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Abstract

Background: Current RNA secondary structure prediction approaches predict prevalent pseudoknots such as the H-
pseudoknot and kissing hairpin. The number of possible structures increases drastically when more complex pseudoknots
are considered, thus leading to computational limitations. On the other hand, the enormous population of possible
structures means not all of them appear in real RNA molecules. Therefore, it is of interest to understand how many of them
really exist and the reasons for their preferred existence over the others, as any new findings revealed by this study might
enhance the capability of future structure prediction algorithms for more accurate prediction of complex pseudoknots.

Methodology/Principal Findings: A novel algorithm was devised to estimate the exact number of structural possibilities for
a pseudoknot constructed with a specified number of base pair stems. Then, topological classification was applied to
classify RNA pseudoknotted structures from data in the RNA STRAND database. By showing the vast possibilities and the
real population, it is clear that most of these plausible complex pseudoknots are not observed. Moreover, from these
classified motifs that exist in nature, some features were identified for further investigation. It was found that some features
are related to helical stacking. Other features are still left open to discover underlying tertiary interactions.

Conclusions: Results from topological classification suggest that complex pseudoknots are usually some well-known motifs
that are themselves complex or the interaction results of some special motifs. Heuristics can be proposed to predict the
essential parts of these complex motifs, even if the required thermodynamic parameters are currently unknown.
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Introduction

In additional to protein encoding, RNAs have been discovered

to have various regulatory and catalytic roles in many biological

processes [1]. RNAs with these roles are called non-coding RNAs

(ncRNAs). In eukaryotes, microRNAs (miRNAs) are believed to

act as an agent for transcriptional induction or repression, as well

as translational silencing and messenger RNA (mRNA) degrada-

tion [2]. Similar functions have also been found in prokaryotes,

and even performing translation stimulation and mRNA stabili-

zation [3]. For example, in E. coli, RpoS translation is stimulated

by DsrA under low temperature or by RprA under stress on the

cell surface, whereas OxyS can repress RpoS translation under

oxidative shock [4].

Studies also revealed the relationship between the structure of

an RNA sequence and the functions of the RNAs [5,6]. Thus, to

predict the functions of a given RNA sequence, it becomes critical

to correctly predict its structure. Moreover, it has been suggested

that the RNA folding is hierarchical in a way that an RNA

sequence itself determines its secondary structure which, in turn

determines its tertiary structure [7]. Therefore, RNA secondary

structure prediction is a very important problem since it helps in

the determination of tertiary structure and function. Many

proposed secondary structure prediction algorithms applied

dynamic programming to compute the minimum free energy

(MFE) secondary structure for a given RNA sequence. Mfold [8] is

one of the earliest models that considers all possible pseudoknot-

free structures in O(n4) time. Later, the dynamic programming

approach was extended to include certain pseudoknot motifs [9].

Other approaches also emerged to predict particular types of

pseudoknot motifs [10,11]. Partition function is another mean

expressed in some structure prediction strategies. It is used to

estimate the base pairing probability of two specified nucleotides in

a given RNA sequence, and hence the probability for every

possible base pairs for pseudoknot-free structures [12]. Later,

partition function calculation was also extended to include certain

pseudoknots [13,14]. Nonetheless, using a nearest neighbor

interaction model, it has been proved that RNA secondary

structure prediction with arbitrary pseudoknots is NP complete

[15,16]. Most of the current approaches predict the H-pseudo-

knot, the kissing hairpin and a few other pseudoknots. If more

complex pseudoknots are going to be included, then it is necessary

to select the most probable set from all possibilities. However, in

the absence of relevant biological findings, it is difficult to

determine what motifs are more favorable than the others.

In this paper, we try to explore the existing complex

pseudoknots (i.e. those other than the most prevalent ones such

as the H-pseudoknot and the kissing hairpin) from real RNA
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sequences and seek some special structural features. For this

purpose, it is necessary to classify arbitrary pseudoknots according

to pre-defined complexity measures. One of the classification

approaches is k-noncrossing matching [17,18], where a k-

noncrossing structure has no more than k –1 crossings of its base

pair arcs (each arc representing a stem). Another approach is

called k-partite, meaning that an RNA secondary structure can be

divided into k substructures which are pseudoknot-free [19]. We

are interested in another classification that applies quantum matrix

field theory [20]. In this classification, an RNA secondary

structure is analyzed to evaluate a quantity called genus. It is a

non-negative integral value. If a secondary structure has a genus

value of zero, then that structure must be pseudoknot-free,

otherwise the value is positive. The definition of genus g is given

by g~(P{L)=2 , where P is the number of base pairs and L is

the number of closed loops. The determination of L will be

presented in the next section. The higher the genus value, the

more complicated pseudoknotted substructure a secondary struc-

ture has, or the more pseudoknotted substructures it contains, or

both. Figure 1 shows two distinct RNA secondary structures whose

genera are both 3. Clearly, the upper structure is more complex

than the lower one which concatenates three H-pseudoknots. In

particular, the most prevalent pseudoknots such as the H-

pseudoknot and the kissing hairpin both have their genera equal

to one, meaning they are regarded as the simplest pseudoknots.

