the participants are
presented with workload level 2 task in similar conditions. MWL
level 2 (MWL-2) starts with a 25-s baseline (rest) period after
the MWL-1 and followed the same pattern of 10 trials of MA
task 2 (MWL-2) with the 20-s duration of each trail and 20-
s rest period in between each MA task. MA task-2 is designed
such that it creates a moderate amount of MWL-2 (Galy et al.,
2012; Longo, 2018) in a fixed time window. The difficulty level
is MWL-2 > MWL-1. MWL-2 has slight complex calculations
as compared with MWL-1, including addition, subtraction of
large numbers, and operations like multiplication and division,
for example, 692 - 579, 60 × 11, and 49/29. Similarly, MWL-
3 starts after a rest period of 25 s and has complex MA tasks
to induce a high level of MWL. The difficulty level is MWL-
3 > MWL-2. It includes arithmetic operation on equation, and
the resultant answer (ANS) is utilized in the next calculations
(e.g., 823 - 3, ANS × 3, ANS - 21, and ANS + 211) involving
mental math task, mental logic, and memory element (Herff et al.,
2013; Hosseini et al., 2018). fNIRS recording activity for MWL-1
took 546 s, MWL-2 took 405 s, and MWL-3 took also 405 s for

each participant. The total time of experiment of 10 trials with the
three MWLs and rest is (546+ 405+ 405) = 1336× 15 = 2040 s.
The tasks timeline sequence of three MWL levels and rest period
(four cognitive states) is shown in Figure 3. Experimental tasks
are verified using standard subjective assessment measure NASA-
TLX method. Here, class is an activity (category) having a
specific cognitive difficulty level (MWL), which is categorized
from other classes (MWL levels) or categories using ML and DL
classification. The NASA-TLX is a subjective, multidimensional
assessment tool that rates perceived MWL in order to assess
task, gauge cognitive workload, effectiveness, and performance.
Experimental paradigm is repeated, and questionnaires are filled
with subjects’ input. Results show the reliability of experimental
tasks and the difficulty levels (classes) of various MWLs. The
TLX (index) weight is MWL-3 > MWL-2 > MWL-1. The
results obtained using NASA-TLX are shown in Annexure
A (Supplementary Material) that validate the experimental
paradigm for MWL assessment and analysis.

Data Preprocessing
Brain activity is detected by measuring concentration changes of
HbO and HbR molecules in the microvessels in the cortex. The
modified Beer–Lambert law (MBLL) and its variants FV-MBLL
are used for measuring concentration changes of HbO and HbR
using the information on the intensities of detected NIR light at
two different time instants (Pucci et al., 2010; Asgher et al., 2019).

[
1CHbO (ti)

1CHbR (ti)

]
=

[
αHbO (λ1) αHbR (λ1)

αHbO (λ2) αHbR (λ2)

]−1 [
1OD (ti;λ2)

1OD (ti;λ2)

]
l × x d

(1)
Detected raw voltage readings from fNIRS optodes of detected
lights are processed through analog-to-digital converter (ADC)
and are sent to the computer through Bluetooth connection,
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where they are normalized by dividing with the mean value. Then
signals are passed through low-passed band filter using a fourth
order, with zero-phase Butterworth filter (Naseer et al., 2014)
having a cutoff frequency of 0.3 Hz to remove high-frequency
artifacts due to breathing (0.2–0.5 Hz), blood pressure (∼0.1 Hz),
and heartbeat (1–1.5 Hz) (Franceschini et al., 2006; Huppert
et al., 2009). Then relative hemodynamic concentration changes
are calculated according to Naseer and Hong (2013). The time-
series waveforms for different MA (MWL) tasks and MWLs are
easily segregated and plotted and are included in Annexure B
(Supplementary Material). Here, the response activities show
different difficulty levels of MWL and can be easily segregated and
classified as time-series data.

Statistical Significance of Functional Near-Infrared
Spectroscopy Data
Functional near-infrared spectroscopy optodes are placed on the
forehead (PFC) of subjects as shown in Figure 2. Amplitude
and intensities of acquired hemodynamic signals vary from
person to person and depend on various factors (Hong and
Khan, 2017). The data validation and function response of the
device is mentioned in Asgher et al. (2019). Further, in order to
determine the integrity and validity of four-class data acquired
from the fNIRS system and to make sure that each channel of
the device has significant information, a statistical significance of
data per channel is first calculated. Independent-samples t-test
and p-test are calculated with the null hypothesis: There is no
significant difference between collected fNIRS data and standard
data patterns and alternate hypothesis as otherwise on each
channel. Additional parameters are also considered like negative
correlation between HbO and HbR and channel data comparison
with MWL model. For channels having a p-value of less than
0.05, we rejected the null hypothesis and accepted the alternate
hypothesis. For all subjects, data from only those channels that
fulfill the criteria are considered, as given in Figure 4. The figure
shows the data significance per channel. Green bars in the figure
show that 89.16% of the acquired data are significant.

