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Abstract Peptides are becoming an important class of molecules in the pharmaceutical field.
Closely related peptide-impurities in peptides are inherent to the synthesis approach and have
demonstrated to potentially mask biomedical experimental results. Quorum sensing peptides are
attracting high interest in R&D and therefore a representative set of quorum sensing peptides, with a
requested purity of at least 95.0%, was evaluated for their purity and nature of related impurities.
In-house quality control (QC) revealed a large discrepancy between the purity levels as stated on the
supplier’s certificate of analysis and our QC results. By using our QC analysis flowchart, we
demonstrated that only 44.0% of the peptides met the required purity. The main compound of one
sample was even found to have a different structure compared to the desired peptide. We also found
that the majority of the related impurities were lacking amino acid(s) in the desired peptide
sequence. Relying on the certificates of analysis as provided by the supplier might have serious
consequences for peptide research, and peptide-researchers should implement and maintain a
thorough in-house QC.

& 2015 Xi’an Jiaotong University. Production and hosting by Elsevier B.V.

Open access under CC BY-NC-ND license.
1. Introduction

Peptides are becoming an important class of molecules in the
biomedical and pharmaceutical fields owing to their high affinity,
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strong selectivity for their targets and low toxicity [1]. Despite
potential limitations such as overall low oral bio-availability, low
metabolic resistance, potential immunogenicity, poor membrane
permeability and financial aspects, several peptide drugs have
entered the market [2,3]. The promising future of peptide
therapeutics is further highlighted by the number of peptides in
clinical and preclinical phases [4]. In 2012, approximately 200
peptides entered the clinical phase, while another 400 were at
advanced preclinical stages [4–6].
r B.V. Open access under CC BY-NC-ND license.
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Quorum sensing peptides are a group of peptides currently
attracting high interest. Quorum sensing, the process of cell-to-
cell communication between bacteria, has been the subject of a
great number of scientific research papers [7–9]. Three main
groups of quorum sensing molecules can be distinguished: N-
acylhomoserine lactone derivatives (AHL or auto-inducer-1),
quorum sensing peptides and boron-furan derivatives (auto-
inducer-2). The quorum sensing peptides, mainly found in
Gram-positive bacteria, show a large structural diversity: short,
linear fragments as well as cyclic (thiolacton) derivatives, with
or without post-translational isoprenyl modifications, are
observed [10]. These peptides bind to (i) bacterial membrane
associated receptors, or (ii) cytoplasmatic receptors, after which
the transcription of the target genes is activated. Interfering with
this bacterial quorum sensing pathway might open interesting
application perspectives.

Chemical peptide synthesis for medicinal purposes has become
economically viable [11]. The possibility to produce small,
medium (5–20 residues) to large (20–50 residues) peptides has
evolved dramatically, hereby frequently outperforming the bio-
technological approaches as they are known to date [6]. In 1965,
Merrifield cleared the way for Solid-Phase Peptide Synthesis
(SPPS), thus introducing and facilitating a totally new concept in
peptide synthesis [12]: a peptidic chain, fixed to a solid support, is
created by the consecutive addition of the appropriate amino acids.
The reaction can be automated and possible solubilization-issues
are avoided due to the fixation of the peptide to the solid matrix
[13]. During SPPS, different side-reactions can occur, resulting in
several types of peptide impurities [14]: e.g. (i) diketopiperazine
structures [15,16], (ii) aspartimide residues [17–19], (iii) cysteine
racemization [16], (iv) diastereoisomeric products [20,21], (v)
dimers [22], (vi) acid precursors and protected sequences [20],
(vii) oxidation and reduction of amino acids [19,23], (viii) amino
acid deletions [15,23–26], (ix) amino acid insertions [23,24], (x)
products of side chain reactivity and (xi) amino acid modifications
during cleavage [16,19,23,24,26–30]. Thus, the crude peptides
obtained from SPPS mostly will contain many by-products. These
impurities, if present even after purification, have to be quantified and
characterized to meet pharmaceutical regulatory requirements, but
they need to be under control as well during the unregulated
biomedical research and discovery phases [31,32]. Due to budgetary
Table 1 Peptides information.

