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Abstract
The identification of biologically significant variants in cancer genomes is critical to thera-

peutic discovery, but it is limited by the statistical power needed to discern driver from pas-

senger. Independent biological data can be used to filter cancer exomes and increase

statistical power. Large genetic databases for inherited diseases are uniquely suited to this

task because they contain specific amino acid alterations with known pathogenicity and

molecular mechanisms. However, no rigorous method to overlay this information onto the

cancer exome exists. Here, we present a computational methodology that overlays any var-

iant database onto the somatic mutations in all cancer exomes. We validate the computa-

tion experimentally and identify novel associations in a re-analysis of 7362 cancer exomes.

This analysis identified activating SOS1 mutations associated with Noonan syndrome as

significantly altered in melanoma and the first kinase-activating mutations in ACVR1 associ-

ated with adult tumors. Beyond a filter, significant variants found in both rare cancers and

rare inherited diseases increase the unmet medical need for therapeutics that target these

variants and may bootstrap drug discovery efforts in orphan indications.

Author Summary

Current identification of driver cancer genes is limited by the statistical resolution of exist-
ing approaches. However, many rare mutations that contribute to cancer progression
remain unidentified. We capitalize on the powerful insight that our knowledge of genetic
variants in inherited diseases can enhance driver oncogene identification. Inherited disease
variants are unique because they have known pathogenicity, validated causality, and reso-
lution at the level of individual amino acids. Because of this, it is commonly argued, that
overlapping mutations between a given inherited disease dataset and human cancer are
important by virtue of the fact that they occur in both places. However, this argument
never takes into account how often a discovered mutant would overlap with the cancer
exome by chance. We find that chance overlap of variants happens surprisingly often. To
exclude this effect, we rigorously estimate how often overlap can occur by chance. Beyond
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the discovery of new cancer-associated genes, we independently validate our predictions
with experiments, structural analysis, and epidemiological data. Finally, our ability to rig-
orously link drivers across diseases has the potential to create a social benefit by bridging
the treatment of rare inherited diseases and the treatment of rare cancers. This holds the
potential to enhance patient access to new medicines by making orphan diseases a little
more common and identifying larger unmet medical needs.

Introduction
Statistical approaches to identify new cancer drivers have revolutionized our view of the cancer
genome [1–4]. However, state-of-the-art statistical approaches still fail to identify bona fide
cancer drivers. For instance, activating kinase mutations in FGFR2 and FGFR3 in lung squa-
mous cell carcinomas were overlooked in previous computational and statistical analyses
because the genomic cohort sizes were insufficient [3] to accurately predict their significance
[5].

While increasing cohort sizes is a conceptually simple (but costly) way to increase the sta-
tistical power to detect rare variants in cancer genomes, an exciting alternative is to systemati-
cally overlay independent biological information [6,7]. Inherited disease databases harbor
useful biological information that includes: resolution at the level of specific amino acid resi-
dues, documented modes of inheritance, and even molecular mechanisms. Thus, while the
joint information contained in inherited diseases and cancer databases is widely believed to be
useful [5,8–10], there is not a statistically rigorous methodology for validating the finding that
a variant exists in both databases, while properly excluding false-positive connections. In fact,
the observation of overlap between variants in a genetic disease and cancer is often cited as
important without any idea of how often raw overlap would occur by chance. And while
germline diseases associated with cancer susceptibility are of obvious relevance, a method is
urgently needed that can systematically leverage the power of the two datasets of variants to
find genetic drivers in noisy genomics data. Rigorously identifying variant overlap between
inherited diseases and sporadic cancers will create larger patient populations by stitching
together rare cancer subtypes and inherited diseases that have similar underlying molecular
alterations. Discovering a larger population of diseases harboring a particular mutation is a
novel method to speed drug discovery by identifying a larger population with unmet medical
needs.

Importantly, beyond this particular application of inherited disease databases, there is also a
broader need for a statistical method that can discern whether a variant or set of variants that is
identified in any study is significantly altered in human cancer. Biophysical, biochemical, and
saturating mutagenesis studies are an incomplete list of approaches that generate functional
data at the amino acid residue level. Determining whether these functional studies have identi-
fied positions in proteins that are significantly altered in human cancer is a critical step in
understanding their clinical significance.