Since genus is an additive quantity, a secondary structure can be

decomposed into numerous primitive components, and the genus

of the original structure is the sum of the genera of its components

[20]. These components are primitive in the sense that they are

irreducible and non-nested within other substructures. The main

reason for the decomposition is that, as mentioned, since a

secondary structure may contain several pseudoknotted compo-

nents or a single complicated pseudoknot to attain the same genus

value, in order to fairly compare the complexity of pseudoknots

that two arbitrary RNA secondary structures contain, it is

necessary to extract their respective primitive components and

compare the genera of these components instead of the whole

structure. On the other hand, primitive components can also be

viewed as building blocks because arbitrary secondary structures

can be constructed with them. However, since the set of the

building blocks is infinite, only certain secondary structures can be

constructed with its limited subset. Using this perspective, a

dynamic programming algorithm has been proposed to predict

RNA secondary structure using a topological approach [21]. A

secondary structure is called a c-structure if the genus of each of its

primitive components is at most c. This algorithm incorporates 4

unique primitive components whose genera are all equal to 1 into

the context-free grammar (CFG), and 2 of these 4 components are

the most common H-pseudoknot and kissing hairpin. Therefore,

the algorithm considers up to 1 structure. However, to expand the

primitive component set, it was shown that it jumped from 4

unique structures for 1 structure to 3472 unique structures to be

considered (Supplementary Material of [21]). The increase is even

much larger for a higher order c-structure.

It was shown that complex primitive pseudoknots (with genus

.2) are very rare in nature [20]. In this work, we further illustrate

this by comparing the number of distinct primitive pseudoknot

motifs found with the population of equally complexity motifs.

Furthermore, from these infrequent motifs we identify structural

features, if any, which help explain their preferred existence over

the rest of the population.

Methods

We will first introduce the implementation basics for topological

classification based on genus evaluation, and then our novel

approach for primitive components enumeration will be shown.

Finally, we will present the experimental details of our analysis.

As mentioned in the previous section, an RNA secondary

structure is decomposed into primitive components and each

component is then evaluated to obtain its genus value. The total

genus of this secondary structure is the sum of the genera of its

components. This general concept is already discussed in [20]. In

this paper, we provide the implementation details of primitive

component extraction and genus value evaluation.

The first step is to decompose the secondary structure into

irreducible components. Using dot-parentheses notation, the

structure is scanned from the beginning to discover any irreducible

components. The pseudocode for irreducible component decom-

position is as follows:

irr_start = 1;

for i = 1 to length of the structure sequence

s = structure symbol at position i;

if s is an opening bracket

increment the count for that bracket type;

else if s is a closing bracket

decrement the count for that bracket type;

if the counts for all the bracket types = 0

extract the structure sequence from irr_start to i;

irr_start = i+1;

end if

end if

end for

The second step involves the extraction of non-nested compo-

nents from those irreducible components. By observing that the

leftmost and the rightmost base pairs (note that they can be the

same base pair) of any irreducible component are non-nested, any

other base pairs that cross with them must also be non-nested.

From these base pairs, another set of base pairs that cross with

them are non-nested as well. This process is repeated until no

more new non-nested base pairs are found. Figure 2 illustrates this

process. Since the component is irreducible, all non-nested base

pairs can be discovered. The pseudocode below shows this step:

non_nest_bp = Ø;

bp = leftmost base pair of irreducible component;

search_non_nest_bp(bp);

sub search_non_nest_bp (bp)

add bp to non_nest_bp;

pk = all base pairs crossing with bp;

for each basepair c in pk

Figure 1. Two sample RNA secondary structures both having
genus values = 3. Both structures have their own genus equal to 3,
but the lower one is a concatenation of three H-pseudoknots of genus
equal to 1. The genus of the whole structure is the sum of the genera of
its primitive components.
doi:10.1371/journal.pone.0039907.g001
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if c is not in non_nest_bp

search_non_nest_bp(c);

end if

end for

end sub

The components formed by the remaining nested base pairs are

extracted as irreducible components by applying the same

technique as in the first step. This process is repeated on these

extracted components for further extraction until no more new

nested components can be found. By collecting all the components

being extracted at each recursion level, the whole secondary

structure is decomposed into primitive components.

The last step is to evaluate the genus for each of these primitive

components. Every primitive component is transformed to a graph

identical to that presented in Figure 2 of [20]. Let V~fv1,v2, . . . ,vng
be the set of vertices for the n paired nucleotides in the component.

Define A(V|V as the set of arcs representing the base pairs in a

bi-directional manner, i.e. for vertices vx and vy representing two

nucleotides of a pair, (vx,vy)[A and (vy,vx)[A. Let B(V|V be

the set of edges along the backbone from vr to vrz1, i.e.

(vr,vrz1)[B where 1ƒrƒn{1. The structure diagram is then

represented by the graph G~(V ,A,B). The following pseudocode

presents the path traversal in G to determine the number of closed

loops, L.

num_of_closed_loop = 0;

v = vertex in V with an unvisited outgoing arc;

while v exists

a = outgoing arc of v;

if a is visited

num_of_closed_loop++;

v = vertex with an unvisited outgoing arc;

else

v’ = vertex from v via a;

mark a as visited;

if there exists an unvisited outgoing edge b of v’

v = vertex from v’ via b;

mark b as visited;

else

v = vertex with an unvisited outgoing arc;

end if

end if

end while

Together with the number of base pairs involved, P, the genus

value g of a particular primitive component can be evaluated.