Quorumpeps
ID

Sequence

2 FNTIPSY
5 Ac-CGSLF, thiolacton linkage between C1 and F5

7 FNTWPSY
10 ADLPFEF
11 AGTKPQGKPASNLVECVFSLFKKCN
13 AIFILAS

14 AITLIFI

15 AKDEH
16 AKTVQ
17 ALILTLVS

18 ARNQT
constraints, peptides used in research are often purchased at undefined
or low purity levels, e.g. 70.0% [31]. Generally, the peptide purity used
for biomedical research and discovery purposes ranges from as low as
50.0% to more than 95.0% [22,26]. However, closely related impurities
of the target peptide may possess stronger binding affinities compared
to the native peptide [26], thus potentially causing erroneous conclu-
sions. Investigations by de Beukelaar et al. [33] indicated different
immune responses of a protein-spanning peptide pool of 70.0% pure
peptides due to the impurities. False-positive results in a HIV-vaccine
trial were also ascribed to impurities in the peptide-mixtures [34].
Zhang et al. [35] were unable to reproduce their initial obestatin results
in vitro, possibly due to impurities present in the initially examined
peptide. Additionally, Verbeken et al. [31] observed different biofunc-
tional responses in a set of tissue-organ bath experiments caused by
impurities of the examined peptides. Impurities are thus able to
potentially mask biomedical experimental outcomes and may cause
false negative or positive results.

Quorum sensing peptides are currently being actively investi-
gated, i.e. for their possible role in the crosstalk between the
microbiome and its host [36,37]. Therefore, a thorough in-house
QC analysis of a selected set of quorum sensing peptides will be
conducted, followed by identification of the observed impurities.
These data not only demonstrate the need for routine QC in
peptide research, but also can help in building a global overview of
expected related impurities in peptides.
2. Materials and methods

2.1. Chemicals and reagents

A set of 98 representative peptides was selected from the
Quorumpeps database [38]. Linear peptide synthesis was con-
ducted by an international supplier, while another supplier
synthesized the cyclic peptides, both by means of Fmoc-SPPS.
A minimal purity of 95.0% was requested at order. The sequences
of the 98 peptides are provided in Table 1. Acetonitrile of HPLC–
MS and UPLC-MS grades were purchased from Fisher Scientific
(Aalst, Belgium). Formic acid (LC–MS grade) and DMSO (p.a.
Z99.9%) were obtained from Sigma-Aldrich (Diegem, Belgium).
Trifluoroacetic acid (TFA), NaH2PO4 �H20 and Na2HPO4 were
Molecular
weight

Solvent Columna Purity
(%)b

839.95 Water C18-FA 83.31
549.72 Waterþ50%

DMSO
C18-FA 88.30

913.00 Water C18-FA 98.46
837.93 Water C18-FA 99.20
2667.14 Water C18-FA 72.93
733.91 Waterþ58%

DMSO
C18-FA 97.82

790.01 Waterþ60%
DMSO

C18-FA 72.48

598.61 Water C18-TFA 69.26
545.64 Water C18-TFA 96.20
829.05 Waterþ60%

DMSO
C18-FA 94.43

588.62 Water 92.33



Table 1 (continued )

Quorumpeps
ID

Sequence Molecular
weight

Solvent Columna Purity
(%)b

Organic
Acid

19 NNWNN 660.64 Water C18-TFA 92.66
22 CVGIW, thiolacton linkage between C1 and W5 558.78 Waterþ50%

DMSO
C18-FA 60.39

24 CTFTLPGGGGVCTLTSECIC 1962.3 Waterþ1%
DMSO

C18-FA 12.21

25 CVFSLFKKCN 1188.47 Water C18-FA 47.92
28 DIRHRINNSIWRDIFLKRK 2480.91 Water C18-FA 93.68
30 DLRGVPNPWGWIFGR 1770.03 Water C18-FA 91.62
31 DLRNIFLKIKFKKK 1791.26 Water C18-FA 76.74
32 DMCNGYF, thiolacton linkage between C3 and F7 831.04 Waterþ50%

