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Haemodynamic predisposition to acute kidney injury: Shadow 
and light!
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Introduction

“The eye is always caught by light, but shadows have 
more to say.” We commence our review on this clinically 
pertinent topic with a succinct quote of renowned American 
novelist, Gregory Maguire, in our endeavour to unveil 
a holistic haemodynamic predisposition to acute kidney 
injury (AKI) in the times witnessing a paradigm shift 

from a pressure‑centric to a perfusion‑centric management 
approach.

AKI occurs in 5‑7.5% of the hospitalized patients 
with the incidence reaching up to 12% following major 
operative procedures, and 20% in the critically ill patients 
in the intensive care unit (ICU) setting.[1‑5] Although the 
incidence of postoperative AKI is greatly influenced by the 
underlying operative procedure and the classification system 
employed (RIFLE criterion and the staging established by Address for correspondence: Dr. Ashok Kumar Saxena, 
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Acute kidney injury (AKI) could well be regarded as a sentinel complication given it is relatively common and associated with 
a substantial risk of subsequent morbidity and mortality. On the aegis of ‘prevention is better than cure’, there has been a wide 
interest in evaluating haemodynamic predisposition to AKI so as to provide a favourable renoprotective haemodynamic milieu 
to the subset of patients presenting a significant risk of developing AKI. In this context, the last decade has witnessed a series of 
evaluation of the hypotension value and duration cut‑offs associated with risk of AKI across diverse non‑operative and operative 
settings. Nevertheless, a holistic comprehension of the haemodynamic predisposition to AKI has been a laggard with only few 
reports highlighting the potential of elevated central venous pressure, intra‑abdominal hypertension and high mean airway 
pressures in considerably attenuating the effective renal perfusion, particularly in scenarios where kidneys are highly sensitive 
to any untoward elevation in the afterload. Despite the inherent autoregulatory mechanisms, the effective renal perfusion 
pressure (RPP) can be modulated by a number of haemodynamic factors in addition to mean arterial pressure (MAP) as the 
escalation of renal interstitial pressure, in particular hampers kidney perfusion which in itself is a dynamic interplay of a number 
of innate pressures. The present article aims to review the subject of haemodynamic predisposition to AKI centralising the focus 
on effective RPP (over and above the conventional ‘tunnel‑vision’ for MAP) and discuss the relevant literature accumulating in 
this area of ever‑growing clinical interest
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the Acute Dialysis Quality Initiative (ADQI) and Acute 
Kidney Injury Network (AKIN)),[6‑8] certain predisposed 
settings such as cardiac surgery associated‑AKI (CSA‑AKI) 
are associated with 5‑42% AKI incidence, representing a 
significant cause of AKI in the ICU, second only to sepsis.[9‑11]

The Table 1 summarizes the predispositions to a heightened risk 
of AKI. The development of AKI is independently associated 
with adverse clinical outcomes, including an elevated mortality 
rate (escalates ICU‑mortality by 50‑60%) and contributes to 
an enhanced progression to chronic kidney disease, duration of 
ICU stays and thereby, imposes a huge burden and unrealistic 
challenge on the health care infrastructure.[1,12,13]

Search Strategies

The non‑systematic review was planned after comprehensive 
analysis of the literature from textbooks, journals, internet resources 
using keywords “Acute kidney injury”, “haemodynamic”, 
“congestive renal failure”, “central venous pressure”, “effective 
renal perfusion pressure”, “mean perfusion pressure”, “diastolic 
perfusion pressure”, and “mean arterial pressure”. The filters 
were case reports, clinical trials, controlled trials, randomised 
control trials, observational study and text articles using search 
engines such as PubMed, EMBASE, Medscape, Google 
Scholar Medline Scopus, Science Direct and many others.

Risk modulation: The Pivotal Role of 
Haemodynamics....