We are also interested to know that, given a genus g, the

population of distinct primitive pseudoknot motifs whose genera

are equal to g. Suppose a(g,n) denotes the number of distinct

primitive pseudoknots constructed with n arcs having genus g,

where each arc represents a base pair stem (not a base pair). Given

that a primitive pseudoknot with genus g must be constructed

within 2g to 6g{2 arcs [21], the number of distinct primitive

pseudoknot with genus g, h(g), is given by:

h(g)~
X6g{2

n~2g

a(g,n)

To evaluate a(g,n), we devise a novel top-down tree building

algorithm to enumerate all possible structures with a given value of

n. Every leaf node of the tree consists of a distinct primitive

pseudoknot expressed by a pseudoknot pattern token, such as

‘‘ABACBC’’ which denotes a primitive pseudoknot (kissing

hairpin) constructed with n~3 base pair arcs, with each arc

represented by a pair of identical character. In the kissing hairpin

example, the arc represented by a pair of ‘‘A’’ crosses the left end

of the arc represented by the ‘‘B’’ pair, while the arc represented

by the ‘‘C’’ pair crosses its other end. Each node has a first-in-first-

out (FIFO) arc character queue for left end, and a character set for

right end, as well as a pseudoknot pattern token. The root level is

level zero and so the leaf level is 2n. A new left end character is

enqueued to the left end queue of each node prior to child node

creation when the tree level is less than n. Starting from the root

node, when child nodes, which are of the same level, are built, they

extend all possible primitive pseudoknot patterns by each node

appending one of the available arc characters to its own

pseudoknot pattern token. For any non-leaf node, if the left end

character queue is non-empty, then the first character will be

dequeued for its child node creation, and this character will be

added to the right end character set later. For the right end

character set, each character is selected once to create a child node

if conditions are met, and this character is then eliminated from

the right end character set of that child node. Every non-root node

inherits a pseudoknot pattern token, left end character queue and

right end character set from its parent node. At the leaf node level,

all pseudoknot pattern tokens are completed and their genus

values are then evaluated. The following three rules restrict the

generation of child nodes from any non-leaf node:

Rule 1: To avoid reducible or nested pseudoknot-free substruc-

tures, when a new character is selected at one level as left end, it is

only available for selection for right end after the node at the next

(child) level has been generated.

Rule 2: To avoid reducible or nested pseudoknots, before a non-

leaf child node is generated, it is checked to guarantee that the

selected character does not result in reducible or nested

pseudoknots in the whole pattern token.

Rule 3: To avoid collapsible arcs, if a character Y is selected as

the left end at the child node of its parent node which, in turn

selects character X as its left end, then later when a descendant

node selects character X as its right end, character Y will not be

available for selection for its child node. In other words, a pattern

…YX….XY… is avoided in final pseudoknot pattern tokens.

The above three rules were incorporated into the tree building

algorithm as shown below:

N = number of arcs from input;

leaf_level = 2 * N;

root_node = initialize with empty left end character queue,

right

end character set and pseudoknot pattern token, level = 0;

enqueue a new character to left end character queue of

root_node;

generate_child_nodes(root_node);

Figure 2. Extraction of nested base pairs. Starting from the
leftmost base pair (blue arc), the determination of non-nested arcs is in
the order of: blue, green, black and orange. The two nested base pairs
(red arcs) are extracted as two irreducible components.
doi:10.1371/journal.pone.0039907.g002
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sub generate_child_nodes (node)

//Create a child node and append the first left end character to

//its token if the respective queue is not empty

if left end character queue of node is not empty

child_node = copy of node;

s = dequeued character from left end character queue of

child_node;

append s to pseudoknot pattern token of child_node;

child_node-.level++;

if child_node-.level , N

enqueue a new character to left end character queue of

child_node;

end if

//Enforce Rule 1

if there exists a preceding left end character w appended to

pseudoknot pattern token of node at level = = node-.level –1

add w to right end character set of child_node;

end if

generate_child_nodes(child_node);

end if

//Create child node(s) for every right end character in the set if

//the rules are not violated

for each character e in right end character set

//Enforce Rule 2

if node–.level ? leaf_level and e gives reducible or nested

substructure when appended to pseudoknot pattern token

next;

end if

//Enforce Rule 3

if e gives collapsible arcs when appended to pseudoknot pattern

token

next;

end if

child_node = copy of node;

append e to pseudoknot pattern token of child_node;

remove e from right end character set of child_node;

child_node-.level++;

if child_node-.level = = leaf_level

//Primitive pseudoknot is completed at leaf node level

report pseudoknot pattern token of child node, evaluate the

genus value of the pseudoknot it represents and increment

respective count for genus accordingly;

else

//Enforce Rule 1

if there exists a preceding left end character w appended to

pseudoknot pattern token of node at level = = node-.level –1

add w to right end character set of child_node;

end if

generate_child_nodes(child_node);

end if

end for

end sub

Figure 3 illustrates the generation of the two primitive

pseudoknots constructed with 3 arcs, which are the kissing hairpin

and pseudotrefoil. A depth first approach is adopted for the

recursion of child node generation. Once a leaf node is generated,

its pattern token is evaluated immediately for the genus value,

which increments the count for the appropriate a(g,n). It is then

disposed of and the algorithm continues at the last branching

node. Hence, the space complexity is O(n). Although the time

complexity of the algorithm is exponential, results can still be

achieved with 12 arcs. Later, we will see that this method already

covers most of the primitive pseudoknots in our dataset. To

validate the correctness of the algorithm, we transform the values

obtained into the polynomial:

kg(s)~
X6g{2

n~2g

a(g,n)sn

kg(s) lists the counts of distinct primitive pseudoknots with

genus g grouped by n constituent arcs. A pseudoknot-free

primitive structure (g~0), which is either an empty structure

(i.e. zero arc) or a single arc structure is represented by:

k0(s)~1zs

The summation of kg(s) for all values of g gives the power series

G(s):

G(s)~
X?

g~0

kg(s)~1zsz
X?

g~1

X6g{2

n~2g

a(g,n)sn

G(s) gives the counts of distinct primitive components with n

constituent arcs. This power series must be identical to that

deduced in [22].

