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The importance of digestion and gut health has been recognized since ancient times through ideas
coined by Aristotle, the father of modern medicine. The role of gut microbes in digestion, however,
was not truly unveiled until the use of germfree animals in the middle of the twentieth century
(Reyniers et al., 1946). Introduction of single microbes, or defined assemblages of microbes to
germfree hosts, enabled the first detailed studies on how gut microbes can be related to health
and disease (Reyniers and Sacksteder, 1958). Early breakthrough discoveries showed that microbes
can harvest energy from compounds for which the host lacks the enzymatic machinery needed to
degrade them, with microbiota derived short chain fatty acids being an important energy source
for many animals (Bergman, 1990). It has also been shown that the gut microbiota can induce their
own nutrient production from the host epithelial cells (Bry et al., 1996). Taken together, these early
discoveries highlight the mutualistic relation between gut microorganisms and the host.

Through the introduction of new culturing and new analytical approaches, in particular second
and third generation sequencing, we have made major breakthrough advancements during the
twenty-first century in the understanding of the role of microbes in our gut (Rodríguez et al., 2015).
The most compelling discoveries perhaps relate to the findings that gut microbes can affect our
mood and behavior (Bravo et al., 2011; Naseribafrouei et al., 2014), are an essential component
of immunological imprinting during infancy (Olin et al., 2018), and influence non-communicable
diseases (Zhao et al., 2018).

Although new technologies have enabled deeper and more detailed insight into aspects of
host-microbe associations, these associations mainly represent snapshots in time and space.
Fundamental knowledge such as generation time of microbes and flux of metabolites across
the gut remains largely unknown. We also still lack fundamental knowledge about the ecology
of the gut associated bacteria and the interplay with host. Finally, we have limited knowledge
related to the mobile genetic elements in the gut microbiota. Determining such parameters will
be crucial for mechanistic understanding of microbes in our gut, and ultimately in deriving causal
mechanistic models.

In this grand challenge description, we will highlight some of these fields where we believe we
still have major knowledge gaps that need to be filled in the future.

HOST MICROBE INTERACTIONS

Perhaps the most well-established host association of the gut microbiota relates to the dependence
of colonocytes on butyrate produced by the gut microbiota. In addition to being an important
energy source, butyrate has a major role in immune modulation (Furusawa et al., 2013). A
particularly important aspect is the timing of the establishment of butyrate producing gut
microbiota during infancy (Nilsen et al., 2020). An aspect that needs further attention in the future
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is the interplay between metabolite production and
developmental processes (Cait et al., 2019; Jena et al., 2020).

Recent theories suggest that we should treat the host and
the microbiome as a single unit (Postler and Ghosh, 2017).
However, there seems to be a weak link between gut microbiota
composition and host genetics (Dvergedal et al., 2020, Rothschild
et al., 2018), implying that host genetic factors may not play
a major role in shaping the gut microbiota composition. A
major contributor to lack of heritability is epigenetic factors
(Sharma et al., 2020). Thus, we believe epigenetic associations
will be an important field for future gut microbiota research.
The genetic and epigenetic association with the gut microbiota,
however, is a field still in development (Sandoval-Motta
et al., 2017), with several likely breakthrough discoveries in
the future.

HOST MICROBE COEVOLUTION

Since the emergence of vertebrates, there has been an intimate
coevolution between the vertebrate host and the microorganisms
living in the gut, with microorganisms providing essential
functions to the host. A particularly compelling question
is to what extent gut microbially provided functions can
contribute to vertebrate speciation (Moeller and Sanders, 2020).
We therefore believe further investigations should be focused
on unraveling detailed coevolutionary patterns between the
host and gut associated microbes. We also believe identifying
mechanisms for coevolution will be of key importance in
the future.

UNDERSTANDING FLUX RATES OF GUT

MICROBIOTA DERIVED METABOLITES

A main knowledge gap relates to the flux rates of microbiota
derived metabolites in the gut, in particular related to short chain
fatty acids (SCFAs). Since most of the SCFAs are immediately
absorbed, and also partly metabolized by the gut, the true
production rate is very difficult to estimate (Bergman, 1990).
Despite limited knowledge about fluxes, SCFAs have been related
to a range of important health states (Parada Venegas et al.,
2019; He et al., 2020). With future development of metabolic
tracers and in vivo measurements, we foresee that detailed flux
measurements will aid in increasing our mechanistic knowledge
in understanding the role of gut microbiota derived metabolites
in health and disease.

ECOLOGICAL PRINCIPLES IN THE GUT

Gut microbiome is not the “-ome of all microbial genes” but
the “biome of all microbes” living in the human gut. As a
microbial ecosystem, microbiome is a complex adaptive system
in which the most basic building blocks organize themselves into
a higher-level structure that may work together to contribute
to community level emergent functions relevant to host health.
We need more fundamental knowledge about the ecological
principles in host-microbe interactions in the gut. Still, the

question of whether the gut microbiota is mainly controlled
by bacterial-bacterial interactions or by top-down interactions
by the host remains unresolved (Ley et al., 2006). In particular,
the extent of positive selection in the gut, as exemplified by
the human milk oligosaccharides and sugar induction from gut
epithelial cells, needs more attention (Avershina and Rudi, 2013).
We also need more knowledge on transmission and assemblage
of the gut microbiota at host population level. This knowledge
is particularly important with respect to fragmentation of
ecosystems and in the implementation of hygiene barriers. In
human and other populations we risk eradicating important
microbes that serve essential functions in the gut (Wibowo et al.,
2021). Furthermore, we need to understand causality of the
ecological interactions for the microorganisms in the gut (Wu
et al., 2021).We believe future research should be targeted toward
how we can integrate our lifestyle with the ecological processes of
the gut.