Despite ongoing improvements in perioperative care, AKI 
continues to present a steady management concern to the 
physicians leading to the requirement of renal replacement 
therapy (RRT) in severe AKI and an attributable eight‑fold 
escalation in the odds of mortality.[14] Considering a wide 

gamut of potential perioperative ischaemic renal insults, there 
is an ever‑increasing focus on the risk‑factor identification and 
favourable management modulation as the cornerstone of AKI 
management.[15]

In this context, a range of research reports on the association 
of intraoperative hypotensive episodes with postoperative 
renal insult following cardiac and non‑cardiac surgical, and 
other critically ill cohort have promoted the interest of the 
fraternity in evaluating haemodynamic optimization as a 
potentially modifiable AKI risk factor.[5,16‑21] The specific 
associations of the hypotensive epochs with Kidney Disease 
Improving Global Outcomes (KDIGO) stage I injury are 
presented in Table 2.[5,16‑21]A very recent description of 
post‑cardiopulmonary bypass mean arterial pressure (MAP) 
<65 mmHg for ≥10 minutes entailing a heightened risk of 
de novo RRT in the postoperative period in a retrospective 
single‑centre cohort study involving 6,523 patients by Ngu 
et al.,[22] adds to the aforementioned literature on the pivotal 
role of haemodynamics in modulating the involved AKI risk.

Renal Perfusion Pressure (RPP):The 
Concept

Akin to the cerebral perfusion and myocardial perfusion 
dynamics,[23]wherein there is a pressure head promoting 
the downstream perfusion (MAP in the case of cerebral 
perfusion and diastolic arterial pressure (DAP), in the 
case of myocardium) and a pressure head impeding the 
net perfusion (intracranial pressure in the case of cerebral 
perfusion and left‑ventricular end‑diastolic pressure, in the 
case of myocardium), the mere assurance of a sufficient 
MAP cannot ensure an adequate renal perfusion. Lack 
of acknowledgement to the pressure forces which impede 
renal perfusion has led to the subsequent underemphasized 

Table 1: The Subset of Patients Predisposed to Acute Kidney Injury

Pre‑existing co‑morbidities (advanced age, DM, HT, CKD, anaemia, PVD, major atherosclerotic disease) or contrast‑enhanced preoperative 
investigations
Post‑major non‑cardiac surgery (particularly, major vascular surgeries or transplantation procedure with major intraoperative hypotension, 
significant fluid shifts, massive blood and blood product transfusion, intravascular haemolysis due to mismatched blood transfusion, etc.)
Critically ill hypotensive patients on vasopressor support
Septic shock
Post‑cardiac surgery (extracorporeal circulation, embolic phenomenon, haemodilution, etc.)
Congestive cardiac failure (Left, right or biventricular heart failure)
Cardio‑renal syndrome
Acute respiratory distress syndrome
Hypovolemic shock
Cardiogenic shock
Perioperative myocardial infarction
Abdominal compartment syndrome
Mechanical circulatory assistance (ECMO, IABP, VAD)
Nephrotoxic drugs
CKD: chronic kidney disease; DM: diabetes mellitus; HT: hypertension; PVD: peripheral vascular disease; ECMO: extracorporeal membrane oxygenation; IABP: 
intra‑aortic balloon pump; VAD: ventricular assist device
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concept of the renal perfusion pressure (RPP). Moreover, 
kidney being an intra‑capsular organ, the combination of the 
underlying intra‑capsular and extra‑capsular forces present a 
potential threat to renoprotection by compromising RPP, and 
simultaneously mitigation of these also provide an opportunity 
to improve renal outcomes in addition to the conventional 
notion of optimizing volume status in order to augment cardiac 
output to ensure the adequacy of renal perfusion.[24]

Factors Affecting an Effective RPP: As 
‘Effective’ is ‘Important’!

From a conceptual point of view, effective RPP is intricately 
determined by the net resultant of the forces between the 
MAP or renal arterial pressure (particularly in situation 
of impaired renal autoregulation) and, transmitted renal 
venous pressure (RVP) (estimated by central venous 
pressure (CVP)), intra‑abdominal pressure (IAP) as well 
as mean airway pressures generated owing to mechanical 
ventilation [Figure 1]. The importance of the later variables 
in collectively contributing to an elevated renal interstitial 
pressure becomes all the more important in the critically ill 
subset of patients. Nevertheless, the interdependency between 
the variables compounds the situation in most practical 
scenarios.