DMSO
C18-FA 58.05

34 DRVGA 516.55 Water C18-TFA 98.30
40 DSVCASYF, thiolacton linkage between C4 and F8 873.06 Waterþ50%

DMSO
C18-FA 31.61

42 DWRFLNSIRDLIFPKRK 2204.61 Water C18-FA 97.86
44 EKMIG 576.71 Water C18-FA 99.41
45 EMRISRIILDFLFLRKK 2178.71 Water C18-FA 81.91
46 EMRKSNNNFFHFLRRI 2109.44 Water C18-FA 96.43
47 EMRLPKILRDFIFPRKK 2187.72 Water C18-FA 98.46
49 EQLSFTSIGILQLLTIGTRSCWFFYCRY 3346.92 Waterþ17%

DMSO
C18-FA 52.58

50 ERGMT 592.67 Water C18-TFA 98.76
51 ERNNT 632.63 Water Organic

Acid
98.24

52 ERPVG 556.62 Water C18-TFA 99.75
53 ESRLPKILLDFLFLRKK 2116.62 Water C18-FA 65.11
54 ESRLPKIRFDFIFPRKK 2177.62 Water C18-FA 99.30
55 ESRVSRIILDFLFQRKK 2135.54 Water C18-FA 96.90
56 VNYGNGVSCSKTKCSVNWGQAFQERYTAGINSFVSGVASGAGSIGRRP 4969.46 Water C18-FA 33.57
58 DSRIRMGFDFSKLFGK 1904.22 Water C18-FA 95.72
62 ESRISDILLDFLFQRKK 2108.47 Water C18-FA 99.27
71 QNCPNIFGQWM, lacton linkage between S3 and M11 1319.70 Waterþ50%

DMSO
C18-FA 77.64

75 SINSQIGKATSNLVECVFSLFKKCN 2731.2 Water C18-FA 30.03
76 SNLVECVFSLFKKCN 1731.06 Water C18-FA 80.63
81 FNTIPKY 881.04 Water C18-FA 99.29
82 NTIPKY 733.87 Water C18-FA 69.22
84 FFNTCPSY 978.09 Water C18-FA 96.54
85 FNTCPSY 830.91 Water C18-FA 92.98
92 FHWWQTSPAHFS 1530.66 Water C18-FA 99.54
93 FLVMFLSG 913.14 Waterþ33%

DMSO
C18-FA 91.31

97 QNSPNIFGQWM, lacton linkage between S3 and M11 1303.63 Waterþ50%
DMSO

C18-FA 43.95

99 GKAEF 550.61 Water C18-FA 99.33
100 GKATSSISKCVFSFFKKC 1968.36 Waterþ33%

DMSO
C18-FA 28.65

101 GLWEDILYSLNIIKHNNTKGLHHPIQL 3167.67 Water C18-FA 96.92
102 GLWEDLLYNINRYAHYIT 2254.53 Waterþ33%

DMSO
C18-FA 97.98

103 GNWNN 603.59 Water C18-FA 97.70
105 GSQKGVYASQRSFVPSWFRKIFRN 2846.25 Water C18-FA 99.31
107 GVNACSSLF, thiolacton linkage between C5 and F9 879.13 Waterþ50%

DMSO
C18-FA 39.15

111 GWWEDFLYRFNIIEQKNTKGFYQPIQL 3434.91 Waterþ50%
DMSO

C18-FA 89.72

121 ILSGAPCIPW 1056.29 Water C18-FA 77.04
123 IRFVT 634.78 Water C18-FA 99.53
125 KSSAYSLQMGATAIKQVKKLFKKWGW 2985.59 Water C18-FA 66.39
132 LFSLVLAG 819.01 Waterþ33%

DMSO
C18-FA 96.92
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Table 1 (continued )

Quorumpeps
ID

Sequence Molecular
weight

Solvent Columna Purity
(%)b

133 LFVVTLVG 847.06 Waterþ60%
DMSO

C18-FA 97.74

134 LPFEF 651.76 Waterþ50%
DMSO

C18-FA 17.17

135 LPFEH 641.72 Water C18-FA 94.23
137 LVTLVFV 790.01 Waterþ50%

DMSO
C18-FA 84.02

138 MAGNSSNFIHKIKQIFTHR 2229.59 Waterþ17%
DMSO

C18-FA 81.90

140 MKAEH 614.72 Water C18-FA 66.91
143 MPFEF 669.79 Water C18-FA 86.24
146 NEVPFEF 880.95 Water C18-FA 99.90
147 NGWNN 603.59 Water C18-FA 94.53
148 YSTCDFIM, thiolacton linkage between C4 and M8 961.25 Waterþ50%

