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Langevin based turbulence model 
and its relationship with Kappa 
distributions
Iván Gallo‑Méndez* & Pablo S. Moya*

Kappa distributions (or κ-like distributions) represent a robust framework to characterize and 
understand complex phenomena with high degrees of freedom, as turbulent systems, using non-
extensive statistical mechanics. Here we consider a coupled map lattice Langevin based model to 
analyze the relation of a turbulent flow, with its spatial scale dynamic, and κ-like distributions. We 
generate the steady-state velocity distribution of the fluid at each scale, and show that the generated 
distributions are well fitted by κ-like distributions. We observe a robust relation between the κ 
parameter, the scale, and the Reynolds number of the system, Re. In particular, our results show 
that there is a closed scaling relation between the level of turbulence and the κ parameter; namely 
κ ∼ Re k

−5/3 . We expect these results to be useful to characterize turbulence in different contexts, and 
our numerical predictions to be tested by observations and experimental setups.

Turbulence is an ubiquitous characteristic of non linear systems with a high degrees of freedom. These systems 
exhibit universal statistical properties such as: chaotic behaviors, self-organized criticality, complexity, among 
others. There are many ways to study and interpret turbulence and turbulent phenomena. However, turbulent 
systems present some typical features. One of them is having large correlations between the variables of the 
system. This is the reason why in general turbulent systems are studied by simulations where, through first prin-
ciple equations, it is possible to numerically analyze most of nonlinear or other effects. For example, as shown 
by Kolmogorov 1, a typical scaling exponent −5/3 of the energy fluctuations spectrum is usually observed in 
turbulent systems in the so called inertial range. Another typical property of turbulent systems is the non Gauss-
ian Probability Density Function (PDF) of the fluctuations for some relevant quantities of the system such as 
velocity fluctuations or mean velocity increments, especially at small scales. A remarkable feature of these PDFs 
is the appearance of heavy tails2–4 which can be modeled by non-extensive distributions as κ-like distribution 
functions5.

Understanding how these properties emerge from the underlying governing equations is a fundamental 
challenge in different physics contexts, as aerodynamics6,7, hydrodynamics8,9, magnetohydrodynamics10,11, 
nematic fluids12, nonlinear optics13, quantum systems14, living matter15, medicine16 and more. Literature on 
these topics provides examples of different approaches for the study of turbulence. Namely, through experimental 
setups3,17, observational data10,11, particle18, fluid19, and Vlasov simulations20 of turbulent plasma systems, Lan-
gevin equations21,22, kinetic equations for weak turbulence23, kinetic equations for strong turbulence24, chaotic 
systems25,26, Shell Models27,28 and Coupled Map Lattices (CML)25,29.

CML are dynamical systems that model the behavior of non-linear systems and especially partial differential 
equations. They have been predominantly used to qualitatively study the chaotic dynamics of spatially extended 
systems. This includes the dynamics of spatio-temporal chaos where the number of effective degrees of freedom 
diverges as the size of the system increases. These are precisely the characteristics present in turbulent systems. 
Under this context, Beck 25 have implemented these ideas and proposed the CMLs as useful tool for the study 
of turbulence. In his study, the author proposes a CML model inspired in the Langevin equation, with a chaotic 
forcing, coupled with a β-model30 that describes the interaction between spatial scales. For an ensemble of eddies 
in different spatial scales, Beck 25 obtains the Velocity Distribution Function (VDF) of the radial component of 
velocity fluctuations. Among other characteristics, the results clearly show the appearance of non-thermal heavy 
tails in the VDF at different scales, or, in other words, when calculating the distribution function of velocity 
fluctuations it can be seen that it contain high-energy tails that decay as a power law, for values greater than one 
standard deviation around the mean, and thus moving away from the Maxwellian equilibrium.
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As already mentioned, these non-thermal features can be modeled by non-extensive distributions. There 
are many works that relate turbulence with the representation of the system in terms of distributions functions 
different than the Maxwellian profile representing thermodynamic equilibrium31,32. Besides an ad-hoc fit, there 
is a strong relation between the shape of the VDF and the microscopic and macroscopic dynamics governing 
the system. In this sense, for systems out of equilibrium not only we could fit the PDF of turbulence quantities 
with non-extensive distributions (such as a κ-like distribution), but we can also understand the system from the 
point of view of non-equilibrium statistical mechanics33,34. In particular, we are interested in the relation between 
non-extensive statistical parameters and macroscopic parameters in a turbulent system. Under this context 
κ-distribution represent a robust and well-known framework to characterize and understand non-extensive 
statistical mechanics.