The first experimental human study aimed at deciphering the 
role of these forces impeding renal perfusion, was contemplated 
in 1947 by Bradley and Bradley, wherein the creation of a 
70‑80mmHg pressure inside a balloon surrounding the 
healthy volunteer’s abdomen, resulted in an IAP of around 
20 mmHg.[25] The setting escalated the RVP to 18‑20 mmHg 
from the initial normal value of 5‑6 mmHg without affecting 
the arterial blood pressure. Thereby, the renal plasma 
flow (RPF) and glomerular filtration rate (GFR) declined 
by 24.4% and 27.5%, respectively, subsequent to the venous 
stasis.[25]A few years later, Maxwell and colleagues outlined 
a significant rise in RVP to almost 20 mmHg in patients of 
congestive cardiac failure (CCF). They revealed that these 
patients were characterized by a 2/3rd diminution of RPF 
and a 1/3rd attenuation of the filtration rate compared to their 
healthy counterparts.[26] Patients with pulmonary hypertension 
with high baseline CVP values, awaiting lung transplantation 
and a large cohort of cardiac disease subjects also depicted a 
declined GFR in respective independent studies.[27,28]

Adding over and above the intra‑capsular forces, IAP 
constitutes an extra‑capsular pressure from the renal 
standpoint, which potentially influences the renal interstitial 
pressure. The renowned World Society of the Abdominal 
Compartment Syndrome (WSACS) proposes the subtraction 

of IAP from MAP to estimate the abdominal perfusion 
pressure (APP) which is often employed as the surrogate 
for adequacy of the renal perfusion.[24] The grading of 
intra‑abdominal hypertension (IAH) is outlined in Table 3. 
In circumstances wherein IAP exceeds 20 mmHg with 
APP declining below 60 mmHg, abdominal compartment 
syndrome is diagnosed with the imminent risk of organ 
dysfunction, particularly the kidneys.[24,29] Similarly, Moore 
et al.,[30] demonstrated the sensitivity of the renal blood 
flow to positive‑pressure ventilation in infant primates 
whose renal dynamics were strikingly similar to those of 
the humans.

While the importance of renal haemodynamicsin the 
AKI‑pathophysiology cannot be undermined yet on an 
optimistic note, most of the basic sciences explorations and the 
clinical investigations reflect an elevated oxygen‑extraction and 
consumption in settings of AKI despite diminished GFR and 
tubular reabsorptive load.[31]However, relying on the former 
can be perilous in certain peculiarly predisposed subset like the 
diabetic counterparts where renal hypoxia is seen to exist.[32]

Relevant  L i tera ture :  Beyond  a 
‘Tunnel-vision’ for MAP

(i) Role of CVP in predicting AKI in the critically ill
 A recent 2020 meta‑analysis by Chen et al.,[33] including 

15 cohort studies with a characteristically broad spectrum 
inclusion of critically ill (predominantly septic and 
certain post‑cardiac surgical subset) revealed that an 
elevated CVP is associated with a heightened risk of 
‘congestive renal failure’ and mortality in ICU patients. 

Figure 1: The illustration depicting the dynamic interplay of innate pressures 
in determining the effective renal perfusion pressure (RPP) wherein, the shaded 
parts of the figure represent the relatively under‑emphasized areas in the context 
of haemodynamic predisposition to AKI. (CCF: congestive cardiac failure; CVP: 
central venous pressure; IAP: intra‑abdominal pressure; Pmean: mean airway 
pressures; MAP: mean arterial pressure; PAH: pulmonary artery hypertension)
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On a dichotomous scale, elevation in CVP entailed 
an augmented mortality risk (969 participants from 3 
studies; odds ratio of 1.65) and AKI (689 participants 
from 2 studies; odds ratio of 2.09). Whereas, on a 
continuous scale, escalated CVP accounted for a 
greater mortality risk (7837 participants from 5 studies; 
odds ratio of 1.10) and AKI (5446 participants from 
6 studies; odds ratio of 1.14). In addition, for every 
1 mmHg increase in CVP, the odds of AKI increased 
by 6% (5150 participants from 4 studies; odds ratio of 
1.06).[33]Interestingly, a popular study by Palomba and 
colleagues (included in the aforementioned meta‑analysis) 
aimed at developing the ‘Acute Kidney Injury in Cardiac 
Surgery’ (AKICS) score adequately outlined that the 
risk of AKI increases to 2‑fold once the postoperative 
CVP reaches a threshold value of 14 mmHg across the 
cardiac surgical population.[34,35]

 Moreover, independent researchers have also revealed 
a significant association of the estimated CVP at 6 h 
postoperatively to CSA‑AKI even in the non‑chronically 
congested cardiac surgical subset.[35‑37]A retrospective 
evaluation of a considerably large database (n = 9,090 
following exclusions) coined as Multi‑parameter Intelligent 
Monitoring in Intensive Care (MIMIC‑III) delineated 
an elevated 28‑day mortality in participants with 
CVP > 10 mmHg in the first 72 ICU hours.[38] Despite 
the elucidation of the importance of the role of CVP in 
determining renal outcomes, a number of recent studies 
evaluating hypotensive predisposition to AKI connote 
a definite ‘tunnel‑vision’ by not accounting for the 
perioperative CVP values. A representative example 
of the abovementioned is the previously described 
study by Ngu et al.,[22] wherein as high as 245 out of 
336 patients (72.9%) requiring RRT in their study 

underwent combined valvular procedures, where systemic 
venous congestion is a peculiar postoperative feature 
particularly in scenarios compounded by right heart 
dysfunction.