Methods

Datasets
We acquired the following datasets: cancer mutations (mutation annotation format [MAF]
files, downloaded via cBioPortal [11] application programming interface [API], August 23,
2014), UniProt HUMSAVAR [12] (release 2014_07 of July 9, 2014), ClinVar [13] (file date
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20140807), RNA-Seq V2 RSEM data (upper quartile normalized, downloaded via cBioPortal
API, October 24, 2014), clinical data (downloaded via cBioPortal API, December 17, 2014),
UniProt human proteome (downloaded from UniProt, September 11, 2014), and HUGO IDs
(Human Genome Organization identifications; downloaded from the HGNC [HUGO Gene
Nomenclature Committee] website, September 18, 2014).

The UniProt HUMSAVAR dataset was filtered to remove silent mutations and to only con-
sider mutations with pathogenic consequences. This resulted in a subset of the HUMSAVAR
data set that contains known pathogenic disorders. No polymorphic alleles with questionable
disease relevance were retained. Silent mutations that cause splicing defects were retained. By
comparing across the HUMSAVAR and cancer datasets, we removed any entries with discrep-
ancies in the reference amino acid residues. All overlapping pathogenic variants were hand
annotated by their mechanism of pathogeneicity (i.e autosomal dominant/recessive etc). We
also acquired RNA-Seq expression data for all the genes in the cancer mutations dataset. For
any of the few TCGA entries for which the RNA-Seq data were not available, we used the
median of the available expression values for given gene and given tumor type. Expression data
were used for dataset stratification of expressed versus nonexpressed genes per tumor type and
in determining statistical significance cutoffs, as described in later sections. We also acquired
the UniProt human proteome (and used HGNC Hugo IDs for ID mapping) to determine the
protein length of the canonical protein for each gene. This information was later used in our
statistical model for estimating mutation burden.

It is important to note that exome capture methods and variant calling pipelines are differ-
ent across cancer studies. Furthermore, distinct TCGA working groups curate their data to
tune sensitivity and specificity. Thus, across all studies, the sensitivity of the given exome analy-
sis pipeline to call a particular variant can vary. Because we do not compare mutational data
across cancer types and studies, the differences in curation will not lead to incorrect compari-
sons. All of our simulation based statistics are based upon individual studies. Importantly other
pan-cancer analysis efforts also utilize curated data [1,14]. However, a detailed analysis of the
sensitivity of our algorithm to these differences is presented in S1 Text and S1 Data as well as
S4 and S5 Figs. Hit lists for different inputs are in our GitHub repository under the siglist
folder.

Different inherited disease variant databases draw and curate from different data sources.
Please refer to the supplemental results and discussion for a detailed comparison between
HUMSAVAR and ClinVar.

Computational model
Our approach involved the development of a match score (per gene per study) to make com-
parisons between the inherited diseases dataset and the cancer genome dataset (Fig 1A and
1B). We used a bootstrapping approach to assess the confidence in the score, by deriving a sig-
nal-to-noise ratio. We also have used a permutation-based approach to determine the empiri-
cal null distribution and calculate the P value for each gene (Fig 1C). The algorithm
implementation and subsequent analyses were written in R.

A match score (S) for given gene i in tumor type t was defined as the proportion of observed
cases (out of the total observed cases for a given gene in the cancer dataset of tumor type t)
reported at residue positions that are matched to inherited diseases (based on one of the match
criteria).

Si;t ¼
# fmatched cases for gene i; tumor type tg
# ftotal cases for gene i; tumor type tg ð1Þ
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Fig 1. Summary statistics of overlay between inherited diseases and cancer mutation datasets and
computational model overview. (A) Breakdown of the shared mutations between the two datasets, showing the
percentage with an exact positional match, and of those which are mutations with the exact same or similar
residue changes. (B) Refer to Methods for details of methodology. We derived a match score based on the overlay
between the inherited diseases and cancer mutation datasets. A signal-to-noise ratio (SNR) was derived through
bootstrapping (N = 1000)—sampling with replacement from all of the available reported cases of cancer mutations
for a given gene in a given tumor type with recalculations of the match score value. A P value also was derived for
the match score using the empirical null distribution, which was generated through a permutation procedure. In
each iteration, the number of matches expected by chance was determined based on a binomial distribution (with
probability equal to the estimated background match rate). For the number of matches determined, they are
randomly assigned based on a uniform distribution to one of the available mutated positions. A match score was
subsequently calculated. This process was repeated 104–106 times to generate the empirical null distribution for
the match score.

doi:10.1371/journal.pgen.1006081.g001
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To assess the confidence we have for each mutation, we performed bootstrapping
(N = 1000) from the available reported cases for a given gene and tumor type to calculate a
standard deviation of the score and, subsequently, a signal-to-noise ratio (SNR):