DATA MINING AND FEATURE
ENGINEERING

After the data are preprocessed and noise is removed after
filtering, the features are extracted from it for classification and
discrimination. Features are directly extracted from NIR intensity
signals (Power et al., 2012), and the common practice is to
extract features directly from acquired hemodynamic signals
(HbO and HbR) in the form of changes in concentration
(1HbO and 1HbR) (Santosa et al., 2017; F. Wang et al.,
2018) to provide improved data cleaning and feature selection.
Hemodynamic activity data of the brain can be represented
in various feature forms (Bashashati et al., 2007; Lotte, 2014),
and different feature combinations can be effectively used for
signal classification. All extracted features are normalized in the
range [0, 1] before classification. Features are selected such that
they have more data information and do comprise significant
information that is subsequently used for precise classification
(Naseer et al., 2016). The analysis and results of ML algorithms

FIGURE 4 | The statistical significance of channels: green cells showing the
significant channels, whereas red cells are non-significant channels.

are calculated from various feature combinations: signal mean,
maxima, variance, minima, slope, variance, skewness, kurtosis,
and signal peak. The obtained results show slope and mean
yield the best result in our study, and the best features are
mentioned in Figure 5. These feature engineering results and
findings are in line with previous studies (Abibullaev and
Jinung, 2012; Khan and Hong, 2015; Naseer et al., 2016;
Hong and Khan, 2017).

Feature Extraction and Selection
Selecting appropriate features for classification is vital, and most
of the studies are confined to extracting optimum statistical
values of hemodynamic signals. Acquiring the highest accuracy
of classification depends on the number of factors such as length
of the sliding window (Hong et al., 2015), choosing the best set of
feature combinations (Naseer et al., 2016), wavelet functions for
decomposition, and temporal and spatial resolution of modalities
(Abibullaev and Jinung, 2012). After the best feature extraction
techniques are mentioned, optimal features used for classification
are signal mean, slope, variance, skewness, kurtosis, and signal
peak (Khan and Hong, 2015; Hong and Khan, 2017). Before
features are calculated, all channels were normalized between
[0, 1] using the following equation:

xnorm =
x− xmin

xminmax
(2)

where xnorm is the normalized feature value between 0 and 1, and
xmin and xmax are the smallest and largest values, respectively.
To avoid the model’s overfitting on training data and validating
classification performance, 10-fold cross-validation is used. In
10-fold cross-validation, data are divided into 10 subsets, and
one subset is used as test set while the other nine sets are
used as training sets, whereas in leave-one-out cross-validation
(LOOCV) is logical extreme of k-fold cross-validation, with k
equal to number of total data points (N). For a smaller dataset,
LOOCV is considered suitable, whereas for medium datasets,
k-fold cross-validation is preferred. LOOCV is also expensive
in terms of computational cost and train test time. To save the

Frontiers in Neuroscience | www.frontiersin.org 6 June 2020 | Volume 14 | Article 584

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00584 June 21, 2020 Time: 8:53 # 7

Asgher et al. Multi-Class Mental-Workload Detection Using LSTM

FIGURE 5 | (A) Accuracies with two-feature (mean–slope) combination in support vector machine (SVM) classification plot of oxyhemoglobin (HbO) for subject 1 on
channel 4. (B) Accuracies with two-feature (mean–slope) combination in k-nearest neighbor (k-NN) classification plot of HbO for subject 1 on channel 7. Only
statistically significant channels are considered.

computational resources and the nature of datasets lies in the
medium category; therefore, k-fold cross-validation is employed
in this study (Wong, 2015).

ANALYSIS AND CLASSIFICATION USING
MACHINE LEARNING ALGORITHMS

Support Vector Machines and k-Nearest
Neighbor Classification
Support vector machine is the most commonly used
discriminative classifier in various studies for classification
and pattern recognition (Thanh et al., 2013; Khan et al., 2018).
In supervised learning, given a set of labeled training data, SVM
outputs an optimal hyperplane that assigns new test data to one
of the categories of the classification. SVM is designed such that
it maximizes the distance between the closest training points
and separating hyperplanes. In two dimensions, separating
hyperplane feature space is given by:

f (x) = r · x+ b (3)

where b is a scaling factor and r, x ∈ R2. The loss function of SVM
for a two-class classification problem is given in Eq. 4. For more
than two classes, the one-versus-all approach is used in which
class 1 is the class that we want to predict and all other classes
are considered as class 2 using the same formula:

J (θ) =

m∑
i=1

y(i)Cost1(θ
T
(

x(i)
)
+

(
1− y(i)

)
Cost0(θ

T
(

x(i)
)