In this article we focus our attention on the formation of heavy tails in a turbulent flow. Considering a CML 
model similar to the proposed by Beck 25 with a white noise type forcing, we analyze the relation of a turbulent 
energy cascade on the spatial scale and the formation of κ-like distributions. We generate the steady state VDF 
of the elements of the model at each spatial scale, and show that the generated distributions can be well modeled 
by a κ-like distribution. Further, we observe a systematic relation between the κ parameter, the spatial scale, and 
the Reynolds number of the system, and propose a closed relation on how they are related. For this, we have 
structured our study as follows: First we explain the basis of the CML model inspired by the Langevin force 
equation, to then expose the methodology for the treatment of the data obtained. Furthermore, we show how we 
modeled the relation between the spatial scale, the Reynolds number, and the κ parameter of κ-like distribution, 
to finally summarize our findings and present the main conclusions.

Model: coupled lattice Langevin based
Following the approach proposed by Beck 35, we consider a CML approach to model the system as a Langevin 
type form; i.e., the force equation for the elements of the system is the following:

where γ is the viscosity of the media, and ζ(t) is the noise forcing. In Eq. (1) v is given by

and denotes the difference of the radial component of the velocity field u at two points separated by a distance 
r. This parameter determines the observed spatial scale. To include the interaction between scales, the CML 
assumes that fully developed turbulence is characterized by the existence of eddies in different spatial scales. 
Each of this scales are labeled by an index k. In particular, the model contemplates eddies in the largest spatial 
scale in which turbulence is manifested, with size ℓ0/2 , which are moving through a medium surrounded by 
other smaller eddies with size ℓ0/2k in the inertial range. We assume that the first scale with turbulent behavior 
( k = 1 ) is modeled by the Langevin force equation in (1), with a stochastic forcing given by

Here τ is interpreted as the time average of “collisions” or interactions in the largest scale, which could be 
produced by an arbitrary driving force in the system, and xn is the normalized amplitude of fluctuations or noise. 
In the original derivation, in order to study the formation of heavy tails and asymmetric VDFs in turbulent flows, 
Beck 25 considers xn to follow the chaotic Ulam map, xn+1 = 1− 2x2n , which keep the fluctuations in the range 
of − 1 to 1, with a probability distribution given by f (ζ ) = [π

√

1− ζ 2]−1 (see Fig. 1a). As shown by Beck 21, the 
use of the chaotic Ulam map is necessary to model the chaotic forces that produces skewed VDFs in the flow. 
However, here we consider xn as a random variable with a uniform distribution between −1 to 1. As a comparison, 
Fig. 1 shows the the noise probability density function, f (ζ ) , used in Ref. 21 (top panel), and the random noise 
used in our model (bottom panel). We choose this noise over the normal (or Maxwellian) noise, to maintain 
the range of fluctuations as similar as in Ref. 21, but focusing only on the formation of heavy tails of the VDF.

Since the smallest timescale is τ , it is convenient to discretize equation (1) using (3). Therefore, integrating 
the Langevin equation in a small time interval �t = τ , we obtain

where vn ≡ v(τn) and � = e−γ τ . Further, to model the interactions between scales we consider the conservation 
of momentum between scales k and k + 1 . The basic assumption is that the momentum loss at level k serves 
as a driving force at level k + 1 . Moreover, daughter eddies at level k + 1 gets only a random fraction ξ kn of the 
momentum loss of the mother eddy at level k, and other part is dissipated. Thus, the momentum balance for 
the eddies at scale k is

where mk and mk−1 are the masses of eddies at scales k and k + 1 , respectively, �k = e−kγ τ is a constant damp-
ing at level k. In addition, following Ref. 21 we considered ξ (k−1)

n  as a uniform random distribution with values 
between 0 and 1. This parameter can be understood as a random fraction of transferred momentum from the 
scale k to the next scale k + 1 . In other words, the term mk−1(1− �k−1)v

(k−1)
n  represent the lost of momentum 

(1)
dv

dt
= −γ v + ζ(t) ,

(2)v(r, t) ≡ ur(x + r, t)− ur(x, t) ,

(3)ζ(t) = (γ τ)1/2
∞
∑

n=1

xnδ(t − nτ) .

(4)vn+1 = �vn +
√
γ τ xn ,

(5)mkv
(k)
n+1 = �kmkv

(k)
n + ξ (k−1)

n mk−1

(

1− �k−1

)

v(k−1)
n ,
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by friction in the k scale that serves as a driving force for the next scale, k + 1 . As the friction at the scale k is 
produced by several smaller eddies, hence only a fraction of energy is transferred to one eddy in the next scale. 
It is important to mention that other choices for ξ (k−1)

n  may be considered. However, as argued by Beck 21, those 
details do not significantly affect the properties of the VDFs in the stationary state, which is the focus of our study.