SNRi;t ¼
Si;t

sðSi;tÞ2
ð2Þ

The null distribution (ρi,t) for gene i in tumor type t is a convolution of the distributions of
score (ψk) calculated based on a background match rate across all possible numbers of matches
(k). The probability of the match k is calculated based on a binomial distribution:

ri;t �
Xni;t

k¼0

ckBinðk; ni;t; ai;tÞ ð3Þ

We defined the match rate as the probability of a match between the cancer mutation data-
set (per tumor type) and the inherited diseases dataset given an observed mutation in a given
gene. We assumed that the match rate (αi,t) for gene i in tumor type t is a function of the muta-
tion burden:

ai;t ¼ f ðmi;tÞ ð4Þ

Here we used a linear model to approximate the match rate,

ai;t ¼ gtmi;t ð5Þ

where γt is a tumor type—specific proportionality coefficient.
We estimated mutation burden as the number of unique positions mutated n over the pro-

tein length L:

m̂ i;t ¼
ni;t

Li;t

ð6Þ

We estimated a background proportionality coefficient as the mean of coefficient values
from the entire dataset (with N genes),

ĝt ¼
1

N

X

i; t

m̂ i;t

â i;t

ð7Þ

where the estimated match rate â i;t for gene i in tumor type t is the ratio of the number of

unique positions mutated and matched between the two datasetsm and the number of unique
positions mutated n,

â i;t ¼
mi;t

ni;t

ð8Þ

Here we tried to estimate the background proportionality coefficient with various expres-
sion level cutoffs and observed the estimation to be stable (S1 Fig).

In practice, the empirical null distribution was generated using a permutation procedure.
Each mutation was sampled as either a match or a nonmatch based on a background match
rate probability (â i;t ¼ ĝtm̂ i;t) as a Bernoulli process. Then for each mutation that is a match,

the actual residue position mutated was determined based on a uniform distribution (from one
of the mutated positions in the cancer dataset for a given gene in a given study). The match
score (Si,t) was then calculated for that iteration. This was sampled for a minimum of 104 times
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and a maximum of 106 times to generate the empirical null distribution of S for a given gene,
and a P value was calculated thereafter. The nominal P values were corrected for multiple
hypotheses using the Benjamini-Hochberg False Discovery Rate method, yielding an adjusted
P value for each gene. We determined the adjusted P value cutoff based on the first quartile—
adjusted P value from the nonexpressed genes from pan-cancer data. We assumed here that
any statistical significance for nonexpressed genes would constitute false-positives and that the
overall cumulative distribution of nominal P values of expressed genes would have a much lon-
ger tail, with smaller P values and adjusted P values for the significantly mutated genes. It is
conceivable that a variant in a nonexpressed gene could have an important role, i.e a regulatory
function. However, we still consider nonexpressed genes to constitute a “false positive” distri-
bution, and suggest that at worst this may make thresholding against it a little conservative. We
generated empirical cumulative distribution functions for expressed and nonexpressed genes
and consistently observed a difference in distributions (S2A Fig). We also used RNA-Seq cut-
offs of one, five, and ten reads and the results were stable (S2B Fig).

Code and data accessibility. All input files, R code, and associated documentation have
been deposited on GitHub https://github.com/boyangzhao/targetID.

Simulated data generation/analyses. We tested the robustness of the approach using sim-
ulated data by analyzing a randomly generated synthetic dataset over a range of parameter val-
ues. Specifically, we randomly generated 1000 simulated genes with the following parameters:
protein length (10–8000 amino acids), number of exact positional matches (1–100 unit
matches), match score (0.01–0.99), background mutation burden (from a single unique non-
matched positional mutation to the maximal possible number of unique nonmatched posi-
tional mutations), and total number of cases (scaled by a factor between 1 and 50). Unit
measurements were defined as the smallest number of cases needed to satisfy the given match
score.

Analysis of datasets. Significant hits were filtered to contain at least two reported cases, a
signal-to-noise ratio of greater than 2, and an adjusted P value cutoff based on the first quartile
—adjusted P value from the pan-cancer nonexpressed genes.

Clinical data. The Biotab data was downloaded from the TCGA data portal on 01/08/16.
Relevant clinical variables used for analysis included the breslow thickness at diagnosis, clark
level at diagnosis, tumor staging by AJCC criteria, and the site of the sample collected by
TCGA.