After knowing the population size of primitive pseudoknots with

a specified number of stems and genus, real RNA data is then

analysed with the topological classification described above to

classify the preferred structures in that population. A more

abundant RNA database, RNA STRAND (version 2.0) [23], is

selected as the data source for analysis rather than PseudoBase

[24] as it contains almost 2000 RNA pseudoknotted structure

records compared to 359 records in PseudoBase at the time of

writing. RNA STRAND is a collaboration of a variety of RNA

databases such as RCSB PDB for ribozymes, ribosomal RNAs,

transfer RNAs [25], tmRNA database for transfer messenger

RNAs [26], Rfam Database for hammerhead ribozymes, telome-

rase RNAs, RNase MRP RNAs [27], etc. Therefore, our analysis

Figure 3. Primitive pseudoknot tree constructed with 3 arcs.
Characters on the left of any internal node belong to the FIFO left end
character queue, while those on its right belong to the right end
character set. Nodes with pseudoknot pattern token ABCB cannot be
extended because appending the right end character A violates rule 3,
while appending character C violates rule 2. Similarly, for nodes with
token ABCAC, appending character B also violates rule 3. At the lowest
leaf node level, we obtain tokens ABCABC (pseudotrefoil) and ABACBC
(kissing hairpin).
doi:10.1371/journal.pone.0039907.g003
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can consider diverse RNA functional categories. Meanwhile, the

accuracy of the RNA secondary structures is guaranteed as these

structures were determined through comparative sequence anal-

ysis or annotation from 3D structures obtained by NMR or X-ray

crystallography through RNAView [28].

The experimental dataset was obtained from RNA STRAND

by selecting non-redundant single pseudoknotted RNA molecules.

In RNA STRAND, there are cases where different structures exist

for a single RNA base sequence. These structures are regarded as

redundant and so only one of them was selected arbitrarily.

Therefore, the sequences in the dataset are distinct in a pairwise

manner. Moreover, some compounds, such as ribosome, may

contain an RNA complex rather than a single RNA molecule, and

they were not selected. The dataset downloaded from the RNA

STRAND web site contained 1957 RNA sequences according to

the above criteria. Data pre-processing was carried out to remove

non-canonical base pairs in RNA samples prior to importing them

into a database table. 18 records were found containing no

pseudoknots after pre-processing which were discarded, leaving

1939 sequences. The sequences were not filtered by a certain

sequence similarity threshold, the reason being that RNA

molecules can be more conserved in structure than in sequence

[29], making it hard to define an appropriate threshold. Later, we

will also see that some molecules showing similar structures come

from different phylogenetic domains or organelles. Table 1 lists the

composition of the dataset used in our analysis. Some source

databases such as SRP Database and Sprinzl tRNA Database do

not appear in the dataset, because no pseudoknots were found in

the SRP RNA and tRNA molecules provided.

In previous topological classification analysis, each base pair

stem was converted to a single arc (effective base pair) for more

efficient genus evaluation [20]. However, since we are interested in

primitive components representing actual secondary structures,

this process was omitted. We extracted irreducible components

from the RNA secondary structures, and then obtained primitive

components by further extracting nested components. Finally, we

evaluated the genus values of the primitive pseudoknotted

components.

The resulting primitive components and their genera were

stored in a MySQL database for analysis.

Results

Table 2 shows the values of a(g,n) up to n~12. Using these

values, the polynomials can be formed as:

h1(s)~s2z2s3zs4

h2(s)~17s4z160s5z566s6z1004s7z961s8z476s9z96s10

The first 13 terms of G(s)can be evaluated:

G(s)~1zszs2z2s3z18s4z160s5z1825s6z24486s7

z377853s8z6578808s9z27481391s10z2720422550s11

z63393291412s12z � � �

The above power series is identical to that deduced in [22]

(equation (11)). This shows the correctness of the tree building

algorithm.

Table 1. Composition of the experimental dataset obtained from RNA STRAND.

Source database
RNA types in source
database

Secondary structure determination
approach

No. of sequences
in dataset

RCSB Protein Data Bank (PDB) Ribozymes, ribosomal RNA,
transfer RNA, etc.

NMR, X-ray crystallography with RNAView as
secondary structure annotation tool

49

Comparative RNA web site Ribosomal RNA and intronic
RNA

Comparative sequence analysis 821

tmRNA database Transfer messenger RNA Comparative sequence analysis 645

RNase P database Ribonuclease P RNA Comparative sequence analysis 395

Rfam database Ribozyme, telomerase RNA,
RNase MRP RNA,
RNase 5’ UTR

Comparative sequence analysis, phylogenetic
analysis, mfold, etc.

29

doi:10.1371/journal.pone.0039907.t001

Table 2. Values of a(g,n) for n value up to 12.

a(g,n) 2 3 4 5 6 7 8 9 10 11 12

1 1 2 1

2 17 160 566 1004 961 476 96

3 1259 23482 176303 727936 1868651 3156754 3584897

4 200589 5850396 70846128 487848188 2176440862

5 54766516 2229417608 38374062358

6 22839203295

doi:10.1371/journal.pone.0039907.t005
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On the other hand, in our secondary structure analysis, all the

structures were transformed to primitive components and the

pseudoknot motifs were classified according to their genera.