DMSO
C18-FA 44.40

151 NNGNN 531.48 Water C18-TFA 96.79
152 NNNWNNN 888.85 Water C18-FA 98.42
153 NNWGN 603.59 Water C18-FA 99.10
154 NNWNG 603.59 Water C18-FA 99.33
155 NWN 432.44 Water C18-FA 98.40
156 FNTIP 589.69 Water C18-FA 99.27
157 FNTWP 662.75 Water C18-FA 99.23
160 QKGMY 625.74 Water C18-FA 99.04
162 QRGMI 603.74 Water C18-FA 94.36
164 SDLPFEH 843.89 Water C18-FA 91.37
165 SDMPFEF 871.96 Water C18-FA 99.44
166 SGSLSTFFLLFNRSFTQALGK 2321.66 Water C18-FA 92.99
174 SGSLSTFFRLFNRSFTQALG 2236.52 Water C18-FA 97.41
176 SGSLSTFFRLFNRSFTQALGK 2364.69 Water C18-FA 98.96
177 SGSLSTFFRLFNRSFTQALGKIR 2634.04 Water C18-FA 55.68
180 SGSLSTFFRLFNRSQTQALGK 2345.65 Water C18-FA 99.06
184 SIFTLVA 749.90 Waterþ33%

DMSO
C18-FA 93.17

186 SKDYN 625.64 Water C18-TFA 92.88
188 SLSTFFRLFNFSFTQALG 2083.37 Waterþ33%

DMSO
C18-FA 85.61

191 SRKAT 561.64 Water C18-TFA 78.31
192 SRNAT 547.57 Water Organic

Acid
81.74

193 SRNVT 575.62 Water C18-TFA 81.49
206 SYPGWSW 881.94 Water C18-FA 99.45
207 TAGPAIRASVKQCQKTLKATRLFTVSCKGKNGCK 3595.31 Water C18-FA 32.42
208 TNRNYGKPNKDIGTCIWSGFRHC 2668.01 Water C18-FA 89.19
210 VAVLVLGA 740.94 Waterþ33%

DMSO
C18-FA 92.98

212 VPFEF 637.73 Water C18-FA 97.65
214 WPFAHWPWQYPR 1670.89 Water C18-FA 58.94
215 FNTWPKY 954.10 Water C18-FA 95.52
218 YNPCSNYL, thiolacton linkage between C4 and L8 955.18 Waterþ50%

DMSO
C18-FA 16.87

aC18-FA: acquity UPLC BEH 300 C18 column (100 mm� 2.1 mm, 1.7 mm). C18-TFA: Vydac Everest C18 column (250 mm� 4.6 mm, 5 mm).
Organic acid: Grace Alltech Prevail Organic Acid column (250 mm� 4.6 mm, 5 mm).

bPurity assigned based on UV chromatogram with internal normalization to the most abundant peak.
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purchased from Merck (Overijse, Belgium). Water was purified
using an Arium 611 purification system (Sartorius, Gottingen,
Germany) yieldingZ18.2 MΩ cm quality water. Eppendorf Pro-
tein LoBind 2.0 and 1.5 mL tubes were purchased from Eppendorf
(Nijmegen, the Netherlands). UPLC/HPLC vials and inserts were
purchased from Waters (Milford, MA, USA). The Vydac Everest
C18 (250 mm� 4.6 mm, 5 mm) column and Alltech Prevail
Organic Acid column (250 mm� 4.6 mm, 5 mm), both protected
with guard columns, were obtained from Grace (Deerfield, IL,
USA). The Acquity UPLC BEH300 C18 column (100 mm� 2.1
mm, 1.7 mm) with guard column was purchased from Waters
(Milford, MA, USA).



Fig. 1 (U)HPLC column flow chart for quorum sensing peptides
analysis.

Fig. 2 Purity levels of quorum sensing peptides determined by in-
house QC.