(4)

In Eq. 4, m represents the total number of data points. And the
cost is calculated as

Cost
(
hθ (x) , y

)
=

{
max(0, 1− θTx) if y = 1
max(0, 1+ θTx) if y = 0

(5)

The common practice to do multiclass classification with SVMs
is to employ a one-versus-all classifier and predict the class with
the highest margin (Manning et al., 2008).

k-Nearest neighbor is a non-parametric method, commonly
used for pattern recognition, classification, and regression tasks
(Sumantri et al., 2019). In the case of the classification, the
output is class label assigned to the object depending on the most
common class among its k-NNs. Weights are assigned to the test
point in inverse relation to the distance, that is, 1/D, where D is
the distance to the neighbor, such that neighbors near the input
are assigned more weight as the distance is less and vice versa as
given in Eq. 6.

D
(
x, p

)
=


√

(x− p)2 Euclidean
(x− p)2 Euclidean eSquared(
x− p

)
Manhattan

 (6)

Training dataset in case of k-NN are vectors in multidimensional
feature space with each class label. In the prediction phase
of the algorithm, the distance of an unlabeled input is
calculated using Euclidean distance. Data are in pairs like
(x1, y1), (x2, y2), ....(xn, yn) ∈ Rd such that Rdx{1, 2} where x is
the feature, y is the class label of the feature, and p is the query
points. Predictions are made on the basis of k-NN examples by
using formula (7) (Zhang et al., 2018).

y =
1
k

k∑
i=1

yi (7)

k is a hyperparameter and its selection depends on the data.
Generally, larger values of k reduce the effects of noise on the
classification but make boundaries less distance between the
classes. Here, SVM and k-NN are implemented to discriminate
between four MWL levels from fNIRS datasets of 15 participants.

All algorithms were trained and tested on MSI GE62VR
Apache Pro Laptop with NVIDIA GEFORCE R© GTX 1060 having
a 3 GB GDDR5 graphic card. SVM and k-NN were performed
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on MATLAB 2019a Machine Learning app, whereas ANN,
CNN, and LSTM were performed on Python 3.7 on Anaconda
SPYDER integrated development environment (IDE). In both
ML and DL algorithms, Adam optimizer is used to dynamically
adjust the learning rate and is the most (Kingma and Ba,
2015). At the start of training, the weights are initialized from
Xavier uniform distribution (Glorot and Bengio, 2010). For
SVM and k-NN, we extracted nine features from the original
hemodynamic HbO and HbR signals, namely, mean, median,
standard deviation, variance, minima, maxima, slop, kurtosis,
and skewness. These features were spatially calculated across
all 12 channels with a moving overlapping window of 2 s. For
two feature combinations, Signal Mean (M) and Signal Slope
(S) produced the best results, which are shown in Figures 5A,B
for Subject 1. Average accuracies across 12 channels show that
average classification accuracy achieved with SVM and k-NN is
54.33 and 54.31%, respectively.

Artificial Neural Network Classification
An ANN has at least three layers (an input layer, a hidden layer,
and an output layer), and each layer performs its computation
and learning tasks, where the number of neurons in each layer
depends on the number of inputs in the input layer and the
number of outputs in the output layer. The hyperparameters are
neurons in each layer, weights, network structure, and learning
parameters that are learned by training the network again and
again to get the maximum accuracy.

The output of a neuron is mathematically expressed as

a(j)
i = g

(
θ(j)xk

)
(8)

where ai
(j) is the activation of unit i in a layer and g is

the activation function applied, θ(j) is the matrix of weights
controlling function mapping from layer j to layer j+ 1, and xk is
the input from the previous layer of neurons or initial input. The
recursive chain rule is implemented to calculate gradients during
backpropagation. Mathematically, the chain rule is defined in
Eq. 9. The cost function for ANN is given in Eq. 10.

dy
dx
=

dy
du

.
du
dy

(9)

J (2) = −
1
m

[ m∑
i=1

K∑
k=1

y(i)
k log hθ(x(i))k +

(
1− y(i)

k

)
log(1− hθ

(
x(i))k

) ]
+

λ

2m

L−1∑
l=1

δl∑
i=1

δl+1∑
j=1

(2
(l)
j )2 (10)

The proposed ANN model consists of two hidden layers along
with input and output layers. The dimension of the input
layer corresponds to selected features, whereas the output layer
corresponds to distinguishable MWL classes, which, in our case,
are 9 and 4, respectively. Each hidden layer consists of 50
neurons and is fully connected with the previous and next
layers. For activation function in hidden layers, “Relu” is used,
which introduces non-linearity to learn complex features, given
in Eq. 11. The output layer has a “sigmoid” activation function

for multiclass classification and prediction. The ANN model
summary used in this study is shown in Figure 6 with details
about layers, neurons, and parameters used in this study. Every
channel for each subject with nine extracted features is passed
through the network, and cost is calculated through gradient
descent. Loss is backpropagated through network, and weights
are adjusted. This process is repeated equally to the number of
epochs, that is, 100. At each epoch, accuracy is calculated; later,
the accuracy is averaged out on all 12 channels and is segregated
and will be discussed in section “Results”.