Table 3 summarizes the overall statistics of different topology

classes for these primitive pseudoknots of the 1939 RNA secondary

structures. In the table, each primitive pseudoknot pattern is

assigned to a subclass. For example, the H-pseudoknot is subclass

1A. The highest genus of a primitive component is 5 in the RNA

STRAND dataset, consisting of 14 arcs (stems). Therefore, our

primitive structure enumeration algorithm can cover most of the

naturally occurring primitive pseudoknots. Table 4 provides the

IDs of the RNA sequences in each subclass with genus 2 or higher,

and the RNA family, or more specifically, the organism, these

sequences pertain to. Some subclasses contained RNA sequences

from different phylogenetic domains or organelles. For example, in

subclass 2A, RNA sequence CRW_00471 belongs to bacteria and

CRW_01456 belongs to cyanelle. In subclass 3A, besides

CRW_00471 in bacteria, sequence CRW_00529 belongs to

eukaryotes and sequence CRW_00544 belongs to mitochondrion.

We first illustrate how only a few complex pseudoknots were

discovered in nature when compared with the population of

theoretical candidates. From Table 3, both subclasses 2A and 2B

represent two distinct pseudoknot motifs, both constructed with 4

stems with the same classified complexity. From Table 2, we know

Table 3. Overall statistics of topologically classified primitive pseudoknots.

Genus Subclass Pseudoknot pattern

No. of RNA sequences
with this primitive
pseudoknot

Avg. length±std.
dev. (nts) Min. length (nts)

1 1A ABAB 1688 204.66294.9 17

1 1B ABACBC 365 253.66282.5 40

1 1C ABCABC 51 73.6643.9 37

2 2A ABCACDBD 45 53.360.5 53

2 2B ABCDCADB 5 71.461.2 69

2 2C ABCDEDBCAE 2 347.565.5 342

2 2D ABCBDEDCAFEF 1 145260 1452

3 3A ABACDEFGEHGIJIFHKBKDJC 48 2637.46181.2 2268

3 3B ABCDEFDGFHIHEGJAJCIB 5 2742.86408.4 2294

3 3C ABACDEDFGFECHBHIGI 5 2652.6612.7 2643

3 3D ABACDEFDGFHIHEGJBJIC 1 254860 2548

4 4A ABCDEFEGCGHIAIJKBKFJHD 1 36960 369

4 4B ABACDEFGHEGIHJKJFILBLDKC 1 261760 2617

5 5A ABCDEFEGHCHIJIGKALJLMNBNFMKD 2 43160 431

The length is measured as the end-to-end distance between (and including) the leftmost base paired nucleotide and the rightmost base paired nucleotide.
doi:10.1371/journal.pone.0039907.t002

Table 4. RNA sequence Ids (in RNA STRAND) and RNA family for subclasses with genus $2.

Subclass RNA sequence Ids RNA family (Organism)

2A CRW_00467–469, CRW_00471, CRW_00472, CRW_00474–480, CRW_00482–492,
CRW_00494–496, CRW_00498, CRW_00499, CRW_00501–503, CRW_00506–509,
CRW_00511, CRW_00512, CRW_00515–518, CRW_00520, CRW_00521,
CRW_00547, CRW_01456

23S Ribosomal RNA

2B PDB_00335, PDB_00714, PDB_00716, PDB_00764, PDB_00765 Ribozyme (Hepatitis Delta Virus)

2C ASE_00194, ASE_00204 Ribonuclease P RNA (Mycoplasma Pneumonia)

2D PDB_00187 23S Ribosomal RNA (Deinococcus Radiodurans)

3A CRW_00471–474, CRW_00476–492, CRW_00494–496, CRW_00498–503, CRW_00506–513,
CRW_00515–518, CRW_00520, CRW_00522, CRW_00529, CRW_00544, CRW_00547, CRW_01456

23S Ribosomal RNA

3B CRW_00505, CRW_00523, CRW_00527, CRW_00528, CRW_00546 23S Ribosomal RNA

3C PDB_00447, PDB_00606, PDB_00628, PDB_00993, PDB_01184 23S Ribosomal RNA

3D CRW_00525 23S Ribosomal RNA (Giardia Intestinalis)

4A CRW_00001 Group II Intron (Saccharomyces Cerevisiae)

4B CRW_00521 23S Ribosomal RNA (Euglena Gracilis)

5A CRW_00002, CRW_00575 Group II Intron (Saccharomyces Cerevisiae)

Consecutive sequence IDs are presented by a range, e.g. CRW_00501–503 represents IDs CRW_00501, CRW_00502 and CRW_00503. Organism names are also given if all
molecules belong to a single organism.
doi:10.1371/journal.pone.0039907.t003
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that the other 15 candidates are still not found. The contrast is

more apparent when we consider higher genus motifs. Subclass 4A

represents a genus 4 pseudoknot motif constructed with 11 stems,

but it is just one out of over 480 million possibilities.