Fig. 3 The in-house QC control shows a distinct difference in peptide
purity. (A) Chromatogram of supplier; Kromasil C18-5 (250 mm� 4.6
mm, 5 mm), quantification at 220 nm; (B) chromatogram of in-house QC;
Vydac Everest C18 column (250 mm� 4.6 mm, 5 mm), quantification at
210 nm.
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2.2. Sample preparation

0.5–1 mg of each lyophilized, linear peptide was dissolved in
water or a mixture of water and DMSO, depending on the
calculated log P values and the solubility in water, to obtain a
concentration of approximately 1.0 mg/mL (Table 1). The quantity
of DMSO used was determined experimentally, by adding DMSO
stepwise to the peptide-water suspension until no more precipitate
was observed. The dissolved peptides were stored at �35 1C. The
cyclic peptides (i.e. ID5, 22, 32, 40, 71, 97, 107, 148 and 218)
were dissolved in DMSO-water (50/50, V/V) to obtain a concen-
tration of approximately 0.5 mg/mL.
2.3. HPLC and UPLC

2.3.1. QC purity profiling
Three LC systems were consecutively applied in the analysis. To
avoid carry-over peaks, 50% acetonitrile in water was always used
as needle wash.

Each peptide was first analyzed with the Acquity UPLC BEH300
C18 column. Sample compartment was kept at 5 1C (7 2 1C) and
column was maintained at 30 1C (72 1C). Injection volume was set at
2 mL for the linear and 5 mL for the cyclic peptides. Mobile phases
consisted of 0.1% (m/V) formic acid in water (A) and 0.1% (m/V)
formic acid in acetonitrile (B). A general linear gradient was applied
running from 95% A to 20% A during 22 min, followed by returning
to initial condition and re-equilibration with a flow rate set at 0.5 mL/
min. Analysis was conducted using a Waters Acquity UPLC Class
BioQuaternary Solvent Manager, a Waters Acquity Bio-sample
Manager, combined with a Flow Through Needle and a Waters
Acquity UPLC PDA (500 nL to 10 mm path length analytical flow
cell) detector (Waters, Milford, MA, USA). Empower™ 2 software
was employed for data acquisition and analysis. Peptides and related
impurities were quantified by area-normalization at 210 nm, using a
sampling rate of 20 points/s and a detector time constant of 0.1 s. A
reporting threshold (i.e. 0.1% of main peak AUC in the UV
chromatogram) and identification threshold (i.e. 0.5% of main peak
AUC in the UV chromatogram) as stated in the European Pharmaco-
poeia were applied [39]. Solvent and system peaks, observed in the
blank (i.e. the solvent used to dissolve a certain peptide, Table 1), were
excluded.

If no retention of the peptides was observed using the Acquity
UPLC BEH300 C18 column, peptides were analyzed with the Vydac
Everest C18 column on a Waters Alliance 2695 HPLC apparatus
equipped with a Waters 2695 Separations Module, combined with a
Flow Through Needle, and a Waters 2996 Photodiode Array Detector
with Empower™ 2 software for data acquisition. Mobile phases
consisted of 0.1% (m/V) TFA in water (A) and 0.1% (m/V) TFA in
acetonitrile (B). A general linear gradient was applied running from
95% A to 20% A during 30 min, followed by returning to initial
condition and re-equilibration with a flow rate set at 1.0 mL/min. For
peptide ID191, a slightly modified linear gradient was applied, i.e.
running from 98% A to 80% A during 10 min, followed by returning
to initial conditions and re-equilibration with a flow rate set at 1.0 mL/
min. Sample compartment was kept at 5 1C (72 1C) and column was
maintained at 30 1C (72 1C); 20 mL of the samples dissolved in
suitable solvent composition were injected. UV detection was
performed at 215 nm using a sample rate of 1.0 point/s combined



Fig. 4 TIC and UV chromatogram (A), MS1 (B) and MS2 (C) spectra of the related impurity C1VFSLFKKC9N (disulfide bond between C1

and C9) of peptide ID25 at a retention time of 23.47 min with appointed isotopic mass patterns and b- and y-fragmentation are allocated.

Fig. 5 TIC and UV chromatogram (A), MS1 (B) and MS2 (C) spectra of the related impurity LPFE(methyl)F of peptide ID134 at a retention time
of 29.75 min with appointed isotopic mass patterns and b- and y-fragment allocation.

