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Mental geometry of perceiving 3D size in pictures
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We show that the classical problem of three-dimensional
(3D) size perception in obliquely viewed pictures can be
understood by comparing human performance to the
optimal geometric solution. A photograph seen from the
camera position, can form the same retinal projection as
the physical 3D scene, but retinal projections of sizes
and shapes are distorted in oblique viewing. For real
scenes, we previously showed that size and shape
inconstancy result despite observers using the correct
geometric back-transform, because some retinal images
evoke misestimates of object slant or viewing elevation.
Now, we examine how observers estimate 3D sizes in
oblique views of pictures of objects lying on the ground
in different poses. Compared to estimates for real
scenes, in oblique views of pictures, sizes were seriously
underestimated for objects at frontoparallel poses, but
there was almost no change for objects perceived as
pointing toward the viewer. The inverse of the function
relating projected length to pose, camera elevation and
viewing azimuth, gives the optimal correction factor for
inferring correct 3D lengths if the elevation and azimuth
are estimated accurately. Empirical correction functions
had similar shapes to optimal, but lower amplitude.
Measurements revealed that observers systematically
underestimated viewing azimuth, similar to the
frontoparallel bias for object pose perception. A model
that adds underestimation of viewing azimuth to the
geometrical back-transform, provided good fits to
estimated 3D lengths from oblique views. These results
add to accumulating evidence that observers use
internalized projective geometry to perceive sizes,
shapes, and poses in 3D scenes and their pictures.

Introduction

Amajor part of scene understanding for locomotion,
hunting, gathering, shelter, and even aesthetic
appreciation, consists of judging poses, sizes, and
shapes of objects. Projective geometry determines
retinal and camera images of objects, so a brain or
machine could calculate accurate poses and sizes if
it could invert the projection. The inversion back

from two dimensions (2D) to three dimensions (3D)
can generate unique estimates of poses and sizes of a
known object if viewing parameters are ascertained
independently. Building on previous work (Koch, Baig
& Zaidi, 2018; Maruya & Zaidi, 2020), we tackle the
classical problem of the perception of object sizes (and
shape aspect ratios) from different views of pictures
of 3D scenes (Boring, 1964; Gombrich, 1972; Perkins,
1973; Hagen, 1974, 1976; Rosinski, Mulholland,
Degelman, & Farber, 1980; Wallach & Marshall,
1986; Cutting, 1987; Niall & Macnamara, 1990; Yang
& Kubovy, 1999; Vishwanath, Girshick, & Banks,
2005; Todorović, 2008) and identify the geometric
operations that are used for estimation. The results help
to understand not just picture perception, but also the
mental geometry that is essential for understanding
3D scenes.

We use an inverse projective geometry approach
because it was successful at explaining 3D pose
perception in real and pictured scenes. With this
approach, Koch, Baig, & Zaidi (2018) showed that
human observers are very accurate in judging 3D poses
of objects on the ground, albeit with a frontoparallel
bias, and their results can be explained by a model
using the back-transform of the projective geometry
function that maps 3D poses to retinal orientations,
with just one free parameter for the bias. There was
exceedingly close correspondence across observers (The
mean pair-wise correlation was 0.9934 with a standard
deviation of 0.0037), and individual results all fit the
same geometric back-transform function, suggesting
strongly that object-pose estimation, which has been
a critical function for millions of years of evolution,
could be based on internalized geometric knowledge.
Pictorial representation, on the other hand, is less
than 40,000 years old, so we tested the possibility
that observers estimate 3D poses in photographs by
using the same geometrical operations as for real
scenes, despite retinal images being further distorted
by projection to oblique viewpoints. The model based
on back-projections from retinal orientations, predicts
rigid rotation of perceived poses with respect to the
observer, so that objects pointing at an observer in
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the real scene should also be seen as pointing at the
observer in obliquely viewed photographs of the
scene. Pose estimates corresponded almost perfectly
(R2 > 0.99) with the rotation prediction, thus providing
support for the use of these geometrical operations.
These results also confirmed that the “pointing at you”
pictorial phenomena can be explained simply in terms
of back-projections from vertical retinal orientations
without invoking any previously postulated pictorial
spaces or operations (Kennedy, 1974; Ward, 1976;
DeLoache, Pierroutsakos, Uttal, Rosengren, &Gottlieb,
1998; Yang & Kubovy, 1999; Niederée & Heyer, 2003;
Vishwanath et al., 2005; Koenderink, van Doom,
Kappers, & Todd, 2004; Koenderink, van Doorn, &
Wagemans, 2011; van Doorn, Koenderink, Leyssen,
& Wagemans, 2012; Pagel, 2017). This explanation
fits with Cézanne’s observation in his letter to Émile
Bernard dated April 15, 1904: “Lines parallel to the
horizon give breadth, a section of nature, or if you
prefer, of the spectacle spread before our eyes ... Lines
perpendicular to that horizon give depth.”