Figures 4, 5, 6, and 7 depict the representative structures for all

pseudoknot motifs discovered in the analysis and whose genera are

higher than one. For the rest of this paper, we denote a base pair

stem with at least 20 base pairs as a major stem, a stem with more

Figure 4. Typical sample structures for all genus 2 subclasses. A: RNA sequence CRW_00474 of subclass 2A with pseudoknot pattern
ABCACDBD. B: RNA sequence PDB_00335 of subclass 2B with pseudoknot pattern ABCDCADB. C: RNA sequence ASE_00204 of subclass 2C with
pseudoknot pattern ABCDEDBCAE. D: RNA sequence PDB_00187 of subclass 2D with pseudoknot pattern ABCBDEDCAFEF. (Stem color, blue: major
stem; green: intermediate stem; red: minor stem).
doi:10.1371/journal.pone.0039907.g004
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than at least 5 base pairs and less than 20 base pairs as an

intermediate stem, and a stem with less than 5 base pairs as a

minor stem. In the figures, these major, intermediate and minor

stems are coloured in blue, green and red, respectively.

Furthermore, the gaps breaking the backbone (represented by

the black horizontal line) means nested substructures at those gaps

that are extracted during analysis. And the symbol ‘‘…’’ represents

a long gap or a long backbone with unpaired nucleotides.

When compared to the primitive pseudoknot genus distribu-

tion of the PDB dataset in [20], our dataset also follows the same

trend with genus 1 primitive pseudoknots dominating (5062

counts), and the distribution counts decrease with higher genus

values. A comparison was also performed in the total genus of

the whole RNA secondary structure, as shown in Table 5. The

two most significant differences between both datasets are the

large discrepancy in the highest total genus evaluated and the

different total genus distribution. In the PDB dataset, the highest

genus reported is 18 while in the RNA STRAND dataset, it is

only 11; and the highest genus of the primitive pseudoknot is 13

in the PDB dataset compared to 5 in our data. Due to different

selection criteria (non-redundant single molecule), not all RNA

sequences in the PDB dataset were covered in our dataset,

especially those molecules in the ribosomal RNA complex.

Therefore, we prepared another set of RNA sequences from the

RNA STRAND database that consists of all sequences in the

PDB dataset for direct comparison (called the STRAND-PDB

dataset). It was found that our evaluated values were usually

lower even though we did not remove the non-canonical base

pairs and considered the multiple molecules in the RNA complex

as a single molecule (data not shown). The most complex

Figure 5. Typical sample structures for all genus 3 subclasses. A: RNA sequence CRW_00490 of subclass 3A with pseudoknot pattern
ABACDEFGEHGIJIFHKBKDJC. B: RNA sequence CRW_00527 of subclass 3B with pseudoknot pattern ABCDEFDGFHIHEGJAJCIB. C: RNA sequence
PDB_00628 of subclass 3C with pseudoknot pattern ABACDEDFGFECHBHIGI. D: RNA sequence CRW_00525 of subclass 3D with pseudoknot pattern
ABACDEFDGFHIHEGJBJIC. (Stem color, blue: major stem; green: intermediate stem; red: minor stem).
doi:10.1371/journal.pone.0039907.g005
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primitive component and secondary structure have genera of 5

and 11, respectively which is equal to our original dataset. We

account for this by the different secondary structure annotation

used. RNAView was used for annotation in RNA STRAND, but

we do not know what annotation was used in the PDB dataset.

Nevertheless, the total genus values of a particular molecule

evaluated from the PDB dataset and the STRAND-PDB dataset

are highly correlated, as indicated by the Pearson correlation

coefficient of 0.93. For a different total genus distribution, from

Table 5 we found that the proportions of genus 3 and genus 4

structures are much higher compared to the PDB dataset.

According to Table 3, there are only 61 sequences consisting of

primitive pseudoknots of genera 3 or 4, and so there are many

genera 3 or 4 RNA molecules assembled with lower genus

pseudoknots. This is not reflected in the PDB dataset.

Discussion

In the results section, we have seen that only a few primitive

pseudoknots with genus higher than 1 were found in the RNA

STRAND dataset. Now we are going to identify some common

structural features, if any, and their contribution to the overall

stability whenever possible. According to the representative

structures illustrated in Figures 4, 5, 6, and 7, we observed some

similarities between different subclasses.

It was observed that, from Figures 4, 5, and 6, some motifs are

formed by a large kissing hairpin with its kissing stem crossing with

two minor stems of a local pseudoknot inside the hairpin loop near

to the 39 end. We call this large kissing hairpin the ‘‘kissing hairpin

backbone’’ of the pseudoknot motif. Structurally, it consists of two

major stem hairpins with their loops interacting with each other.

Figure 6. Typical sample structures for all genus 4 subclasses. A: RNA sequence CRW_00001 of subclass 4A with pseudoknot pattern
ABCDEFEGCGHIAIJKBKFJHD. B: RNA sequence CRW_00521 of subclass 4B with pseudoknot pattern ABACDEFGHEGIHJKJFILBLDKC. (Stem color, blue:
major stem; green: intermediate stem; red: minor stem).
doi:10.1371/journal.pone.0039907.g006

Figure 7. Typical sample structures for all genus 5 subclasses. RNA sequence CRW_00575 of subclass 5A with pseudoknot pattern
ABCDEFEGHCHIJIGKALJLMNBNFMKD. (Stem color, blue: major stem; green: intermediate stem; red: minor stem).
doi:10.1371/journal.pone.0039907.g007
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All the instances of subclasses 2D, 3A, 3D and 4B possess such a

backbone in their structures. Subclass 3C even represents a motif

of which the backbone is an interlock of two large kissing hairpins.