RESERVOIR FOR ANTIBIOTIC

RESISTANCE

If no actions are taken, antibiotic resistant bacteria are estimated
to kill more people than cancer in 2050 (de Kraker et al., 2016).
The commensal gut microbiota of human and animals represent
a major reservoir of antibiotic resistant microbes (Anthony et al.,
2020). In particular, the use of antibiotics as growth promoters
in food producing animals has been a major cause of spread
of antibiotic resistance (Aarestrup, 2012). Despite the fact that
antibiotic usage for animal growth promotion has been banned
in several countries for many years, antibiotic resistance is still
persistent. A possible explanation could be the presence of
selfish mobile genetic elements within the gut microbiota (Ravi
et al., 2015). These elements can transmit resistance, even in
the absence of antibiotic selection (Hagbo et al., 2019). A field
that deserves future investigation is the role of the commensal
gut microbiota mobilome in the persistence and spread of
antibiotic resistance.

CULTURING THE UNCULTURABLE

Culturing of microorganisms is essential to determine
mechanistical associations and causality in the gut (Zhao
and Zhao, 2021). For the human gut microbiota, there has been
major advances in culturing approaches. In particular, culturing
techniques have opened the possibility to analyze the strictly
anaerobic microbes (Lewis et al., 2020).

A particularly fruitful approach has been to use culture
independent approaches to identify key properties that will
enable culturing (Nayfach et al., 2019). For the human
microbiome we are therefore at a stage where we have developed
a comprehensive understanding of most of the genomes in
the human gut (Hiseni et al., 2021). In the future, we think
that the lessons learned for culturing of human gut microbes
should also be expanded to other vertebrates in order to develop
a comprehensive understanding of the microbes living in the
vertebrate gut.
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MECHANISTIC MODELS

The ultimate goal will be to build mechanistic models for how
the gut microbiota interact with the host. For the human gut,
the first genome scale metabolic models have already been
developed (Magnúsdóttir et al., 2016), with the development of
a comprehensive database in relation to nutrition and disease
(Noronha et al., 2019). Based on this information, mechanistic
ecological models have also been derived in order to explain the
colonization of the human infant gut (Angell and Rudi, 2020).
There are also recent developments in spatio-temporal models
of the gut microbiota (Dukovski et al., 2020), which we foresee
will be of major importance in the future for a true mechanistic
understanding of the vertebrate gut microbiota.

STANDARDIZATION OF QUALITY

CONTROL MEASURES FOR MICROBIOME

STUDIES

Huge amounts of microbiome data are being generated from
large scale microbiome projects as well as from hundreds of
research groups who are moving into the microbiome field. It
becomes urgent to ensure that all the microbiome datasets are
generated according to the same quality control (QC) standards
so that they can be compared and integrated, which can lead
to novel global insights and findings. A few projects have been
conducted to develop standardized protocols for microbiome
analysis. However, many questions and challenges remain. For
sample collection, most projects use stool collection kits that rely
on a fixation buffer to inactivate microbes and prevent them from
further growth. However, it is very rare for both kit developers
and their users to test the kits with microbiological methods
to ensure that no microbial cells will survive/grow inside the
fixation buffer during the handling time at room temperature.
The field needs to establish a QC protocol that combines a
plate count method to assess cell survival/growth in the kit
and DNA/RNA sequencing to assess changes of microbiota
composition and gene expression pattern for evaluation and
selection of stool collection kits for microbiome projects. For
nucleic acid extraction, each stool sample has a different ratio
of Gram-positive cells that are difficult to lyse. Current cell
lysing protocols for microbiome analysis usually apply the same
protocol to all stool samples without providing vigorous QC tests
to determine whether all types of cells in different stools can be
lysed to ensure a high and consistent DNA/RNA recovery rate.
Such QC data is needed before a DNA/RNA extraction protocol
is adopted for a microbiome project. For large scale microbiome

projects in which samples need to be sequenced inmany different
runs, the same set of reference stool samples should be repeatedly
sequenced in each sequencing batch. A set of stool samples
that show both individual variations and responses to relevant
interventions in their microbiome datasets can be selected as the
reference stool samples to detect, assess and remove batch effect
if they are sequenced in each and every sequencing run for the
same project and ideally also for different projects. Microbiome
projects should be designed and conducted as discovery science
projects. If microbiome analyses rely exclusively on databases to
assign taxa or gene functions, the unclassified or unannotated
part of the dataset will be excluded from the following analysis,
which limits the findings to what is already known. To make true
discoveries, the field should develop reference-free and database-
independent analytical methods for microbiome datasets.

CONCLUDING REMARK

Vertebrate microbiota represents a burgeoning field which not
only may provide new answers to many basic questions such as
co-evolution as a fundamental mechanism for speciation, but also
may bring new insights on managing the health of Humans and
our Earth Planet. The topics highlighted here do not represent
a comprehensive list of potential research targets for the future.
In particular, we believe the field will diversify with respect to
new host organisms outside those commonly investigated. We
believe the future will not just belong to the Centers for Big
Microbiome Science, but also individual labs with targeted niches
within the field of the vertebrate gut microbiota. For individual
labs to make an impact in this data-driven field, we would like
to encourage the development and adoption of minimum quality
control standards for study design, data collection and analysis in
this Section. Such a new methodological framework will ensure
that data generated from Big Centers and small labs on various
vertebrate microbiota can all be integrated for generating a new
global view on microbiome and health.
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