The inverse projective geometry approach has also
been successful at explaining 3D size perception in
real scenes. Maruya and Zaidi (2020) examined 3D
size perception in real scenes as a function of the
pose of the object. Unlike the usual experimental
method of varying distance from the observer to
study size constancy (Brunswik, 1944; Gilinsky, 1951;
Gilinsky, 1955; Carlson, 1960; Norman, Todd, Perotti,
& Tittle, 1996; Beusmans, 1998; Ross & Plug, 1998;
Loomis, Da Silva, Fujita, & Fukusima, 1992; Loomis
& Philbeck 1999; Loomis, Philbeck, & Zahorik, 2002),
experimentally varying object pose changes the shape
projected on the retina, and so requires quite different
compensations for projective distortions. Observers
compensated for projective shortening as a function
of 3D pose, but not sufficiently for objects pointing
towards or away from the observer, which are the poses
that project to the shortest retinal sizes. Modeling
the empirical correction as a function of the optimal
correction, revealed that perceived sizes in 3D scenes are
inconstant despite observers using the correct geometric
back-transform, because the retinal image evokes a
slant elevation illusion that reduces the compensation.
This illusion of slant elevation angle for stimuli on the
ground, becomes an illusion of slant azimuth angle if
the scene is rotated in the fronto-parallel plane by 90°
along the line of sight, so for generality we call it the
slant illusion.

The illusory rotation that accompanies oblique
viewing of pictures (Koch et al., 2018), makes poses
invariant to viewing azimuth, but does lead to perceived
variation in sizes and shapes, especially aspect ratios.
Consequently, in this study, we test whether 3D size
estimates in oblique views of pictures still follow from
the geometric back-transform, and if there are simple
factors that can explain estimation errors. Whereas

projection from a real scene to the retina reduces
sizes most along the axis pointing to the observer,
viewing the picture obliquely (or equivalently rotating
the picture around the vertical axis) reduces sizes
most along the frontoparallel axis. To distinguish this
screen slant from object slant, we will call it the screen
azimuth (angle). We were particularly interested in any
role played by the perceived azimuth of the picture
with respect to the observer, since that had no effect
on 3D pose estimation from pictures, as the pose
estimation depended only on retinal orientations. We
found that 3D sizes at frontoparallel poses are seriously
underestimated in oblique views compared to the
frontal view. By contrast, there was almost no change
for objects perceived as pointing to or from the viewer.
We were able to model observers’ corrections for size
as a function of pose, by using the optimal geometric
back-transform with a multiplicative parameter for
the systematic underestimation of the azimuth of
the display. The underestimation was confirmed by
perceived azimuth angle measurements and is similar to
the frontoparallel bias for object pose perception. The
excellent fit of the model shows that all observers use
the correct back-transform from projective geometry,
indicating the use of ingrained geometrical operations
just as in pose estimation, but the perceived azimuth of
the picture plays a role in size estimation unlike in pose
estimation. Because aspect ratios of 3D shapes depend
on relative sizes along different axes, those aspects
are subject to the same picture azimuth distortions as
perceived 3D sizes.

Size estimates of 3D objects at
oblique views of pictures

Methods

Using Blender, we created a blue rectangular 3D
parallelepiped (test stick) lying on the center of a dark
ground, and a yellow vertical 3D cylinder (measuring
stick) standing on the test stick. Blue parallelepipeds
were presented in one of 16 poses from 0° to 360°
every 22.5°, of which poses in one quadrant are shown
in Figure 1 (Top). The line of sight through the center
of the ground was designated the 90°–270° axis, and the
line orthogonal to it as the 0°–180° axis. Parallelepiped
were 10, 8, or 6 cm long with a 3 × 3 cm cross-section.
Images were displayed on a 22-inch DELL SP2309W
Display. Matlab and Psychtoolbox were used to display
the stimuli, run the experiments, and analyze the data.
The observer’s viewing position was fixed by using a
chinrest so that the center of the monitor was viewed
with an elevation angle of 15° at a distance of 1.0 m,
matching the rendering parameters of the Camera in
Blender. Displayed sizes in the Blender rendered images
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Figure 1. Projected images and lengths of Experiment 1 stimuli (Top) Blue rectangular 3D parallelepiped (test stick) of fixed length
lying on the center of a dark ground, and a yellow vertical 3D cylinder (measuring stick) of adjustable length standing on the test stick.
Blue parallelepipeds were presented in one of 16 poses from 0° to 360° every 22.5°, of which poses in one quadrant are shown. The
line of sight through the center of the ground is designated the 90°–270° axis, and the line orthogonal to it as the 0°–180° axis.
Parallelepiped lengths were 10, 8, or 6 cm with a 3- × 3-cm cross-section. Images were displayed on a 22-inch display. The monitor
was viewed with an elevation angle of 15° at a distance of 1.0 m, from five viewpoints: frontal (0°), and slanted at azimuths of ±30°
and ±60° around a vertical axis. Observe that projected length is shortest for the 90° pose in the 0° viewpoint, but it changes little
across viewpoints, whereas the length for the 0° pose varies most across viewpoints. (Bottom) Derived lengths of retinal projections
of the parallelepipeds are shown as a function of pose for the five views of the display screen (color coded according to inset and
comparted to the frontoparallel view). The derivation is detailed in the Appendix and illustrated in Figure A1.