Survival analyses. Survival analyses were performed using the standard Cox proportional
hazards model (implemented in R package “survival”). Here, a hazard ratio>1 suggests that
the mutation has a worse outcome, whereas a value<1 suggests a better outcome. Age, gender,
mutation number and tumor stage were used as covariates. ExaLT, which was specifically
designed for unequal sample sizes in TCGA data was compiled and run using the—table com-
mand according to the author’s readme on GitHub [15].

Epidemiology. All epidemiology was based on a US population estimate of 318 million
people. Incidence estimates are per 1-year period. Fibrodysplasia ossificans progressiva (FOP)
has a described incidence of 1 in 2 million [16]. Pediatric high-grade glioma has a total inci-
dence of 0.85 per 100000 [17]. The incidence of activin A receptor type 1 (ACVR1) mutations
in pediatric high-grade gliomas was recently reported at 20–30%[10,18–20]. The pediatric pro-
portion of the US population is estimated to be 30%. Endometrial cancer has an incidence of
25 per 100,000 women according to National Cancer Institute Surveillance, Epidemiology, and
End Results Program statistics [21]. We find that ACVR1mutations that match FOP are in
1.65% of endometrial cancers and that some type of ACVR1mutations are in 3.3% of endome-
trial cancers.

Inherited Disease/Cancer Variant Analysis across Human Cancers
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Experiments. Human SOS1 was synthesized without the spe1 restriction site and cloned
into PLVX-IRES-PURO. Point mutants were made by site-directed mutagenesis. HEK293T
cells (American Type Culture Collection) were seeded to 60–80% confluency and transfected
with Lipofectamine 2000 in 24- and 96-well plates. Thirty-six hours after transfection, cells
were serum starved for 4–8 hours and evaluated for phospho-ERK 1/2 and total-ERK1/2
ELISA kits from Cell Signaling Technologies. A positive control lysate was prepared by stimu-
lating cells with 20-ng/ml EGF from R&D systems for 5 minutes. This lysate was serially
diluted 128-fold and fit to a standard curve. A standard curve was run on each ELISA plate to
quantify relative amounts of total and phospho-ERK. Phosphorylated ERK measurements
were then corrected for the total ERK measurement, and quantified relative to the SOS1 wild-
type transfection. PLVX-BRAF V600E-IRES-PURO was used as a positive control. The experi-
ment was run in the presence or absence of phosphatase inhibitors in the lysate. The average of
N = 8 biological replicates across both experimental lysis conditions (N = 4) is reported. Both
lysis conditions were performed separately but analyzed on the same ELISA plate.

Results and Discussion

Extensive overlap of variant amino acids and known false-positives
suggests the need for a rigorous statistical approach
With the goal of identifying genes that significantly overlap between inherited disease data-
bases and cancer exomes, we merged data from the pathogenic entries in the UniProt HUMSA-
VAR [12] database and the entire set of tumor exomes featured on the cBioPortal [11]. Raw
overlap of the data identified 576 genes that had an exact match between an inherited disease
and a cancer exome (i.e., the same amino acid alteration at the same site) (Fig 1A). A statistics-
naïve inspection of the most frequent overlapping genes identified false-positives such as the
presence of RYR2 in eight different cancer types (S6B Fig). RYR2 has been shown to be heavily
mutated relative to the whole genome background mutation rate in previous pan-cancer analy-
ses [2]. The existence of a large amount of mutational overlap between the datasets (approxi-
mately four times the size of current pan-cancer gene lists) and known false-positives (such as
RYR2) highlight the need for rigorous statistics that correct for local mutation densities, gene
length, cancer type, and gene expression (S6A–S6D Fig). To this end, we developed a suite of
statistics for effective analysis (Fig 1B). Briefly, we generate a match score and a corresponding
signal-to-noise ratio by bootstrapping. Subsequently, we use a permutation-based approach to
create an empirical null distribution of the match score. Our approach eliminated the false-pos-
itive RYR2 from our set of commonly overlapped genes, allowed us to detect FGFR2 and
FGFR3 as significantly mutated, and identified 49 significantly overlapping genes (S6 Fig and
Fig 2A and 2B). Extensive simulations demonstrated that our approach corrects for biases in
protein length and mutation density across different cancer types (S7 Fig). We also conserva-
tively reasoned that non-expressed genes should not be considered hits and likely constitute
false-positive overlap. We plotted the cumulative distribution of P values for expressed and
non-expressed genes and observed that expressed genes have a much longer P value tail than
non-expressed genes (S2 Fig). A long tail for expressed genes relative to a non-expressed “false
positive” gene set suggests that our algorithm enriches for information and is indicative of a
low false-positive rate. We used the distribution to exclude hits that were not expressed or that
failed to be more significant than the non-expressed genes.