f (x) =
(
x+
)
= max (0, x) (11)

ANALYSIS WITH DEEP LEARNING
CLASSIFICATION TECHNIQUES

Convolutional Neural Networks
Convolutional neural networks (CNNs) intelligently adapt the
inherent properties of data by performing different operations on
the data as a whole and extracting key feature before feeding it
into fully connected layers (LeCun and Bengio, 1995; Dos Santos
and Gatti, 2014). The acquired fNIRS dataset has specific patterns
within it, which relates to the strength of mental activity with
hemodynamic concentration changes (1HbO and 1HbR). CNN
has to learn this hidden pattern on its own (without human
intervention, i.e., manual feature engineering) through end-to-
end training (Ho et al., 2019; Saadati et al., 2019a). CNNs have
one, two, or multiple convolutional layers with an activation
function along with pooling layers to adjust the dimensions of the
feed data, but these layers are not fully connected. Resultant layers
formed after convolution operation are known as activation
maps. These activation maps hold the features and patterns
within fNIRS training data required for successful classification.
The number of filters must be the same as the input data depth
to perform convolution, and the output size of the resulting
activation map is determined by the filter size and stride using
the following formula.

Output size (W, H) =
(N-F)

stride
+ 1 (12)

where N is the dimension of input data; F is dimension of filter;
and Stride is the step length for convolution. Convolution of the
input signal and filter weights is performed as a convolution of
two signals, that is, element-wise multiplication and sum of a
filter and the signal (i.e., time-series fNIRS data).

f
[
x, y

]
∗g
[

x, y
]
=

∝∑
n1=−∝

∝∑
n2=−∝

f [n1, n2] · g
[
x− n1, y− n2

]
(13)

The next important layer in the convolutional network is the
pooling layer. It reduces the spatial size of the activation maps
generated by the convolution operation of filters on a 12-channel
data stream. The output size of volume produced as a result of
pooling is determined by

Output size (W, H) =
(N-F)

stride
+ 1 (14)
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FIGURE 6 | The proposed artificial neural network (ANN) model with two hidden layers used for classification.

FIGURE 7 | The complete convolutional neural network (CNN) model with input, convolution, max pool, dense, and output layers. Model summary include details
about hyperparameters and network architecture.

where the depth of data remains the same, whereas width and
height are reduced to half in case of max pooling with a stride
having a value of 2. Input data after passing through a series
of convolution and pooling layers are flattened and fed into the
fully connected layers to perform the classification task. The

complete parameters and structure of the proposed CNN are
shown in Figure 7. It is a fully connected feed-forward network
with two convolution layers followed by one max-pooling layer,
and then the output from the max-pool layer is flattened and
fed into a dense layer that terminates into the final output layer
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FIGURE 8 | The epoch versus accuracy and loss plots of convolutional neural network (CNN) model on train and validation datasets. Accuracy increases with
number of epochs and then saturates; vice versa for the loss.

before passing through another fully connected layer. There are
24 readings vector (12 HbO + 12 HbR), which served in the
“Conv1D” convolutional layer. One hundred twenty-eight filters
spatially convolve with the input data stream and learn high-
level features for classification in the form of activation maps.
Figure 8 represents the graphs of accuracy and loss over train
and validation sessions on different subjects. A batch size of 500
is used to train the network over 150 epochs.

Long Short-Term Memory
Long short-term memory is a modification of the RNN with
a feedback connection (Schmidhuber and Hochreiter, 1997).
LSTM networks are well suited for time-series data classification,
processing, and predictions owing to unknown time duration lag
between important events in a time series. LSTM provides better
classification and learning results than do conventional CNN and
vanilla RNNs (Graves et al., 2009, 2013). An LSTM unit is a cell
with three gates, that is, an input gate, an output gate, and a forget
gate (Greff et al., 2016), as shown in Figure 9A. The three gates
regulate the flow of information in and out of the cell, enabling
it to remember values over random time intervals. The cell keeps
track of the interdependencies of elements in the input sequence.
Often, logistic sigmoid function is used as an activation function
of LSTM gates (Gers and Schmidhuber, 2001; Gers et al., 2003).
Logistic sigmoid function is given by

f (x) =
1

1+ e−k(x−x0)
(15)

where e is the natural logarithm base, x0 is the x-value of the
sigmoid midpoint, and k is the logistic growth rate. There are

connections between input and output gates of LSTM, usually
recurrent. The weights of these connections are learned during
the training to determine the operation of these gates.