Then, combining Eqs. (4) and (5), in discrete form, we obtain the Coupled Lattice Langevin Based model, 
and its equations are given by

Here the factor ck is the inverse of βk = mk/mk−1 , a characteristic parameter of the β-model 30, which repre-
sent the coupling between spatial scales, through the ratio between the masses of the eddies at the scales k and 
k + 1 , respectively. Here, such relation comes from equation (5). In addition, the value of ck is also related to 
the spread of the PDF at the scale k, which is related with the thermal speed of the system in the case of velocity 
fluctuations. As mentioned by Beck 25, the relation between the ck values and formation and properties of heavy 
tails in the PDF is weak. Therefore, for the sake of simplicity and to focus on the description of the tails of the 
PDFs, it is customary to select ck = c , constant for all scales. Hence, here we consider ck = c = 2 for all scales, 
meaning that, on average, a mother eddy preferentially interacts with eddies what are half its mass. Moreover, 
v
(k)
n  can be interpreted as velocity of the center of mass of an eddy in the k-scale at time nτ . Finally, The γ τ factor 

is the ratio between two characteristics time scales of the system. First we have τ , the time scale of fluctuations in 
the large scale ℓ0 , given by τ ∼ ℓ0/w , where w is the thermal velocity of the fluctuations. On the other hand, in the 
Langevin Equation γ is the dynamic viscosity given by γ ∼ ν0/ℓ

2
0 , with ν0 the kinematic viscosity. Then, we have 

γ τ ∼ ν0/wℓ0 ∼ Re−1 . Namely, γ τ factor is inversely proportional to the Reynolds number of the fluid, Re 21,25. 
Therefore, as γ τ is the only free parameter of the model, in the CML, the dynamics of the system is determined 
by the level of turbulence of the media, measured by Re. The CML equations (6) represent a straightforward 
model to study the consequences of turbulence as a one dimensional system at different scales.

Numerical analysis and results
To numerically solve the CML equations (6) we consider an ensemble of N = 106 eddies in each of the k scale, 
from k = 1 up to kmax = 50 , and taking into account that the coupling constant between scales is ck = 2 . The elec-
tion for this number allows us to solve the equations throughout several scales at different orders of magnitude, 
and was inspired by Beck’s results25, who considered kmax = 17 . In addition, to test our model with different 
levels of turbulence (measured by the Reynolds number) we solve the equations using four different values for 
γ τ , between 10−3.5 and 10−2.

As initial condition we select a delta function distribution for velocities centered at v(k)0 = 0 , and evolve the 
CML equations in time until the system reaches a steady state with constant energy E. Namely,

(6)
v
(1)
n+1 = �1v

(1)
n +

√
γ τ xn ,

v
(k)
n+1 = �kv

(k)
n + ck ξ

(k−1)
n

(

1− �k−1

)

v(k−1)
n .

Figure 1.   Comparison between the noise type probability density functions used in Ref. 21 (top), and the 
random distribution approach we follow here (bottom). Each panel shows the noise PDFs after 105 time steps for 
two type of noises. We also remark a black dotted line as a reference for the 0.5 level.
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On the other hand, following observations of heavy tails2–4 and κ distributions5 of velocity fluctuations in 
turbulent systems, at the steady state, we adjust the VDF in all k scales with a κ-like distribution 36

where Aκ , w y κ are fit parameters. We had special attention to the relation between these quantities respect to 
the scale k for different values of γ τ between 10−3.5 , and 10−1.5 . κ-distributions correspond to a generalization 
of the Maxwellian distribution, widely used to model out-of-equilibrium systems in which the VDF exhibits 
large kurtosis due to powerlaw supra-thermal tails for higher energies (velocity). Under such context, Eq. (8), 
depending on the value of the κ parameter the VDF will model the distribution with a quasi-thermal core (for 
v ≤

√
kw ), and power-law tails for larger velocities. The extent and energy of the tails increases with decreasing 

κ , and the VDF collapses to a Maxwellian in the limit κ → ∞.
Figure 2 shows the VDF of steady-state solution of the CML system at γ τ = 10−2.5 and different k-scales at 

k = 10, 20, 30 and 40. Blue dots represent the VDF obtained with the simulations, and solid black lines the best 
fit using Eq. (8). From the figure we note a good fit by (8) in the core of the VDF with a slight deviation in the 
tails of the distribution as we move in the k-scale, mainly due to counting statistics. In addition, it is clear that κ 
decreases with increasing k, such that κ = 17.3± 1.2 for k = 10 , and κ = 1.8 for k = 40.