were calibrated against exact geometrical derivations
to ensure accuracy of the simulations (see Maruya
& Zaidi (2020)). Measurements were made from five
viewpoints, with the screen in frontal (0°) position,
and slanted at azimuths of ±30° and ±60° around
a vertical axis. Derived lengths of retinal projections
of the parallelepipeds are shown as a function of
pose for frontoparallel and oblique views of the
display screen in Figure 1 (Bottom). The derivation is
detailed in the Appendix, and illustrated in Figure A1.
For a parallelepiped of length (L3D), the projected
length on the retina (Lr) changes with pose (�) as a

distorted sinusoid affected by the values for viewing
elevation=�c, viewing azimuth (equivalent to display
azimuth) = �v, focal length of camera = fc, focal
length of eye = fv, distance from the object = dc, and
distance from the center of the display = dv:

Lr =
L3D fv fc

√
(cos (�) cos (φv ))2 + (sin (�) sin (�c))2

dv (dc − L3D sin (�) cos (�c)) − L3D fc cos (�) sin (φv )
. (1)

However, for the vertically oriented cylinder of
physical length L3Dm, the projected length on the
retina Lmr stays invariant with object pose and display
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Figure 2. Average perceived 3D lengths (six observers). Each column represents estimated lengths of a parallelepiped of the indicated
physical length. Left three panels are for negative oblique viewing azimuths and right for positive. (a) Perceived length across 3D pose.
Horizontal dashed lines indicate physical 3D length. Underestimation of perceived length increases systematically with increased
azimuth of the display. (b) Perceived 3D length for oblique view minus perceived length for frontal view divided by 3D physical length.
Horizontal dashed lines indicate no difference in perceived length from frontal view. Error bars are the 95% confidence intervals. (c)
Optimal correction factor (solid line) and empirical correction factor (symbols) across 3D pose, color coded for display azimuth. Higher
optimal correction is required at the frontoparallel poses as display azimuth increases but is fairly constant for poses around the line
of sight. (d) A model using the optimal geometrical back-transform, but incorporating underestimation of the slant of the display, fits
the correction of perceived length over the projected length.

azimuth, because the 3D object and the picture plane
are both rotated around the vertical axis of the cylinder:

Lmr = L3DM fv fc cos (�c)
dv (dc − L3Dm sin (�c))

. (2)

Observers were instructed to equate the physical
lengths of the two limbs by pushing buttons to adjust
the height of the measuring stick between 2.75 and
12 cm. There were no time limits. Randomly ordered
trials across all three sizes and all 16 poses were run
in blocks for each of the five azimuth of the display
and repeated in three sets. Observers were allowed to
take a break between sets. Note that because dv plays
the same role for Lr and Lmr, any slight variations in
distance between eyes and screen will have no effect on
the relative size estimates.

Six observers with normal or corrected vision
participated. Viewing was binocular because it is the

natural condition for looking at pictures, and Koch
et al. (2018) had not found any difference between
monocular and binocular viewing for pose estimation
in similar conditions. All experiments presented in this
article were conducted in compliance with the protocol
approved by the Institutional Review Board at the State
University of New York College of Optometry and the
Declaration of Helsinki, with observers giving written
informed consent.

Results

Perceived 3D lengths, averaged over six observers,
are plotted against 3D pose in Figure 2a, for five
different azimuth angles of the display, separately for
each of the three physical lengths (Individual results
in Figure A2). Horizontal dashed lines indicate the
physical length of the test stick, and vertical dotted
lines indicate poses of 90°, 180°, and 270°. In the
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Figure 3. Dynamic demonstration of size inconstancy. A rigid
object with two physically equal limbs at a right angle is
rotating on the ground. When viewed from the front at a
15° elevation, the limb pointing at or away from the observer
appears transitorily shorter than the orthogonal limb.
Comparing the oblique views to the frontal view, the biggest
change in length is transitorily for the frontoparallel limb. The
effects persist for obliquely slanted pictures.