A recent paper by Melamed et al [22] attempted to identify driver genes by using patterns of
comorbidities between inherited diseases and human cancers. A “top-down” approach, this
comorbidity based assessment makes the strong assumption that the patterns in the incidence
of common clinical conditions can identify genetic similarities and thus drivers of cancer.

Inherited Disease/Cancer Variant Analysis across Human Cancers
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Importantly, comparing significantly overlapping individual genes between comorbid cancers
and Mendelian diseases yielded only four significant putative drivers in 14 inherited disease—
indication pairs, all of which were previously known. While this study performs many other
interesting analyses, the power of their direct genetic comparison to inherited disease data is
limited. A comparison with our approach demonstrates the power of examining the overlap
between inherited diseases and cancer at the level of individual residues (S3 Fig, S1 Text).

Noonan syndrome genetics adds sensitivity to detect cancer-associated
variants that activate the RAS/MAPK pathway
We observed a striking sensitivity to detect the overlap between specific molecular etiologies of
the inherited disease Noonan syndrome and rare pan-cancer variants in PTPN11, RAF1, and
SOS1 (Fig 2B, highlighted in heatmap). We found 26 instances of significant overlap across
Noonan syndrome disease genes. We compared these to the hits called by MutSigCV—Broad
Institute’s somatic mutation significance caller based on modeling of the background mutation
rate, controlled for various covariates, e.g. replication time, transcriptional activity, and chro-
matin state. MutSigCV identified only 10 hits (of these, seven were in both datasets). While
Noonan syndrome genes constitute long-studied positive controls, to the best of our knowledge
we provide the first evidence of significantly overrepresented somatic mutations of SOS1 in a
subtype of human cancer(melanoma) (Fig 2B). These SOS1mutations in five melanoma
patients (R552K, G434R/V, C441F, and M239K) were found in the absence of BRAF and
NRASmutations. Furthermore, visual inspection of the pan-cancer incidence of SOS1muta-
tions suggested a modest hotspot of 10 N233Y/I and 4 R552K/S mutations (Fig 3 and 3B).
Mutations in SOS1 are thought to activate Ras signaling [23,24], but while previous work has
demonstrated the activation effect of M269R and E846K mutations (amongst others), G434R,

Fig 2. Overall summary of identified mutant variants. (A) Statistically significant hits based on a signal-to-noise ratio cutoff of 2, at least
two reported cases, and a P value cutoff of 0.062 based on the first quartile of adjusted P values from the analyses of all exact matches in
nonexpressed genes (see methods). The number of input exomes for given tumor type is indicated at the top of the heatmap. (B) Highlights
of hits with significance in at least two tumor types, genes involved in Ras/mitogen-activated protein kinase pathways and Noonan
syndrome.

doi:10.1371/journal.pgen.1006081.g002
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N233Y, and R552S mutations have not been examined. To further validate our computational
approach, we sought to experimentally validate the activation of the RAS-MAPK pathway by
these SOS1 variants. We transfected wild-type and mutant SOS1 constructs into HEK293T
cells and measured the effect on basal levels of phosphorylated ERK1/2. We observed a robust
2–6-fold activation depending upon the precise mutation. This is an effect size that is consis-
tent with previous studies of Noonan syndrome [23,24] but more modest than BRAF V600E
(Fig 3C). Thus, RAS-MAPK—activating mutants in SOS1 occur in melanoma and other
human tumors (Fig 3B), albeit with a more modest effect than current established drivers. Con-
sistent with this more modest activity, SOS1 mutants alone were not sufficient to transform
BaF3 cells while BRAF V600E was. Analyzing the spectrum of SOS1mutants across cancer
indications suggests that these activating mutations can occur in a number of indications that
we fail to call significant with our current cutoffs. As such, some true-positive overlap is not

Fig 3. SOS1mutations are significantly associated with cancer and activate the RAS/MAPK pathway. (A) Top: All four skin
cutaneous melanoma datasets in cBioPortal are presented. Vertical lines indicate mutations in SOS1. Green lines identify overlap with
Mendelian diseases. Bottom: A pan-cancer version of the SOS1mutational data is presented. Data is filtered for N� 4. (B) A table
containing all SOS1 variants across the TCGA that match a known Noonan syndrome—associated residue. cBioPortal study ID refers to
the indication name in the cBioPortal. The patient ID is the unique sample identifier for the given study. (C) HEK293T transfection
experiment for phosphorylated ERK1/2. Dots indicate biological replicates (N = 8). P value was assessed by Student t test.

doi:10.1371/journal.pgen.1006081.g003
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part of our 103 significant gene-cancer pairs. We suggest that this emphasizes the robustness
and high stringency of the gene set that we do call significant. Thus, a minor subtype of Noo-
nan syndrome and a newly discovered rare subtype of melanoma share activating variants in
SOS1.