To further characterize this behaviour, we performed a systematic analysis of the relation between κ , γ τ and 
the scale k. Figure 3 shows the adjusted κ as a function of k for different values of γ τ (from top to bottom γ τ = 
10−2.0 , 10−2.5 , 10−3.0 , and 10−3.5 , respectively). From the figure we can see that, in general, for all values of γ τ , κ 
exhibits large values for small k. This makes sense because we should expect a Brownian motion for the largest 
scale ( k = 1 ), represented by a Maxwellian VDF in the steady state, i.e. κ → ∞ . Therefore, it would be difficult 
to obtain an accurate value for κ . On the other hand, as we move on the k-scale, towards high values, κ rapidly 
decreases with increasing k, up to the saturation scale (largest k) in which κ → 3/2 (the smallest possible κ 
value in our model). Therefore, as k increases, the κ parameter is finite and smaller. In other words, as the scale 

(7)
dE

dt
= 0, where E =

kmax
∑

k=1

1

2
mk�v2�k .

(8)fκ (v) = Aκ

(

1+
1

κ − 3/2

v2

w2

)−(κ+1)

,

Figure 2.   VDF of the Steady-state solution of the CML system in Eq. (6), at different k-scales and γ τ = 10
−2.5 . 

Blue dots represent the VDF of the data obtained with the simulations, and solid black lines the best fit using 
a κ-like distribution . In each panel the scale and the κ parameter are: (a) k = 10 , κ = 17.3± 1.2 , (b) k = 20 , 
κ = 5.3± 0.1 , (c) k = 30 , κ = 3.0± 0.1 , and (d) k = 40 , κ = 1.8± 0.0.
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size decreases the system moves away from a Maxwellian regime and the VDF is well represented by a κ-like 
distribution.

In addition, from Fig. 3 we observe a clear decaying power law behavior κ ∼ k−α . For each value of γ τ the 
best power law is also included as a superposed black line in each panel. Remarkably, for all considered values 
of γ τ , α ≈ 5/3 . Furthermore, from the figure it is also possible to note how this power law behaviour also scales 
with the value of γ τ , as, in general, κ decreases with increasing γ τ . However, from the Figure it is possible to 
recognize two regimes where the purposed power law model is no longer representative: first, for low values of k 
(or high spatial scales), given that the points are expected to be dispersed since the system tends to the Maxwellian 
state. As Maxwellian is the limit when κ → ∞ , when the system is more Maxwellian than Kappa distributed, the 
algorithm found high values for κ (larger than 102 ), and therefore there is low precision in the convergence of the 
fit. Second, for high values of k (small spatial scales), where the points saturate to a fixed value of 3/2. Since the 
κ-like fit we use has a singularity at this value, where the tails of the PDF seem too large to be described using 
a Kappa distributions. In such cases, other models may provide a better description of the PDFs. Finally, it is 
important to mention that the validity range in k also depends on the γ τ number, as shown in the panels of the 
aforementioned figure. We can see that as γ τ changes, the valid range clearly changes its position. The lower γ τ 
is, the higher and more shifted to the right (smaller scales) the range is. In other words, as the Reynolds number 
increases, smaller scales can be well represented by Kappa distributions.

On the other hand, the dependence of κ with respect to the γ τ number can be seen in Fig. 4. The figure 
shows the value of κ as a function of γ τ at different scales (different values of k), that also follows a power law 
behaviour. In this case, we have found that κ ∼ (γ τ)−1 as shown by the superposed black line in the figure. In 
summary, we have found that the relation between κ , γ τ and k is given by κ(k, γ τ) = κ0 (γ τ)

−vk−α , where κ0 
is a constant parameter, ν ≈ 1 , and α ≈ 5/3 . Again, is worth mentioning that here we can also see dispersed 
points for κ ∼ 102 , which are out of the power law trend, a expected behaviour due to the low precision in the 
convergence of the fit when the PDFs approaches a Maxwellian shape.

Furthermore, considering the relation between γ τ and the Reynolds number, which previously we had men-
tioned is Re ∼ (γ τ)−1 , our numerical results indicate that

(9)κ(k, γ τ) ∼ Re k−5/3 ,

Figure 3.   κ parameter as a function of k-scale for different values of γ τ (10−2.0 , 10−2.5 , 10−3.0 , and 10−3.5 ). For 
each case we made the respective fit using (9) and the points which best describe a power law.
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is the relation between κ , the Reynolds number and the space scale. Therefore, the equation (9) is a functional 
relation which is valid for a certain range of spatial scales, according to the Langevin based model purposed.