F. Verbeke et al.174
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with a detector time constant of 0.2 s. The flow rate was set to
1.0 mL/min. The peptide purity was quantified through normalization
by calculating the area (UV) of the most abundant peak as a
percentage of total peak areas.

Finally, peptides ID18, 51 and 192 were analyzed using a Grace
Alltech Prevail Organic Acid column (250 mm� 4.6 mm, 5 mm),
using the same Waters Alliance 2695 HPLC equipment as used
with the Vydac column. Mobile phases consisted of 10 mM
phosphate buffer (pH 7) (A) and acetonitrile (B). A general linear
gradient was applied running from 95% A to 60% A during
20 min, followed by returning to initial condition and re-
equilibration with a flow rate set at 1.0 mL/min. Sample compart-
ment was kept at 5 1C (72 1C) and column maintained at 30 1C
(72 1C). 20 mL of the samples dissolved in suitable solvent
composition were injected. UV detection was performed at
215 nm, using a sample rate of 1.0 point/s combined with a
detector time constant of 0.2 s. The peptide purity was quantified
through normalization by calculating the area (UV) of the most
abundant peak as a percentage of total peak areas.

2.3.2. Identification of main LC peak and related impurities
Mass spectroscopic characterization was performed with a
Thermo HPLC system consisting of a Waters 2487 dual λ
absorbance UV/VIS-detector (UV at 215 nm), a Finnigan LCQ
ion trap mass spectrometer with electrospray ionization (ESI) and
Xcalibur™ software version 2.0 for data acquisition. The LC–MS
equipment is yearly qualified using a tune solution and qualifica-
tion solution according to the EDQM guideline [40]. The tune
Fig. 6 TIC and UV chromatogram (A), MS1 (B) and MS2 (C) spectra o
9.59 min with appointed isotopic mass patterns and b- and y-fragment allo
solution consists of 100 mL 1.0 mg/mL caffeine (Sigma-Aldrich,
Diegem, Belgium) in methanol, 15 mL 5 nmol/mL MRFA (Met-
Arg-Phe-Ala) (Research Plus Inc., Atlantic City, NJ, USA) in 50/
50 methanol/water (V/V), 2.5 mL 0.1% (V/V) Ultramark 1621
(Alfa Aesar, Karlsruhe, Germany) in acetonitrile, 50 mL glacial
acetic acid (Riedel de Haen, Diegem, Belgium) and 2.34 mL of 50/
50 methanol/water (V/V). The EDQM qualification solution
consists of a 10.0 mg/mL reserpine (Flandria, Ghent, Belgium)
solution in acidified methanol (i.e. 1% acetic acid in methanol (V/
V)). The reserpine solution is infused in the mass spectrometer
with a flow rate of 3 mL/min with a collision energy of 35.00 eV.
The m/z value of 609.4 is selected as parent ion and the m/z range
for the daughter ions is set to m/z 165.0-800.0. The obtained m/z
values are compared with the acceptance criteria as set by
the EDQM.

For the analysis of the quorum sensing peptides, column
temperature was set at 30 1C (72 1C) and samples were kept at
room temperature. 20 mL of aqueous peptide solution was injected
into the HPLC system and a flow rate of 1.0 mL/min was applied.
All 15 selected quorum sensing peptides were analyzed using the
Vydac Everest C18 column (250 mm� 4.6 mm, 5 mm). Mobile phases
consisted of 0.1% (m/V) formic acid in water (A) and 0.1% (m/V)
formic acid in acetonitrile (B) with a flow rate of 1.00 mL/min. An
isocratic period consisting of 95% A during 5 min was maintained,
followed by a linear gradient running from 95% A to 40% A in 60 min
and returning to the initial conditions and re-equilibration afterwards.
The ion transfer capillary was operated at 250 1C, nitrogen was used as
sheath gas (80 arbitrary units corresponding to 1.2 L/min) and helium
f the related impurity TIPKY of peptide ID82 at a retention time of
cation.
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as auxiliary gas (20 arbitrary units corresponding to 0.2 L/min). The
spray voltage was 4.50 kV and the capillary voltage was 46 V. MS1