The major takeaway of this study is the application of LSTM
for the first time in the classification of a multiobjective task
problem. First of all, data of each subject are split into train
and validation sets with a 70:30 ratio. To make input data
compatible with LSTM, they are reshaped such that for each time
instance, we have a data stream of all 12 channels in a single
row vector format of 24 units (12 HbO + 12 HbR). After initial
preprocessing, time-series data are fed into the LSTM unit as
vectors, labeled as lowercase variables in the following equations,
with the matrices in uppercase variables. The equations for
forward pass of LSTM unit with a forget gate are given below:

ft = σth
(
Wfxt ++Ufht−1 + bf

)
(16)

it = σth
(
Wixt ++Uiht−1 + bi

)
(17)

ot = σth
(
Woxt ++Uoht−1 + b0

)
(18)

Here, Wi, Wo, and Wf are the weight matrices of input,
output, and forget gates, respectively. Each gate in the LSTM
cell is a weight to control how much information can flow
through that gate. The input gate controls the flow of values
into the cell, the forget gate controls the values that remain
in the cell, and the output gate controls the values flowing
out of the cell to compute the output activation of the LSTM
unit. U i, Uo, and U f are the weight matrices of recurrent
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FIGURE 9 | (A) The repeating long short-term memory (LSTM) cell with input, forget, and output gates. (B) Complete model summary of the proposed LSTM
network. (C) The architecture of the proposed LSTM network.

FIGURE 10 | The epoch versus accuracy and loss plots of long short-term memory (LSTM) on train and validation datasets.

connections of input, output, and forget gates, respectively.

ct = f ◦t ct−1 + i◦t σth
(
Wcxt + Ucht−1 + bc

)
(19)

ht = o◦t σh (ct) (20)

As LSTM is being used for time-series data (vector notation), in
Eqs 19 and 20, ct ∈ Rd is not a single LSTM unit but contains h

LSTM unit cells. σth is the hyperbolic tangent activation function,
and sigmoid function can also be used as an activation function,
where x0, ft , it , ot , ht , and ct ∈ Rd and are input vector of
the LSTM unit; activation vector of forget gate, input gate, and
output gate; output vector of LSTM unit and cell state vector,
respectively. W Rh×d, U Rh×h and b Rh, are the weight matrices
and bias vector learned during training. The initial values are c0 =

0 and h0 = 0. The operator denotes the element-wise product,

Frontiers in Neuroscience | www.frontiersin.org 11 June 2020 | Volume 14 | Article 584

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00584 June 21, 2020 Time: 8:53 # 12

Asgher et al. Multi-Class Mental-Workload Detection Using LSTM

TABLE 1 | Artificial neural network (ANN) and convolutional neural network (CNN) accuracies, precision, and recall of all subjects (in percentage).

S1 S2 S3

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

ANN 80.66 85.71 81.63 77.66 82.54 77.84 69.91 78.83 70.07

CNN 82.36 87.86 78.75 92.31 94.58 83.15 90.56 92.96 84.50

S4 S5 S6

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

ANN 68.45 73.57 67.91 55.95 72.71 55.84 78.4 85.79 78.22

CNN 78.24 88.23 85.76 90.66 93.14 86.32 93.02 94.65 86.60

S7 S8 S9

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

ANN 79.54 83.97 81.88 57.86 74.69 56.72 64.56 76.92 64.47

CNN 86.18 90.30 86.82 85.41 89.76 87.79 86.32 89.86 90.03

S10 S11 S12

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

ANN 79.29 84.46 78.63 74.74 79.84 74.54 57.6 72.79 57.76

CNN 89.01 91.63 90.25 85.42 89.08 91.71 83.85 90.23 91.93

S13 S14 S15

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

ANN 68.95 78.28 67.97 61.05 73.54 60.06 65.79 77.52 65.26

CNN 92.54 95.28 92.75 86.78 91.87 93.32 89.13 92.50 93.79

TABLE 2 | Classification accuracies, precision, and recall achieved through proposed long short-term memory (LSTM) network (in percentage).