All these subclasses belong to the 23S Ribosomal RNA family. We

discovered that, in this family, there are another five RNA

molecules (CRW_00467, CRW_00468, CRW_00469,

CRW_00475, PDB_00029) consisting of a large kissing hairpin

(over 2500 nucleotides, belonging to subclass 1B) which is

structurally highly similar to the backbone structure identified in

those subclasses except subclass 2D, as depicted in Figure 8A. This

kissing interaction is involved in the continuous interhelical base

stacking (COIN stacking) found in large RNA structures [30].

COIN stacking is a particular type of base stacking occurring

between two or more helices. This tertiary interaction brings a

Table 5. Comparison of genus of the whole secondary structure between RNA sequences in the PDB dataset (190 sequences in
total) and in the RNA STRAND dataset (1939 sequences in total).

Total genus
No. of RNA sequences reported
in PDB dataset Proportion

No. of RNA sequences reported in
RNA STRAND dataset Proportion

1 66 0.347 597 0.308

2 23 0.121 263 0.136

3 5 0.026 414 0.214

4 18 0.095 585 0.302

5 8 0.042 22 0.011

6 2 0.011 0 0

7 3 0.016 7 0.004

8 2 0.011 2 0.001

9 2 0.011 8 0.004

10 5 0.026 40 0.021

11 4 0.021 1 0.001

12 9 0.047 0 0

13 3 0.016 0 0

14 34 0.179 0 0

15 4 0.021 0 0

16 0 0 0 0

17 1 0.005 0 0

18 1 0.005 0 0

doi:10.1371/journal.pone.0039907.t004

Figure 8. Primitive large kissing hairpin and the G-ribo ring interacting with the large kissing hairpin backbone. A: Large kissing
hairpin from RNA sequence PDB_00029 similar to the kissing hairpin backbone. (Stem color, blue: major stem; red: minor stem) B: G-ribo ring
(magenta) is crossed with kissing stem (green) through the lone pair and the double pair in CRW_00525 (subclass 3D).
doi:10.1371/journal.pone.0039907.g008
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stabilization effect to the overall structure. The COIN stacks of the

23S ribosomal RNA molecule Haloarcula marismortui have been

annotated [30,31] and Figure 9 shows the relevant COIN stacks.

Several base pair stems including the kissing stem of the large

kissing hairpin motifs form a COIN stack according to [30], and

they are connected by the magenta line in the figure. This stack is

an interdomain COIN stack as it spans across domains I and V in

23S ribosomal RNA. The two domains were brought close to each

other by this interdomain stack in such a way that particular stems

in each domain are stacked together along with the kissing stem, as

shown in Figure 10A. Although the other 23S ribosomal RNA

molecules are not annotated, we believe that in those conserved

large kissing hairpins (or backbones) of the other 23S RNA

molecules, this interaction stacking with the kissing stem also

occurs. In Figure 9, there is another COIN stack (shown by green

line) also involving the same kissing stem. As a result, these two

COIN stacks included the kissing stems as well as the two hairpin

stems. This configuration favours the long hairpin stem because of

the stronger stacking effect, so we observed the major stems at

both hairpins in most cases. However, we have to emphasize that

the kissing hairpin is not a prerequisite for COIN stack formation.

There are many COIN stacks in Haloarcula marismortui that do not

involve any kissing stem [30]. Therefore, such stacking is

anticipated to be found in the ‘‘incomplete’’ kissing hairpin

backbone (the left hairpin is absent) subclass 3B. We believe that

COIN stacks substantially stabilize structure.

The main difference between motifs possessing the kissing

hairpin backbone and the large kissing hairpin is the local

pseudoknot that crosses with the kissing stem near the 39 end. This

pseudoknot is essentially a G-ribo ring [32]. Figure 8B illustrates

the G-ribo ring and the two lone pairs where the first pair crosses

both this motif and the kissing stem, while the second pair crosses

the first lone pair. This G-ribo ring does not always interact with

the large kissing hairpin. It also exists in molecules containing the

large kissing hairpin except molecule PDB_00029. The quasi-

coaxial stacking of helical stems stabilizes the G-ribo ring [32], but

whether the interaction between this pseudoknot and the kissing

hairpin backbone further stabilizes the complex pseudoknot or not

is undetermined. Figure 9 and Figure 10B show the location and

the typical structure of a G-ribo ring, respectively.

Topological classification identified another complex pseudo-

knot motif which is also from 23S ribosomal RNA molecules, as

represented by subclass 2A. This motif involves two distinct COIN

stacks illustrated by orange and blue lines in Figure 9. Both stacks

include different parts of the kissing stem, which are separated by

an unpaired nucleotide in each kissing loop. Moreover, these two

stacks only consist of stems in domain I and are so called

intradomain COIN stacks. All RNA molecules in this subclass

have a lone pair constituting a stem. In the analysis of the

STRAND dataset, this lone pair does not appear in every 23S

ribosomal molecule, and in the absence of this base pair, a kissing

hairpin appears instead. The lone pair was found in Haloarcula

marismortui from our dataset (U63-A70 pair) but not in the structure

provided in [30]. Nevertheless, no matter whether the complex

pseudoknot or the kissing hairpin appears, the underlying COIN

stacks still exist. Figure 10C illustrates the two COIN stacks.