Discussion and conclusions
In this paper we present a numerical study of the VDF generated in turbulent flows at different spatial scales, and 
different levels of turbulence. To do so, we used a Couple Lattice model, that considers turbulence as a coupled 
Langevin system at different scales. With such mode we found that the PDF of velocity fluctuations at different 
scales can be well represented by κ distributions, and that the value of κ depends on the scale k and the level of 
turbulence represented by γ τ (i.e. the Reynolds number).

Our numerical results show the relation between the spatial scale and the κ parameter exhibits a power law 
behavior given by Eq. (9); i.e., when the Reynolds number grows, the κ parameter also increases. This fact is 
expected since in a system with large enough Reynolds number, strong turbulence should inhibit the internal 
correlations leading to non Maxwellian PDFs. Remarkably, these results match with the observational study by 
Pollock et al. 5, where the Partial Variance of Increments (PVI) 37 of the velocity and magnetic field fluctuations 
(whose definitions are similar to (2)) were calculated in the context of space plasmas. In their study, the authors 
show that they obtained the respective PDFs of PVI, and showed that it generates distributions with heavy 
tails well fitted by κ-like distributions, with the value of κ decreasing for decreasing spatial scale (larger k). It is 
important to note that the system studied in Refs. 5,38 is mainly a collisionless plasma, which also contemplates 
electromagnetic interactions. Even though the electromagnetic turbulence is beyond the scope of our study, the 
good agreement between our model and the results reported in Refs. 5,38 suggest a possible universal behaviour 
of the PVIs in turbulence, and also encourage us to extend our model to electromagnetic systems.

We have also found that the κ parameter follows a scaling exponent −5/3 . i.e., the value of κ follows the same 
Kolmogov’s law, which might be not surprising for a turbulent flow. However, even though this is the same scaling 
behavior of the energy spectrum of the turbulence cascade in the inertial range, the fact that the shape of the high 
energy tails of the PDF for velocity fluctuations follows the same scaling is not a trivial result. This suggests that, 
indeed, turbulence may provide a connection between the kappa parameter to the spatial scale, and that κ scales 
linearly with energy, which is also consistent with previous theoretical works. For example, Hasegawa 38 found 
a close expression for κ as a function of energy, given by κ = E0/ETe , where E0 is a critical energy representative 
of the system, and ETe is the thermal energy of the media. Thus, the CML approach may represent a way to find 
the implicit dependencies of the non-thermal (non Maxwellian) properties of a turbulent system with respect 
to others parameters, and their relation with the first principles statistical mechanics description of turbulent 
flows. In fact, as shown by Beck 25 by using other kind of noises in the stochastic term in equation (1), the CML 
has the potential to be extended or generalized to reproduce, not only the heavy tails, but also the skewness of 
the VDF that can also be found in turbulent flows.

That being said, the differences between the best fit using κ-distribution and large amplitude velocity fluctua-
tions at high values of k (see Fig. 2) shows that other non-extensive distributions such as stretched exponen-
tial 39–41 or regularized κ-distributions 42,43 may be considered in order to extend the scope of the use of CMLs to 
characterize turbulent flows. Moreover, the CML also lacks nonlinear interactions between scales, or coupling 
between increments at different spatial locations either, all important effects to be considered to further charac-
terize turbulence. In that sense, certain elements of shell models, as the non-local coupling, could be useful to 
improve the correspondence of the model with the characteristics of a turbulent system. For example, the GOY 
model44–46 provides multiscale statistics with many striking similarities with real turbulent flows.

However, even though we have considered a simplified CML model of a turbulent flow, our results show 
a non-trivial scaling relation between the shape of the VDF, and the level of turbulence of the media. From 
a numerical and Langevin theory point of view we have found a quantifiable relation between non-extensive 
parameter, such as κ , providing a relation between turbulence and the non-extensivity of the statistical mechanics 

Figure 4.   κ parameter as a function of γ τ considering different values of k between k = 5 and k = 45 . The solid 
black represents the curve (γ τ)−1 , as a qualitative reference to show the quantitative correspondence among all 
the curves.
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of the system. In summary, on the basis of a simple numerical model of a turbulent case we have found that the 
PDFs of velocity fluctuations follow κ distributions, and that there is a robust relation between the scaling of κ and 
the Reynolds number of the flow. We expect these results to be useful to further characterize turbulent systems 
in different contexts, and our numerical predictions to be tested by observations or in experimental setups. We 
plan to address these aspects and other issues, expanding the scope of our model in subsequent works.

Data availability
The data that support the findings of this study are openly available in Zenodo at https://​doi.​org/​10.​5281/​zenodo.​
44983​54, reference number 47.
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