frontoparallel view, there is greater underestimation
of length for poses pointing towards or away from the
observer (90° and 270°), and the longer the physical
length of the test stick, the greater the underestimation
of length. Increasing the azimuth of the screen seriously
reduced estimates of frontoparallel sizes in oblique
views, although there was little effect on perceived sizes
of poses pointing toward or away from the observer.
The videos in Figure 3, where rigid L-shaped figures are
rotated in pose in frontal and oblique views, illustrate
these two effects. The magnitudes of these two effects

are easily seen in Figure 2b, where the frontoparallel
size estimate is subtracted from the oblique estimate,
and the difference divided by the physical length, to
give the fractional decrease. There are roughly equal
magnitudes of underestimation as a fraction of the
physical length for the three lengths, and similar
patterns of underestimation as a function of object
pose: the least change in estimates of 3D sizes caused by
oblique azimuths of the monitor are for poses close to
the line of sight (90° and 270°), whereas sizes of objects
in poses close to frontoparallel (0° and 180°) were
seriously underestimated in oblique views compared
to the frontal view. The effect of screen azimuth also
shows up in the pattern of underestimation for positive
azimuths being almost mirror symmetric to the pattern
for negative azimuths.

Because horizontal slants of the screen lead to the
greatest length compression along the frontoparallel
axis (Figure 1), the question arises whether the decrease
in perceived length is explained completely by the
shorter projected length, or whether the visual system
does compensate partially for this compression. On
the dark ground, the retinal image of the object holds
the only information available for size estimation.
Koch, Baig and Zaidi (2018) showed that in perception
of poses in oblique views of pictures, the same
observer-centered back-transform is used as for real
scenes, thus leading to pose estimates that are a rigid
rotation of actual scene poses by an angle equal to the
viewing azimuth. Maruya and Zaidi (2020) showed that
perceiving 3D sizes in real scenes also uses the optimal
geometric back-transform for sizes, but estimates are
suboptimal because of a slant illusion that makes
longer objects appear more slanted, which leads to
less correction than required. The results in Figure 2
show that observers do not make veridical estimates
of 3D size. It is still possible that they use the optimal
geometrical back-projection from the retinal image
but misestimate one or more parameters that are
part of the back-transform expression. The physical
3D length divided by the length projected on the
retina (L3D/Lr) gives the Optimal Length Correction
index (OLC) for each pose in each viewpoint (plotted
as solid curves in Figure 2c, color-coded similar to
symbols for the azimuth of the screen). The symbols
in Figure 2c plot the perceived lengths from Figure 2a
divided by projected lengths giving the measured
length corrections (MLC). OLCs are the highest at
line of sight (90° and 270°) with the same values
for all azimuths of the display. The largest values of
MLC also correspond to the poses pointing towards
or away from the observer, with similar values for
across the different azimuths of the display, but they
are lower than what is required for veridical estimates,
especially for the longer lengths. OLCs at frontoparallel
poses (0° and 180°) increase with the slant of the
display. Similarly, MLCs at these poses increase with
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the slant of the display, but not enough. Figure 2c
enables us to reject the hypothesis that size perception
in pictures uses the same back-transform as for real
scenes, irrespective of the azimuth of the monitor,
which makes it different from pose perception. If this
hypothesis was correct, the frontal view OLC, which
is also the OLC for real scenes, should fit the data
with some multiplicative scaling of the red curve,
but that cannot happen because OLC for 0° and
180° poses is anchored at 1.0 when display azimuth
is fixed at 0°, no matter what the values for other
parameters such as camera elevation, focal length or
distance, whereas the MLC for 0° and 180° is higher for
the obliquely viewed displays showing increasing length
correction with increasing azimuth of the display.
This increase is still substantially less than required by
the OLC computed for the ±60° display azimuth. In
general, the form of measured length correction as a
function of 3D pose is similar to the optimal length
correction curve, suggesting that observers may be
using the optimal back-transform, but with additional
multiplicative factors leading to the suboptimality. We
test this hypothesis by fitting a modified back-transform
model.

Model

The geometrical back-transform is obtained by
inverting Equation 1 to get an expression for the
estimated 3D length L̂3D:

L̂3D = Lrdvdc
Lr(dv sin(�) cos(�c) + fc cos(�) sin(φv ))

+ fv fc
√
(cos(�) cos(φv ))2 + (sin(�) sin(�c))2

.
(3)

L̂3D/Lr gives the expression for the estimated length
correction index (ELC) for each pose. The ELC will
be equal to the OLC, and give veridical estimates of
3D size, only if the values used for pose �, viewing
elevation �c, viewing azimuth (equivalent to display
azimuth) �v, and distance from the object dc, and
distance from the center of the display dv are accurate.
If these values are not accurate, the estimated 3D length
L̂3D will be different from the veridical.