(100–2000 m/z) and MS2 (data dependent, i.e. highest abundant MS1

m/z value for MS2) data were obtained. All m/z values possessing an
abundance higher than 25% in the according MS1 spectrum were
subject to identification via their respective MS2 fragmentation pattern.
Theoretical MS2 fragmentation patterns of the peptides were calculated
in silico with ProteinProspector [41] (University of California, San
Francisco, CA, USA). The proposed sequences of the related impurities
were confirmed using the ProteinProspector generated MS2 spectra.
The nomenclature originally proposed by Roepstorff and Fohlman [42]
was used to annotate MS2 fragments.
3. Results and discussion

3.1. Quorum sensing peptide analysis flow chart

To determine the purity of the quorum sensing peptides, we
developed a UPLC/HPLC-analysis flow chart (Fig. 1). Each
peptide was analyzed first with the Acquity UPLC BEH300 C18

column, using the method described above. A C18 column with a
0.1% (m/V) formic acid in water/acetonitrile gradient is widely
used for peptide analysis and was therefore selected as the initial
method of analysis. If no retention of the peptides was observed,
the peptides were analyzed with the Vydac Everest C18

column with TFA as ion-pairing reagent, which is known to have
Fig. 7 TIC and UV chromatogram (A), MS1 (B) and MS2 (C) spectra of
time of 35.70 min with appointed isotopic mass patterns and b- and y-frag
a narrowing effect on peak width and an increased retention.
Finally, if no retention was observed with the aforementioned
columns, the Prevail Organic Acid column (mobile phase of pH 7)
with a 10 mM phosphate buffered water/acetonitrile gradient was
used for peptide quality control. Previous experience indicated that
peptides which had no retention using standard C18 peptide columns
might have appropriate retention using a polar-embedded column
for highly hydrophilic compounds, like the Prevail Organic Acid
column.
3.2. QC purity assay

Despite a requested purity of at least 95.0%, only 43 out of 98
peptides met these purity specifications (Fig. 2). However, all the
98 peptides were accompanied by a certificate of analysis stating at
least 95.0% purity. Our QC analysis upon arrival showed purity
levels sometimes far below the demanded purity level (Table 1). In
Fig. 3, the chromatogram of ID76, as provided by the supplier on
the certificate of analysis versus our QC analysis, is given. The
mobile phases of the supplier consisted of 0.1% (m/V) TFA in
acetonitrile (A) and 0.1% (m/V) TFA in water (B). A general
linear gradient was applied running from 22% A to 47% A during
22 min with a Kromasil C18-5 (250 mm� 4.6 mm, 5 mm) column
with quantification at 220 nm. The peptide was analyzed in our
laboratory with the Acquity UPLC BEH300 C18 column, using the
operational details as described above.
the related impurity ILSGAPCIPWW of peptide ID121 at a retention
ment allocation.
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The method applied by the supplier clearly lacked selectivity to
determine the purity level of the peptide. We demonstrated the
necessity of a reliable QC method, i.e. the need of a suitable
chromatographic system to analyze peptide purity. The supplier
claimed Z95.0% purity using its system, where we determined a
purity level of 80.6%.

Especially the cyclic peptides (n¼9) were characterized by low
purity levels: none of the peptides had a purity exceeding 90.0%. Of
all cyclic peptides, 1 peptide had a purity between 80.0% and
90.0%, whereas the other 8 had purity levels below 80.0%.
Nevertheless, each of these peptides was accompanied by a
certificate of analysis stating a purity of at least 95.0%. After
communication with the suppliers, they revealed that they
were unable to produce these cyclic peptides at the requested
purity level.

3.3. Identification of related impurities

A set of 15 peptides with varying purities was selected to
determine the identity of the impurities (Table 1, depicted in
red). The main peak was characterized as the desired peptide for
14 out of 15 peptides. The main peak from peptide ID25 was not
the requested amino acid sequence. Instead of CVFSLFKKCN, a
peptide with a mass difference of �2.1 Da compared with the
requested peptide sequence was noted. Therefore, the formation of
a disulfide bond (and thus cyclisation) between C1 and C9 is
suggested. Because sulfur-containing amino acids are prone to
Fig. 8 TIC and UV chromatogram (A), MS1 (B) and MS2 (C) spectra of
time of 33.55 min with appointed isotopic mass patterns and b- and y-frag
oxidation [43], a spontaneous cyclisation is suspected for this
peptide (Fig. 4).