COL3A1 is a significantly mutated extracellular matrix cancer gene
We next turned our focus to genes in pathways that are missed by previous approaches. One
surprising finding was that mutations in the extracellular matrix gene COL3A1 that are found
in autosomal dominant Ehlers-Danlos syndrome patients, are significantly altered in patients
with melanoma (Figs 4 and 2B). The mutations in COL3A1 were glycine to glutamate substitu-
tions at positions 228, 240, 501, 942, and 1014. These substitutions directly affect the ability
of the Gly-X-Y triple helix motif to adopt the collagen triple helix fold (Fig 4A). Glycine is
absolutely essential for triple-helix structure. In Ehlers-Danlos syndrome, COL3A1 glycine
mutations in the collagen triple helix are known to be pathogenic by a variety of molecular
mechanisms that include impaired secretion, aberrant assembly, and lower stability [25,26].
However, they all share the consequence of creating tissues that lack fully functional COL3A1.
Furthermore, G->E/R substitutions have similar structural effects that are agnostic to the
exact location along the protein. Interestingly, our pathogenesis filter identifies recurring hits
that are synchronous with the Gly-X-Y motif in the triple helix. This presents a distinct and
novel form of “hotspot” that can only be detected in a filter like ours.

In Ehlers-Danlos syndrome, mutations in COL3A1 result in an increased likelihood of the
rupturing of vascular tissues [27]. An interesting hypothesis is that these mutations could be
enhancers of metastasis. Interestingly, two experimental studies lend circumstantial support to
this hypothesis. It has recently been shown that 4T1 tumor cells implanted into COL3A1 het-
erozygous mice (a COL3A1+/- mouse is a haplo-insufficient mouse model for Ehlers-Danlos
syndrome) grow and metastasize more aggressively [28]. While this demonstrates a cell
non-autonomous functional effect of the loss of COL3A1, another recent study showed that
COL3A1 is secreted by cancer cells into the extracellular matrix at a high level in two distinct
human cell lines [29]. These studies suggest that the loss of function of COL3A1 in the extracel-
lular matrix can have direct effects on tumor progression and that COL3A1 can be secreted in a
cell-autonomous fashion in experimental tumor models. Mutations in COL3A1 are also associ-
ated with a decrease in overall survival (log-rank P value 0.028, ExaLT P value 0.053, and Cox
P values that ranged 0.006–0.069 depending upon the covariates included (COL3A1 (N = 38),
WT (N = 158)). While the number of COL3A1mutant tumors is small, the decreased survival
is modestly significant across a variety of statistical analyses. Repetition in independent cohorts
will be important to determine the reproducibility of these observed survival differences. Thus,
a devastating and rare genetic disease (Ehlers-Danlos Syndrome), and a subset of melanoma
patients share pathogenic variants in COL3A1. This suggests that there may be a larger unmet
medical need for therapies that can ameliorate the effects of COL3A1mutations than was pre-
viously known.

Familial cancer genetics identifies rare and targetable alterations in
sporadic lung cancer
We also found the first evidence for significant variants in R24 of CDK4 in lung adenocarci-
noma. R24 mutations have been previously described only in familial and sporadic melanoma
[30]. These R24L variants reside in the CDKN2A binding site, and when combined with the
nearby K22Mmutants across all melanoma datasets are mutually exclusive with CDKN2A
alterations (P value< 0.001, Fisher exact test (CDK4 N = 7, CDKN2A N = 108, None
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N = 275). Thus, we show that set of mutations previously only known to exist in familial and
sporadic melanoma, exist in lung cancer, and are mutually exclusive with established alter-
ations in the same pathway. Interestingly, potent inhibitors of CDK4/6 are already approved in
breast cancer [31].