Maruya and Zaidi (2020) showed that perceived sizes
can be inaccurate in 3D scenes despite observers using
the correct geometric back-transform, if the retinal
image evokes a misestimate of viewing elevation. The
longer the physical length of the test stick, the greater
the misestimation of the elevation, and the effect is
most obvious for poses pointing at or away from the
observer. Their model fit the MLCs with just one free
parameter that modified the estimated camera elevation
(equivalent to modifying perceived slant elevation of
the object). To illustrate the slant illusion, they made
the video shown in the frontal view of Figure 4. When

Figure 4. Dynamic demonstration of slant illusion. A rigid object
with two limbs at a right angle is rotating on the ground. The
length of the limb passing through the line of sight is
lengthened and then shortened, to make the limbs appear
equal in all poses in the view from the 15° elevation. The
percept is maintained by increasing the length of the limb
passing through the line of sight according to the average size
estimate in Experiment 1. Instead of seeing the physical length
changes, each limb seems to bounce up and down when it
faces toward or away from the observer, because the pitch
illusion dominates the percept in the oblique views, as well as
the frontal view.

the arms of the figure from Figure 3 are dynamically
adjusted to be perceptually equal in length across poses,
observers perceive a change in pitch every time an arm
passes through the line of site. Figure 4 shows that the
illusion persists when the display is viewed obliquely,
so we retain this modification of the model. Now we
will try to understand the suboptimal size estimates
in obliquely viewed pictures by seeing if they can be
predicted by inaccurate estimates of display azimuth,
and then directly measuring perceived azimuth. The
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motivation for this manipulation is the frontoparallel
bias in judging 3D pose (Koch et al., 2018). Figure 2c
shows that higher OLCs are required at frontoparallel
poses with increasing azimuth of the display, but
MLCs are uniformly lower than adequate. We thus
include underestimation of the azimuth of the display
in the model, because ELCs are uniformly lower at
the shallower azimuths of the display. The qualitative
justifications for these considerations are shown
in Figure A3. Under- or overestimating perceived
pose shifts the peak of the ELC, which would not
be consistent with the results, so we don’t include
misperception of pose in the model. Misperceiving
viewing azimuth affects frontoparallel poses most, and
essentially only for the most oblique views, which is
consistent with the results. In addition, misperceiving
viewing elevation (or equivalently slant elevation of the
object) differentially affects size estimates of objects
close to line of sight, again consistent with the results.
Viewing a picture from other than the camera distance
can cause perceptual distortions (Sedgwick, 1989), but
it does not affect the relative size judgments in this
experiment.

We thus formulated the hypothesis that observers are
using an optimal back-transform, but overestimating
the slant elevation of the object (or equivalently the
camera elevation) which leads to underestimated
lengths at poses around 90° and 270°, plus they are
underestimating the slant azimuth of the display, thus
correcting less than required for poses around 0° and
180° degrees. We set fc = 1.0 m so that the image on
the retina in frontoparallel viewing was identical to
that from the 3D scene in real world coordinates. For
fv we tried 17, 22, and 24 mm, corresponding to best
estimates from different measurement methods and
found absolutely no difference up to the second digit
after decimal in the secondary analyses. We tested
whether adding multipliers kc > 1 to the viewing
elevation, and kv < 1 to the azimuth of the display, in
the optimal geometrical back-transform expression,
could provide good fits to the MLCs:

L̂3D= Lrdvdc
Lr (dv sin (�) cos (kc�c) + fc cos (�) sin (kvφv ))

+ fv fc
√
(cos (�) cos (kvφv ))2 + (sin (�) sin (kc�c))2

.

(4)

For each length and azimuth angle of the
display, Figure 2d replots the empirical corrections
from Figure 2c and predicted values of Equation 4 for
the kc and kv that give the best least squares fit to the
data. The model fits the results for all three lengths
and azimuths of the display well, with just the two free
parameters (Best fits to individual results in Figure A4).
Best fitting kc are nearly equal for frontoparallel
and oblique views, and best fitting kv correspond to
perceived display azimuths 21.3° for 30° view, –19.2° for
–30°, 49.8° for 60°, and –50.4° for –60°.

Figure 5. RMSE for optimal back-transform, compared with
RMSE with added multiplier for perceived object slant
elevation, and then compared to RMSE with additional
multiplier for perceived screen azimuth, for five physical
azimuths of the screen.