S1 S2 S3

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

83.11 85.34 83.84 89.09 89.53 89.12 87.52 88.68 88.51

S4 S5 S6

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

95.51 84.03 83.86 90.85 92.16 91.84 90.42 93.38 92.44

S7 S8 S9

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

84.29 88.25 88.37 92.97 86.65 86.40 87.27 85.66 85.49

S10 S11 S12

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

95.05 89.76 89.28 84.94 83.68 83.72 84.79 77.88 74.63

S13 S14 S15

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

93.40 89.79 88.68 90.77 86.81 85.06 89.78 90.95 90.12
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and the subscript t indexes the time step. In Eqs 18 and 19,
it can be seen that output ot and current state vector ct at
time t not only depend on input it but are also related to the
information at a previous time of LSTM cell. In this manner,
LSTM is permitted to remember the important information in
the time domain. The superscript d and h refer to the number
of input features and the number of hidden units. In our study,
the values of d and h are 24 and 64, respectively. The complete
parameters and layer structure of the proposed LSTM network
are shown in Figure 9B. It consists of four LSTM layers, and
then the output from the last LSTM layer is flattened and fed
into a dense layer that terminates into the final output layer after
passing through another fully connected layer. The generalized
overview of the implemented LSTM network is presented in
Figure 9C. The epoch versus accuracy and loss plots of LSTM
on train and validation datasets are shown in Figure 10. For
training data, the batch size of 150 is used over 500 epochs for
each participant. Accuracies, precision, and recall are presented
in section “Results.”

RESULTS

The results using different classifiers are presented in this section.
For all subjects, statistical significance of data per channel
is calculated, and only those channels that are employed in
classification classifiers are statistically significant. The criteria
used for selection of channels are discussed in section “Statistical
Significance of Functional Near-Infrared Spectroscopy Data” and
Figure 4. For two feature combinations, Signal Mean (M) and
Signal Slope (S) produced the best results, which are shown in
Figures 5A,B for Subject 1. Average accuracies across 12 channels
show that the highest average classification accuracy achieved
with SVM and k-NN is 54.33 and 54.31%, respectively.

Regions of interest (ROIs) represent the area of the brain
that shows the increased response for a specific activity than
do other areas in PFC. In this study, ROI is calculated using
percentage as a criterion. The studies of Hiroyasu et al. (2015);
Hong and Santosa (2016), and Hiwa et al. (2017) are referred
as to benchmark studies in measuring ROI; the only difference

FIGURE 11 | The regions of interest (ROIs) using oxyhemoglobin (HbO) and deoxyhemoglobin (HbR)—response for a specific activity compared with the other areas
in prefrontal cortex (PFC). Activation map averaged over all 15 subjects (only significant channels are considered) during activation.
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is that we used a percentage instead of critical t-value (tcrt) in
calculating ROIs. Different channel positions are highlighted in
ROI with varying intensities in an activation map as mentioned
in Figure 11. We used SVM accuracies and the color map
obtained after setting critical percentage level 55% as shown in
Figure 11.

Table 1 entails ANN in comparison with CNN averaged
accuracies of 12 channels of each subject. To get a better statistical
insight of data, precision and recall are also measured. The
precision and recall values are also given alongside the accuracies.
The average accuracy of ANN is 69.36% as mentioned in Table 1.
Classification accuracies, precision, and recall of all participants
calculated using CNN classifier are also summarized in Table 1,
with an average accuracy of 87.45%.

We calculated the classification accurateness of model by the
metric “accuracy,” which is the number of correct predictions
from all predictions made. To validate the model accuracies
and class balance, further model precision (number of positive
predictions divided by total number of positive class values
predicted) and recall (number of positive predictions divided
by the number of positive class values in the test data) are
also calculated in Tables 1, 2 to assure class balance in their
alignment with accuracy.

Table 2 presents classification results using LSTM classifier.
The highest accuracy achieved with CNN is 93.02%, whereas the
highest accuracy with LSTM is 95.51%, which shows that the
classification achieved with LSTM has the highest accuracy.

Statistical analysis is performed on accuracies obtained
through ANNs, CNN, and LSTM. Independent-samples t-test
was performed between ANN and CNN and between CNN
and LSTM accuracies. Results shows that for both statistical
tests, p < 0.05 and the null hypothesis (with no statistical
significance) is rejected. A comparison between ANN, CNN,
and LSTM is obtained using one-way F-test (ANOVA) to
measure inter-similarity between groups (ANN, CNN, and
LSTM) on the basis of their mean similarity and f -score.
Results shows that three groups at a time are also statistically
significant with p < 0.05. The statistical analysis is coded
in software Anaconda IDE with Python 3.7 used with
Numpy, and Scikit library, and the software script used to
calculate results is added as Annexure C (Supplementary
Material). The comparative results between accuracies of
ANN, CNN, and LSTM are presented in box plots in
Figure 12.

DISCUSSION

In various brain imaging studies, fNIRS is used to investigate
the hemodynamic activities and cognitive states such as MWL,
vigilance, fatigue, and stress levels (Cain, 2007; Herff et al., 2013;
Ho et al., 2019). Owing to the optical nature of fNIRS, the
methodology is less prone to artifacts like a heartbeat or motor,
head, and eye movements, which makes it the prevalent choice
over other neuroimaging modalities like EEG, PET, and fMRI
(Ozge Mercanoglu et al., 2017). The primary aim of this study
was to explore the optimal ML or DL algorithms that best fit

FIGURE 12 | Box plot comparison between ANN, CNN, and LSTM
classification accuracies.

the four-phase MWL assessment and classification. The cutting
edge of DNN over ML is its automatic feature extraction scheme
acquired brain signals that override the ML algorithms. In DL,
the CNN has a powerful convolutional map to learn classifiable
features, and LSTM has memory units to better keep records of
time-series patterns, which in our case was the most relevant one.
The major takeaway of this study is the application of LSTM for
the first time in the classification of a multiobjective task problem.