Fig 4. COL3A1mutations are associated with melanoma. (A) Reported mutations inCOL3A1 for all skin cutaneous melanoma studies.
Mutations overlapping with Ehlers-Danlos syndrome are shown in green. Only glycine -> charged residue mutations (E/R) in conserved
regions are shown for clarity. Examination of all melanomamutations inCOL3A1 revealed numerous other glycine triple helix mutations that
were distributed along the length of the protein, but are not documented to cause Ehlers-Danlos syndrome in the HUMSAVAR database
(shown in black and labeled if N>2). Proline residues that also are important for the triple helix were also mutated (shown below in purple).
(B) Amodel of collagen triple helix structure is shown. Hydrogen bonds stabilizing the triple helix conformation are shown. The tight-steric
interactions of the proline residues and hydrogen bonding between the backbone nitrogen of the glycine residue and a carbonyl on an
adjacent strand stabilize the triple helix conformation. Substitution of glycine with a bulkier residue directly disrupts these interactions. C) A
Kaplan—Meier curve for all COL3A1mutations in the TCGA (others non-TCGA studies did not have survival data).COL3A1 in SKCMwas
found to be modestly associated with decreased overall survival based upon log-rank, ExaLT and/or Cox regression. Cox regression
outputs for univariate, multivariate, and reduced models with different effect sizes and P values are shown below the Kaplan-Meier curve.
SKCM, skin cutaneous melanoma.

doi:10.1371/journal.pgen.1006081.g004
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Kinase-activating mutations in ACVR1 are found in uterine corpus
endometrial cancer and increase the potential unmet medical need for
anti-ACVR1 therapy
Finally, we identified a significant overlap between the kinase-activating mutations in ACVR1
that cause the debilitating genetic disorder (FOP) and cancer of the endometrium (Fig 5A).
ACVR1mutations in endometrial cancer overlapped with FOP at two distinct positions (Fig
5B), and were significantly associated with variants in the PTEN-AKT-mTOR pathway (P
value combined by Fisher’smethod 0.0001) (S8 Fig). ACVR1mutations occurred in 3.3% of
endometrial cancers in the TCGA dataset, and about half of those variants overlapped with
FOP. Four publications recently found the same mutations in high-grade pediatric astrocyto-
mas and gliomas [10,18–20]. Epidemiologically, FOP occurs at an incidence of 1 in 2 million,
and pediatric high-grade gliomas occur in less than 1 in 100000 children. Collectively, these
two indications may represent an unmet need for anti-ACVR1 therapy of less than 500 patients
in the US patient population. Inclusion of patients with endometrial cancer more than doubles
the potential patient population (Fig 5C).

Biologically, the existence of ACVR1mutations in endometrial tumors is especially interest-
ing. Bone morphogenetic protein 2 (BMP2)–ACVR1 signaling was recently found to be neces-
sary for embryo implantation and decidualization (a process that requires invasion, proliferation,
and angiogenesis) in knockout mouse studies of the uterus [32,33]. Loss of BMP2 in the uterus
also leads to a down-regulation in mTOR at the site of implantation [33]. This suggests that the
presence of these mutations in endometrial tumors, and their association with the mTOR path-
way, is consistent with the dysregulation of a known physiological role of ACVR1 signaling in
endometrial tissue.

Fig 5. ACVR1mutations in endometrial cancer. (A) All overlapping residues between the two databases are scored for signal-to-noise
ratios and nominal P values. Blue dots represent the hits that are also significant by MutSigCV. The red dots are new associations found in
this study. The distribution of P values associated with the expressed genes have a long tail. (B) ACVR1mutations in endometrial cancer.
Overlap with FOP is denoted in green. GS is the glycine serine rich domain. (C) An estimate of the cumulative incidence of ACVR1-mutant
diseases. Error bars are based on the difference in ACVR1 frequency estimates in pediatric high-grade glioma and represent min/max
estimates of incidence. FOP, fibrodysplasia ossificans progressive; HGG, high-grade glioma; UCEC, uterine corpus endometrial cancer.

doi:10.1371/journal.pgen.1006081.g005
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We have developed a methodology to predict significant overlap between variants in inher-
ited disease and cancer genetic databases. Using this method, we have added new cancer associ-
ated genes, substantially expanded the therapeutically actionable population of patients
harboring activating mutations in ACVR1, and identified the first evidence of significant muta-
tions in CDK4 inlung cancer and in SOS1 inmelanoma. We found that a surprisingly large
number of inherited disease variants will overlap with mutations in cancer exomes based upon
chance alone. This suggests that merely observing the presence of a variant that is known to
have another effect in a cancer genome is not sufficient to predict its cancer relevance in
patients. Our analyses will enable anyone with a database of amino acid variants from diverse
methodologies (e.g., mutagenesis screens or biochemical analyses) to investigate whether the
variants in their lists are significantly altered in cancer. Because our algorithm explicitly ana-
lyzes overlap, it will always be limited by the existence of overlapping variants in different data-
bases. This means that our method can only add power to other cancer significance callers, it is
not meant to be a replacement for methods like MutSigCV.