Subclass 2B represents the double pseudoknot motif in Hepatitis

Delta Virus (HDV) ribozyme [33]. This motif contains a charac-

teristic stem P1.1 consisting of double CG base pairs, which is

critical for cleavage activity [34]. There are two coaxial stacks

formed, one having stems P1, P1.1 and P4 and the other having

stems P2 and P3, as shown in Figure 10D. Therefore, the double

pseudoknot motif is stabilized.

We also observed some other large primitive pseudoknotted

components whose lengths are comparatively much shorter than

those accompanied by the kissing hairpin backbone (usually with

lengths over 2000 nucleotides). These pseudoknot motifs consist of

mainly intermediate stems, and most of the stems cross several

other stems, thus achieving a high complexity within a relatively

compact structure. These motifs were found in Group II Introns of

Saccharomyces Cerevisiae and were classified into subclasses 4A and

5A. They are shown in Figures 6 and 7, respectively. We can also

identify a similar structure in Ribonuclease P RNA molecules of

Mycoplasma Pneumonia visually from Figure 4, and it is classified into

subclass 2C. These three subclasses exhibit similar motif lengths

(from 342 nucleotides to 431 nucleotides respectively, according to

Table 3). However, to the best understanding of the authors, no

details concerning these types of pseudoknots are available, and so

the underlying interaction that favours their formation is currently

unknown, even though it is believed to be related to helical

stacking.

Compared to the abundant H-pseudoknot and kissing hairpin

as shown in Table 3, other complex primitive pseudoknots (genus

$2) are far less frequently observed. Their existence usually relies

on special helical stacking such as COIN stacking or quasicoaxial

stacking that help stabilize the structure. Therefore, we believe

that the energy barrier for the formation of complex primitive

pseudoknots is much higher than that for the H-pseudoknot and

kissing hairpin. This explains why so few complex pseudoknots

are discovered in nature. On the other hand, it was reported that

coaxial stacking does not occur in some H-pseudoknots [35],

implying a lower energy requirement and are thus more

prevalent. Another contrast is that since complex pseudoknots

usually play an important role in affecting the overall 3D

structure and are specific in the functions of the RNA molecules,

they are likely to be found in a single RNA family. The existence

of the H-pseudoknot and kissing hairpin are, however, not RNA

family bound. In particular, there are two special motifs (one

represented by subclass 2A and another being the interaction of

the large kissing hairpin and the G-ribo ring) belonging to 23S

ribosomal RNA family, the latter resulting in pseudoknots of

different genus values and structures, thus dominating the

subclasses. On the other hand, in other RNA families such as

tmRNA and telomerase RNA, only genus 1 pseudoknot motifs

were found in our dataset.

From the study of topologically classified primitive pseudoknots,

we can see that complex pseudoknots are usually specific well-

known motifs or motifs that interact with each other. Their

formations are driven by certain helical stacking mechanisms.

However, at present, little is known about the thermodynamic

aspect of helical stacking, making it hard to parameterize in the

MFE model. Therefore, some heuristics are necessary in order to

predict complex structures or a particular part of them. For

example, current prediction algorithms such as DotKnot can

predict the kissing hairpin [36,37], but the suggested input

sequence size is just 400 nucleotides. While this limit is able to

Figure 9. Relevant COIN stacks for the complex pseudoknots in Haloarcula marismortui (RNA STRAND Id: CRW_00467). The magenta
line represents an interdomain COIN stack and the green line represents an intradomain COIN stack. They exist together in the large kissing hairpin
motif. The COIN stacks represented by orange and blue lines exist in the subclass 2A complex pseudoknot. Also, the base pairs in the G-ribo ring
motif are marked within the blue squares. For simplicity some other base pairs crossing different domains are not shown.
doi:10.1371/journal.pone.0039907.g009
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cover most of the primitive kissing hairpins found in our dataset,

large kissing hairpins or backbone motifs are omitted. To

overcome this issue, we suggest that since the major stem occupies

both hairpins of kissing interaction, only predicted major stems

can be selected as candidates for the formation of the large kissing

hairpin or backbone. This allows the algorithms to create

appropriate candidates without a severe impact on efficiency.

Moreover, the G-ribo ring, which can be regarded as a kissing

hairpin, consists of a lone pair as the hairpin stem near the 5’ end,

as illustrated in Figure 8B. For efficient computation, lone pairs

are usually ignored and so the G-ribo rings are also overlooked. A

similar situation also happens to the double pseudoknot motif as

the double CG paired stems are also ignored. Future structure

prediction approaches should be able to filter lone pairs rather

than discarding them all in order to predict these functionally

important motifs.

Conclusion
Topological classification can be utilized to decompose and rank

arbitrary pseudoknots according to their complexities which are

expressed in terms of a genus value. Following this measure, other

than the simplest primitive pseudoknots which include the most

prevalent H-pseudoknot and kissing hairpin, complex primitive

pseudoknots were discovered existing as some functionally

important motifs that were already known. Further tertiary

interaction between these motifs may even create variations of

complex components, such as the large kissing hairpin crossing

with the G-ribo ring in different ways and the resulting motifs have

different genera. The energy barrier for these complex pseudo-

knots is much higher and most of them require helical stacking for

stability. This might explain why only a few cases were found in

real data despite a large number of possible structures as

demonstrated. Still there exists some complex structures of which

the reasons for their formations remain unknown, and it is

expected that more complex pseudoknots different from those

discussed above will be discovered. This classification technique

allows us to effectively compare and classify them. Based on the

classified results, some suggestions have been proposed to improve

the prediction ability for complex pseudoknots.
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