Many fNIRS studies have been carried out to improve
classification accuracies of different brain states by using different
combinations of features using ML classifiers (Liu and Ayaz,
2018). Best-feature combinations are also shown in various
studies, signal slope S (Power and Chau, 2013; Schudlo and
Chau, 2013), signal mean M (Faress and Chau, 2013; Naseer and
Hong, 2013), signal variance V (Tai and Chau, 2009; Holper and
Wolf, 2011), signal kurtosis K (Holper and Wolf, 2011; Naseer
et al., 2016), signal skewness SE (Tai and Chau, 2009; Holper
and Wolf, 2011), signal peak P (Naseer and Hong, 2015), signal
amplitude A (Cui et al., 2010; Stangl et al., 2013), and zero-
crossing (Tai and Chau, 2009). Most commonly used features that
showed sustainable results are the M, S, and P (Coyle et al., 2004;
Fazli et al., 2012; Hong et al., 2015; Khan et al., 2018). In this
study, we explored different combinations of two-dimensional
(2D) features and concluded M (signal mean) and S (signal
slope) combination as the optimal features’ combinations with
classification average accuracies of 54.33% (SVM) and 54.31%
(k-NN), which are in accordance with previous studies and
summarized in Figure 13.

Aside from data mining and manual feature engineering,
ML classifiers struggle to generalize complex data patterns
and, hence, showed poor performance in situations like higher
BCI protocols with increased levels of MWL. MWL (using
fNIRS) four-phase classification is not very common, and most
of the studies are limited to two MWL states, and very few
studies explored three MWL phases with conventional ML
techniques. Hortal et al. (2013) achieved 87% accuracy on the
classification of two mental tasks using SVM. Tai and Chau
(2009) reported 96.6 and 94.6% as the highest accuracy of single-
trial classification of NIRS signals during emotional induction
tasks using LDA and SVM, respectively. Naseer and Hong
(2013) reported 87.2% accuracy on two brain signals using
SVM. In these studies, as the number of discriminatory phases
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FIGURE 13 | Comparison between machine learning (SVM, k-NN, and ANN) and deep learning (CNN and LSTM) classifiers. SVM, support vector machine; k-NN,
k-nearest neighbor; ANN, artificial neural network; CNN, convolutional neural network; LSTM, long short-term memory.

increases classification, accuracies of ML algorithms decrease.
Stangl et al. (2013) classified fNIRS signals during baseline,
motor imagery, and MA with an accuracy of 63%. Power
et al. (2012) and Yoo et al. (2018) discriminated between three
mental tasks with average accuracies of 37.96 and 62.5% using
SVM and LDA, respectively. ANN has a higher generalization
ability over complex patterns owing to the presence of a
huge number of parameters, layers, and non-linear transfer
functions. ANN shows better-improved accuracies over other
conventional ML techniques. Hennrich et al. (2015) reported
84% accuracy on three mental states using neural network
(NN). Abibullaev et al. (2011) managed to get a minimum
71.88% and more accuracy with different NN architectures.
In this study, the average ANN accuracy is 69.36%, whereas
the highest accuracy with ANN is 80.66%. ANN requires
different features, and as the number of features increases,
the lgorithms suffer from the curse of dimensionality. The
dimensionality of ANN increases as the number of selected
features times the number of channels increases, which makes
dataset huge and computationally expensive. To cater this “curse
of dimensionality,” advance algebraic techniques like principal
component analysis (PCA), independent component analysis
(ICA), isomap spectral embedding, and QR matrix factorization
are used in various studies (Huppert et al., 2009). Also, if data
are not carefully preprocessed, over-fitting counterfeits the results
on validation set, and algorithms may fail on real-time test data
(Cawley and Talbot, 2010).

The trend of employing DNN for classification in BCI and
MWL analysis is increasing over the past few years (Nagel
and Spüler, 2019). Hennrich et al. (2015) used DNN to
effectively classify brain signals. Naseer et al. (2016) analyzed
the difference between two cognitive states (MA and rest) on
the basis of fNIRS signals using multilayer perceptron (MLP).
Huve et al. (2017) classified the fNIRS signals with three

mental states including subtractions, word generation, and rest.
They employed an MLP model for classification. In another
study, Huve et al. (2018) repeated the same procedure for
binary classification to control a robot. Hiwa et al. (2016)
and Ozge Mercanoglu et al. (2017) attempted to predict the
gender of the subjects through their unique fNIRS signals.
Saadati et al. (2019a,b) employed CNN using hybrid fNIRS–
EEG settings for three-level MWL classification. Ho et al. (2019)
developed DBN and CNN for discriminating MWL levels from
multichannel fNIRS signals. Left and right motor imageries
were classified using DNN in the study of Thanh et al. (2013),
and different mental tasks were classified by Abibullaev et al.
(2011). In this study, we employed Conv1D CNN architecture,
which is a variant of CNN tweaked specifically for time-
varying data.