It is not as straightforward to quantify goodness
of fit for non-linear functions as using R2 for linear
functions. Figure 5 illustrates the root mean square
error (RMSE) for each fit. Compared to the fit of
the optimal back-transform with no free parameters,
adding a multiplier to vary perceived object pitch
reduces RMSE by almost six times at 0° frontal view of
the screen, but only a little more than three times for
oblique views. Adding a multiplier to vary perceived
screen azimuth further reduces RMSE by over two
times at the most oblique views. Note that fitting
errors for the optimal model are all in one direction,
not random directions, so the reduction in RMSE
magnitude is due to reducing systematic, not random,
error. As expected, simulating misperceived distance
or misperceived object pose by putting multipliers on
the distance or pose parameters, did not reduce RMSE
from the Optimal back-transform. The modeling results
are thus compatible with the hypothesis that observers
use the geometric back-transform, but with incorrect
parameters for object and screen slant. Maruya and
Zaidi (2020) previously showed that the object slant
illusion was due to ambiguity between projections of
increased length and slant elevation, and validated
the illusion with direct measurements of perceived
slant. The underestimated screen azimuth would be
compatible with the general frontoparallel bias for
object pose (Koch et al., 2018). To validate the screen
slant inference from the best fitting model, we measured
directly whether observers actually misperceived the
azimuth of the display.
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Display azimuth underestimation

Methods

To test whether there was actual misestimation of
the azimuth of the display, we displayed a 10 cm test
stimulus at 0° pose at the center of the screen, and
observers were instructed to judge the 3D pose of the
screen. Viewing position was identical to Experiment 1,
and the scene was viewed with azimuths of −60°, −30°,
0°, +30°, or +60° in random order. Observers recorded
their judgement by rotating a vector in a clock face on
an iPad to the same angle as the pose of the rectangle.
A horizontal iPad screen was placed close to the display
screen, and observers adjusted the vector angle on a
keyboard. Measurements were separated into three sets
and observers were allowed to take a break between sets.

Results

The main result (Figure 6a) is that observers
underestimated the azimuth of the display at
oblique viewing conditions despite binocular viewing
(Individual results in Figure A4). The slope of perceived
to physical azimuth was 0.70, with R2 = 0.90. Average
perceived azimuths of the display were 23.24° for 30°
view, –19.40° for –30°, 47.27° for 60°, and –49.47° for
–60°. As we expected, the underestimation pattern
for the obliquely viewed display surface is consistent
with the frontoparallel bias for obliquely posed objects
(Koch et al., 2018). The results support our hypothesis
that observers may be applying a smaller correction to
oblique views because there is underestimation of the
azimuth of the display. Measured perceived azimuths
are similar in value to those predicted by the best fitting
model (Figure 6b). The slope of perceived to best-fitting
azimuth was 0.90, with R2 = 0.88.

Discussion

Many authors have argued that picture perception is
different from perception of real scenes, and pictorial
space is different from real space (Kennedy, 1974;
Ward, 1976; DeLoache et al., 1998; Yang & Kubovy,
1999; Niederée and Heyer, 2003; Vishwanath et al.,
2005; Koenderink et al., 2004; Koenderink et al., 2011;
van Doorn et al., 2012; Pagel, 2017). Our approach to
this issue is empirical and conceptual, as we examine
visual tasks that are common to perceiving real and
pictured scenes, and identify geometric operations that
are involved in both perceptions. In judging poses
of 3D objects, we found that observers judged poses
in pictures by applying the same back-transform
to retinal projections that they did for real scenes,

Figure 6. Display azimuth underestimation. (a) Measured
azimuth versus physical azimuth of the screen, showing
underestimation in every oblique viewing condition, reflected
by slope of 0.77. (b) Measured azimuth versus best fitting
azimuth parameter for the model, showing concordance
increase of slope to 0.90.

and this predicted the illusory rotation of scenes to
match the observer’s viewing azimuth. Correcting
for the slant of the picture would not predict the
illusory rotation, so for the case of object pose we
see no reason to invoke special processes for picture
perception. This study asks whether that is also true
for judging 3D sizes in pictures. Although poses in
pictures were invariant to viewing azimuth, distortions
of lengths and proportions were obvious. Display slant
reduces perceived sizes of frontal objects, and makes
parallelepipeds pointing at the observer look narrower,
which can be seen by comparing oblique to frontal
views in Figures 1 and 4. Consequently, judgments
of size and proportion in pictures, which incorporate
inferences about the picture’s slant, are qualitatively
different from judgments of poses, and thus provide
new considerations in picture perception.
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The main empirical contribution of this article is to
measure the perceived size of 3D objects at different
poses depicted on a planar picture rotated around its
vertical axis. Pose variation and display slant both
shorten the projected length of 3D objects, but along
orthogonal dimensions, pose variations along the line
of sight, and display slant along the frontoparallel axis.
Our results are consistent with the hypothesis that the
visual system uses the geometric back-transform to
overcome these distortions but falls short because it
overestimates slant elevation for poses along the line
of sight and underestimates the azimuth angle of the
display. The same factors lead to perceived changes in
aspect ratios of shapes, so that objects pointing toward
the observer look narrower in oblique views of pictures.