The MS1 spectrum of a related peptide impurity of peptide
ID134 (retention time of 29.75 min) showed an impurity with a
monoisotopic mass of 666.22 Da (Fig. 5). The difference with the
monoisotopic mass of the requested peptide sequence (LPFEF)
amounted to 14.04 Da, a mass difference that could be associated
with the addition of a methyl group. The MS2 fragmentation
pattern of the related peptide impurity (Fig. 5C) showed a
difference of þ14 Da with the requested peptide sequence
fragmentation pattern at b4, y2-H2O, y4, MH-H20, while the b3
fragment of requested peptide and related impurity were the same,
thus suggesting the addition of a methyl group to Glu4.

A related impurity of peptide ID82 (retention time 9.34 min)
possessed an m/z value of 621.14 (Fig. 6). Compared with the
desired peptide, i.e. NTIPKY, there was a mass difference of
114.02 Da, a mass difference which could be bridged by the
deletion of Asn1. The suggested sequence TIPKY was confirmed
by the MS2 spectrum in Fig. 6C. On the other hand, we also
demonstrated a related impurity characterized by the incorporation
of an additional amino acid at the C-terminus of peptide ID121
(retention time 35.70 min) (Fig. 7). The MS2 spectrum (Fig. 7C)
confirmed the addition of an extra Trp residue at the C-terminus of
peptide ID121, thus resulting in the related impurity ILSGAP-
CIPWW. Another example of a related peptide impurity was the
combination of both deleted and additionally inserted amino acids
in the desired peptide sequence. In Fig. 8, such an example is
the related impurity ILSGAPCIPPPP of peptide ID121 at a retention
ment allocation.



Table 2 Overview of the observed peptides (blue) and impurities (purple).
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Table 2. (continued )

1Purity assigned based on UV chromatogram with internal normalization to the most abundant peak.
2The peptide C1VFSLFKKC9N (disulfide bond between C1 and C9) was the most abundant peak and was not the desired sequence.
3Structural deviations are defined as follows: (a) Chemical modifications of an amino acid are depicted in between brackets following the modified
amino acid; (b) X signals a “semi-identified” impurity with already part of the peptide sequence allocated in the MS2 fragmentation pattern.
4Solely observed in UV spectrum, no signal in TIC.
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given: ILSGAPCIPPPP is a related impurity of peptide ID121 and
lacks the C-terminal Trp residue, but is characterized by 3
additional Pro residues at the C-terminus.

In total, 84 impurities (Table 2) were observed and 73% could
be assigned a structure related to the requested peptide by means
of MS2. Analysis of these identified impurities revealed a high
abundance of impurities with at least one deletion (i.e. in 74% of
all identified impurities is involved) (Fig. 9). Inappropriate deletion
of blocking groups during synthesis results in such sequences,
thereby lacking at least 1 amino acid [20,44]. A minority of the
observed peptide impurities were characterized by the incorpora-
tion of additional amino acids. During synthesis, an excess of
amino acid equivalents used to assure a maximum coupling
efficiency might result in the incorporation of additional amino
acids [20,45]. Impurities can also be a combination of alteration
types, e.g. one or more desired amino acid(s) might be missing at
the N-terminus whilst at the C-terminus additional amino acid(s)
are incorporated.



Fig. 9 Types of related peptide impurities found in the 61 experimentally determined sequences.
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4. Conclusions

In conclusion, “purified” synthetic peptides still contain a con-
siderable amount and wide variety of related impurities, with
peptides missing amino acid(s) being the most prominent. As a
consequence, a thorough in-house quality characterization of
peptides, already used in basic biomedical research, is mandatory.
Remarkably, there is a large discrepancy between the certificates
of analysis provided by the suppliers and the in-house quality
control, which can at least partly be explained by the methods
used. Finally, researchers should also be aware that the main peak
observed in the chromatogram might be an impurity instead of the
requested peptide; hence MS is requested in this QC.
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