The strength of CNN lies in its self-feature extracting
mechanism, which makes it not only powerful but also
a preferable choice over the ML algorithms. CNN can
independently be used as a full-fledged classifier (feature
extraction plus classification) or as a feature extractor with ML
classifiers (Tanveer et al., 2019; Zhang et al., 2019). The latter
method is to use convolution layers as feature extractors, and
acquired features from any fully connected layer are used by ML
classifiers like SVM or k-NN for classification. This approach has
recently been used in fNIRS BCI study (Tanveer et al., 2019)
where brain heat maps are used as datasets. In this approach,
the training time and computational resources required to train
the CNN model increase many folds because time-series data
correspond to a single vector, and the images are 2-D and 3-
D matrices (2-D in case of gray scale and 3-D in case of RGB
image). Matrix manipulation and operations are always expensive
in terms of computation than vector operations. The same is true
for the forward pass (test time) as well. Our recommendation
is to use 1 × 1 bottleneck, and 3 × 3 and 5 × 5 filters
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for increasing non-linearity and dimensionality reduction in the
network instead of using separate classifiers (Lin et al., 2013).
In this study, the highest accuracy achieved on any subject with
CNN is 93.02%. CNN outperforms all ML algorithms including
ANN with a huge margin, as presented in Figure 13. For
the verification of experimental paradigm, MWL task difficulty
validation is measured with subjective measure NASA-TLX
index. In future research, SWAT analysis can also be used to
gauge the strength and reliability of an experimental paradigm.
Further research could be used to explore the full potential
of LSTM in a multitask environment with the application of
big data MWL analysis using real-time neuroergonomics and
neurofeedback settings.

Long short-term memory is a variant of RNN that uses
internal state (memory) to process the sequence of input (Li
and Wu, 2015). LSTM shows remarkable improvement in case
of time-series data like speech recognition and text-to-speech
conversions (Gers and Schmidhuber, 2001; Gers et al., 2003;
Graves et al., 2009, 2013; Li and Wu, 2015). So LSTMs are
well suited for classifying, processing, and forecasting predictions
on the basis of time-series fNIRS data. This is the first study
to explore the classification capabilities of LSTM for four
MWL phases on time-series fNIRS brain signals. In this study,
results showed outstanding performance (highest accuracy) of
LSTM over ML classifiers (highest accuracy) and even above
DL-CNN (highest accuracy 93.02%). LSTM outperformed the
current state-of-the-art algorithm on CNN by more than
2.51%. The highest accuracy achieved with LSTM is 95.51%.
Figure 13 shows a detailed comparison of DL (LSTM and
CNN) and ML (ANN, SVM, and k-NN) classifiers. Being a
relatively new algorithm (LSTM) in neuroscience, there is a lot
of room for further research and exploration. Computational
time and resources required for LSTM and other ML and
DL classifiers can also be compared and analyzed in future
research studies.

CONCLUSION

In this study, four-state MWLs were evaluated and classified
using three ML (SVM, k-NN, and ANN) and two DL
(CNN and LSTM) algorithms using fNIRS hemodynamics
signals. Data reliability and significance are validated by
p- and t-tests per channel. Nine extracted features from
original hemodynamic signals were used with two feature
combination arrangements for ML classification. The signal
mean–slope (M–S) combination yielded the average classification
accuracy of 54.33, 54.31, and 69.36% using SVM, k-NN, and
ANN, respectively. Averaged classification accuracy achieved
by CNN is 87.45%, and it outperformed all conventional
classifiers by an acceptable margin. This study shows that
LSTM can be effectively used for optimum classification
of MWL-fNIRS brain signals with classification accuracies
ranging from 83.11 to 95.51%. Classification accuracies of
LSTM are compared with the accuracies achieved using SVM,

ANN, KNN, and CNN methods. LSTM works better than
CNN, ANN, and other conventional classifiers. The average
accuracy achieved with LSTM is 89.31%, which is greater
as compared with the average accuracy (87.45%) acquired
using CNN. The novelties of this study are that four levels
of MWL are estimated using a combination of mental
logic and MA tasks and also for the first time LSTM is
implemented on four-level MWL-fNIRS data with achieved
optimum classification accuracies.
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