The frontoparallel bias for the screen seems similar
to the frontoparallel bias for 3D objects (Koch et
al., 2018). This bias has been reported previously for
horizontal slant of planar surfaces (Erkelens, 2013)
and vertical slant of oblique objects in natural scenes
(Kim & Burge, 2018). Could it be based on adaptation
to orientation statistics of natural scenes? Measured
statistics of 2D orientations in pictures of naturalistic
scenes (Hansen & Essock, 2004; Howe & Purves, 2005;
Girshick, Landy, & Simoncelli, 2011) show the highest
frequency for horizontal orientations, which are known
from geometry to be projections of frontoparallel
3D orientations of objects lying on the ground. If
prior beliefs of 3D horizontal slants are based on
frequency of occurrence, then in Bayesian inference,
this prior probability will shift perceived poses toward
the frontoparallel. In addition, a bias towards seeing
horizontal 2D orientations (Ding et al., 2017) could
arise from anisotropy in populations of cortical
orientation selective cells that are largest in number
for horizontal orientations and most sharply tuned for
horizontal orientations (Cohen & Zaidi, 2007).

The main theoretical contribution of this study is
to link perception of 3D sizes in scenes and pictures
to the mental use of projective geometry. Corrections
of sizes from projective distortions as a function of
pose form a curve that has the same shape as that
predicted by the optimal back-transform, and the
optimal correction expression fits measured estimates
with just two free parameters multiplying the viewing
elevation by greater than 1.0 and the viewing azimuth
by less than 1.0. Thus our model that incorporates
observers’ misestimates of object slant and display slant
can explain the inconstancy of relative size for different
poses, object sizes, and viewpoint azimuths, suggesting
that the mental use of projective geometry is common
to all observers.

These empirical and theoretical results make it
tractable to probe the neural mechanisms that achieve
this task. Judging poses and sizes of objects is important
for both scene understanding and navigation, and for
object perception and manipulation. Cortical areas
involved are thus likely to include object-selective

occipitotemporal regions, including the lateral occipital
cortex and posterior fusiform, especially sites where
neuronal responses are not viewpoint invariant, as well
as regions in the intraparietal sulcus and frontal cortex
implicated in tool use and action planning (Yildirim
et al., 2019), plus parahippocampal, retrosplenial,
and occipital place areas (Epstein & Baker, 2019). In
a process framework, circuits for causal generative
models could incorporate knowledge from projective
geometry, as could circuits for planning, possibly
involving dynamic belief updates with recognition
models. In such a model, the brain could first estimate
distance, pose, azimuth, elevation, and then run
the back-transform to obtain the size, but pose,
size, and elevation are all computed from the same
retinal image of the object, where they interact, so a
simultaneous estimation process may be more likely.
On the other hand, the human brain has an enormous
number of neurons, so although template based
grand-mother cells are an inelegant formal model,
they need to be taken seriously for decoding (Zaidi &
Conway, 2019), especially since experiments with deep
learning networks suggest that the brain could easily
learn hidden units that could directly translate 2D
orientations and sizes in retinal images to 3D poses and
sizes in real scenes (Eslami et al., 2018).

Animals and humans have constant exposure to
perspective projection through image-forming eyes.
Therefore, whether brains have learned to exploit
projective geometry to understand real scenes is a
longstanding question, e.g., Plato’s dialogue Meno. We
have now shown that humans use optimal projective
geometry back-transforms from retinal images to
estimate 3D pose and size in real scenes and continue
to use the back-transforms to estimate 3D pose and
size in pictures, despite the extra distortions created by
oblique views of pictures (Koch et al 2018; Maruya &
Zaidi, 2020). Despite the specific neural mechanisms for
perceiving object pose and size still to be systematically
identified, our results do provide accumulating evidence
that human brains have internalized particular aspects
of projective geometry through evolution or learning.

Keywords: mental geometry, picture perception, 3D
size perception, 3D shape perception, projective geometry
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Appendix: Derivation of 2D retinal
lengths from 3D lengths of object
at poses

This projection is derived for the blue parallelepiped
lying on the ground plane in 3D-Space (XYZ space,
where the X-Z face is on the top surface of the
parallelepiped and the Y-axis is the center of the
rotation) and extending from the center of the scene
(0, 0, 0) to (x, 0, z). The end-point (x, 0, z) can be
expressed in terms of the physical length (L3D) and pose
(�) of the parallelepiped:

(x, 0, z) = (L3D · cos (�) , 0,L3D · sin (�)) . (A1)

Since the camera elevation, �c, from the Z-axis is
equivalent to a rotation around the X-axis, the rotation
of the end-point (x, 0, z) is given by:

(x′
y′
z′

)
=

(1 0 0
0 cos (�c) − sin (�c)
0 sin (�c) cos (�c)

)(x
0
z

)
. (A2)

So that:

x′ = x
y′ = −zsin (�c)
z′ = zcos (�c)

. (A3)

The center point stays the same, (0, 0, 0) → (0, 0, 0).
In the projection to the Picture Plane (UV-Space), the

central point is mapped as (0, 0, 0) → (0, 0), and if dc is
the distance from the camera’s aperture to the center of
the picture plane, the coordinates of the end-point are:

u = x′
dc−z′ · fc

v = y′
dc−z′ · fc. (A4)

So the projected length on the Picture Plane is given
by:

Lc =
√
u2 + v2. (A5)

By substituting Equations (A1), (A3), and (A4) into
(A5)

Lc =
√(

x′
dc−z′ fc

)2
+

(
y′

dc−z′ fc
)2

= L3D fc
√

cos2(�)+sin2(�)sin2(�c )
dc−L3D sin(�) cos(�c )

. (A6)

Finally the Picture Plane is projected to the retinal
plane (RS-space). Because the Picture Plane is slanted

https://ntrs.nasa.gov/search.jsp?R1019900013616
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by φv (±30◦ or ± 60°), while the observer’s viewing
position is fixed, the new coordinates are defined in
3D-space (UVW space, where the W axis is orthogonal
to the frontoparallel location of the screen, adding
depth to the 2D space defined by the frontoparallel
picture plane. The central point is mapped as
(0, 0) → (0, 0, 0). The new coordinates for the end-point
are: (u′

v′
w′

)
=

(cos (φv ) 0 − sin (φv )
0 1 0

sin (φv ) 0 cos (φv )

)(u
v
0

)
.

Giving:

u′ = u cosw′ = u sin (φv ) (φv )
v′ = v
w′ = u sin (φv )

. (A7)

If dv is the distance from the observer’s pupil to the
center of the picture plane, and fv is the observer’s focal
length, the endpoint’s projection from UVW-space to
retinal space is:

r = u′
dv−w′ · fv

s = v′
dv−w′ · fv. (A8)

Therefore the projected length on the retina:

Lr =
√
r2 + s2 (A9)

is derived by substituting Equations (A1), (A3), (A4),
(A7), and (A8) into (A9):

Lr =
√(

u′
dv−w′ fv

)2
+

(
v′

dv−w′ fv
)2

Lr = L3D fv fc
√

(cos(�) cos(φv ))2+(sin(�) sin(�c ))2

dv (dc−L3D sin(�) cos(�c ))−L3D fc cos(�) sin(φv )

(A10)

Figure A1. Derivation of projected length as a function of object pose and viewing azimuth (a) Equal lengths of objects on the ground
project to different lengths on the screen as a function of pose, as a circle is compressed into an ellipse. Comparing panel (c) to (d)
shows greatest reduction for line of sight poses. (b) When the screen is viewed obliquely, in the retinal projection, the ellipse is
compressed towards a circle again. Comparing panel (d) to (e) shows the reduction in length is greatest for frontoparallel poses.
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Figure A2. Perceived 3D lengths across pose and viewing azimuth for six observers. Each column represents estimated lengths of a
parallelepiped of the indicated physical length. Left three panels are for negative oblique viewing azimuths and right for positive.
Points show perceived length across 3D pose. Dashed lines indicate physical 3D length. Individual observer’s data are plotted on
separate rows. Underestimation of perceived length increases systematically with increased azimuth of the display.
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Figure A3. Effect of multipliers on object pose, viewing elevation, and viewing azimuth on predicted length correction. Curves for K =
1.0 represent the optimal length correction. Curves for K = 0.8 and 1.2 represent empirical length correction if a parameter is under-
or overestimated. Under- or overestimating perceived pose shifts the peak of the ELC, which would not be consistent with the results.
Misestimating viewing elevation (or equivalently slant elevation of the object) differentially affects size estimates of objects close to
line of sight, consistent with the results for all viewpoints. Misestimating viewing azimuth affects frontoparallel poses most, and
essentially only for the most oblique views, which is consistent with the results for slanted displays.
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Figure A4. Model fits for 3D length estimation across pose and viewing azimuth for six observers. Each column represents estimated
lengths of a parallelepiped of the indicated physical length. Left three panels are for negative oblique viewing azimuths and right for
positive. Individual observer’s data are plotted on separate rows. A model using the optimal geometrical back-transform, but
incorporating underestimation of the azimuth of the display, fits the correction of perceived length over the projected length.
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Figure A5. Perceived display azimuth for four observers. Perceived display azimuth as a function of physical azimuth of monitor for six
observers. In almost every oblique viewing condition, there is underestimation of the azimuth of the display.