However, our method is generalizable to any database of variants. Thus, any group that dis-
covers a specific variant in any context can use our method to ask whether that variant occurs
more often than would be expected in the cancer genome. This work will add statistical rigor to
studies that identify functional impacts of an amino acid residue and observe that variant in
cancer.

Supporting Information
S1 Fig. Background tumor-specific proportionality coefficient estimation using various
RNA-seq cutoffs.We estimated the background proportionality coefficients using a subset or
all of the mutation data per tumor type. This estimation is fairly stable, i.e., it is independent of
the RNA-seq cut-offs we used.
(TIFF)

S2 Fig. Empirical cumulative distribution function of P values for all overlapping genes. A.
Empirical cumulative distribution function (eCDF) illustrates a much longer tail for small P
values for the expressed genes compared with nonexpressed genes. Expressed genes are in red
and nonexpressed genes are in blue. B. Three different read number cutoffs were examined. A
Venn-diagram depicts the number of overlapping hits when 1, 5 or 10 reads were used to deter-
mine whether a gene was or was not expressed.
(TIFF)

S3 Fig. Comparison of our results with a co-morbidity based approach. A Venn diagram
comparing the performance of our methodology to that of Melamed et al 2015 [15]
(TIFF)

S4 Fig. Comparison of the effect of different cancer exome datasets on the number of hits
discovered. A. A schematic of our data acquisition and filtering pipeline. Variants are removed
from top to bottom. The datasets at the bottom of the filtering pipeline used as inputs to our
algorithm to identify significant overlap. In addition, we also performed filtering to focus only
on TCGA or in overlaying with PanCancer12 [1] as indicated by the dotted box, with resulting
filtered dataset used for comparison, as shown in B and C. B. Venn-diagram depicting the
influence of removing nonTCGA variants on number of significant hits identified. Indications
LIHC, MM, and SCLC were excluded as variants were not from TCGA source (at the time of
acquisition from cBioPortal). C. Venn-diagram depicting the number and overlap of signifi-
cant hits when we used the standardized input of Kandoth et al. 2013. Indications ACC, KICH,
and UCS (in addition to LIHC, MM, and SCLC) were excluded as these are not in TCGA. D.
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Hits added versus variants added for the comparisons in B and C. Line drawn based on linear
regression on the data, with shading depicting 95% confidence interval.
(TIFF)

S5 Fig. Comparison of inherited disease input datasets. A. A schematic of the download and
filtering of the HUMSAVAR database. Variants are removed from top to bottom. B. A sche-
matic of the download and filtering of the ClinVar database. Variants are removed from top to
bottom. C. A comparison of the outputs of the algorithm when using either HUMSAVAR or
ClinVar as the input dataset. There is substantial overlap in results.
(TIFF)

S6 Fig. Effects of statistical filter on hits identification. (A, B) Statistics-naïve exact match
overlay between the inherited diseases and TCGA datasets. There are an overwhelming num-
ber of genes with exact mutational matches, suggesting the potential for a large number of
false-positives and a need for a more rigorous statistical filter. Known potential false-positives
such as RYR2 (highlighted in red) are on this list. (C, D)Our statistical filter (see methods for
details of statistical model) generates parsimonious statistically significant list of hits, with the
disappearance of RYR2 and enrichment of other hits such as FGFR2 and FGFR3 (highlighted
in orange).
(TIFF)

S7 Fig. Statistical analyses of results From synthetic data. (A)Nominal P values do not corre-
late with protein length. (B)Nominal P value is minimally negatively correlated with mutation
burden (i.e., number of residues mutated over protein length). This, in fact, overpenalizes as a
function of mutation burden, and as such, improves sensitivity at the expense of specificity. P
value was determined based upon a proportionality coefficient (γ) of 10.
(TIFF)

S8 Fig. Associations of ACVR1 with genes in PTEN-AKT-MTOR pathway. Amatrix of P
values (Fisher exact test) for genes within the PTEN-AKT-mTOR pathway, and between the
pathway and ACVR1.
(TIFF)

S1 Text. Supplementary results and discussion section.
(DOCX)

S1 Data. Extensive statistics on variant numbers and filters.
(XLSX)
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