(ii) Role of novel perfusion pressure parameters as compared 
to MAP

 A remarkably interesting set of studies have endeavoured 
to evaluate the deficits in the novel perfusion parameters 
such as mean perfusion pressure (MPP = MAP‑CVP) 
and diastolic perfusion pressure (DPP = DAP‑CVP), 
in comparison to the MAP deficits in predicting the 
progression to AKI.[39‑41]An observational study by 
Legrand et al.,[42] depicted that a lower DAP and a 
higher CVP are more closely associated to septic AKI 
in comparison to the MAP.Another observational study 
outlined the association of a decreased MPP with AKI 
while MAP failed to demonstrate such an association, 
strengthening the role of CVP in predicting septic AKI 
furthermore.[39]In addition, a recent post‑cardiovascular 
surgical evaluation by Saito et al.,[40] revealed a significant 
association between decreased MPP, DAP and 
DPP (and not MAP) with CSA‑AKI in vasopressor 
dependent patients. The decline in DPP resulted 
owing to the elevation of CVP in 23.8% of the study 
subjects and was contributed by a diminished DAP in 
the rest 76.2%.Jin and colleagues also highlighted the 
independent association of the postoperative nadir DPP 
with CSA‑AKI ahead of MAP in their retrospective 
analysis of 300 surgical patients.[41]

(iii) Role of IAP and mechanical ventilation in predicting 
AKI

 A range of perioperative studies have employed APP 
as a surrogate for RPP.[29,43]Demarchiet al.,[44] outlined 
the importance of IAP in predicting postoperative AKI 
following abdominal surgeries.The incidence of IAH in 
the first 72 ICU hours in setting of septic shock has also 
been demonstrated to be associated with an escalated 
risk of AKI.[45]With regards to the effect of the positive 
pressure ventilation on AKI, a retrospective cohort study 
by Tojo and colleagues outlined that an intraoperative 
low tidal volume ventilation is associated with a reduced 
incidence of AKI following cardiovascular surgery.[46]Out 
of the 338 included participants, a total of 105 study 
participants developed postoperative AKI. In the patients 
stratified to receive <7, 7‑8, 8‑9, and >9 mL/kg 
predicted body weight (PBW) mean tidal volume, the 
cumulative AKI incidence was discovered to be 12.8%, 
29.9%, 38.7%, and 34.5%, respectively.[46]Argalious 
et al.,[47] also revealed an estimated AKI odds ratio of 
1.05 (confidence interval: 1.02‑1.08, P = 0.001) for 
every mL increase in the tidal volume per kilogram PBW 

Table 2: The associations of the hypotensive epochs with 
Kidney Disease Improving Global Outcomes (KDIGO) 
stage I injury.[5,16‑21]

MAP <55 mmHg for 1‑5 minutes
MAP <60 for >10 min
MAP <65 for 10‑20 min, or
Relative	MAP	decrease	>20%	from	baseline	value	for	≥90	min

Table 3: Grading of Intra‑Abdominal Hypertension 
(IAH).[24,29]

Severity Intra‑Abdominal Pressure
Grade I 12‑15 mmHg
Grade II 16‑20 mmHg
Grade III 21‑25 mmHg
Grade IV >25 mmHg
Grade I 12‑15 mmHg
Any evidence of ongoing IAH with end‑organ failure is defined as abdominal 
compartment syndrome
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in their very recent evaluation of the association between 
the intraoperative tidal volumes and AKI.Moreover, a 
recent evaluation of a large cohort of ICU patients from 
theMIMIC‑III database outlined a strong relationship 
between mechanical ventilatory settings and worsening 
of the renal function. Interestingly, this relationship was 
intricately linked to the renal venous congestion emanating 
as a result of the underlying cardio‑pulmonary‑renal 
interaction.[48]

Practical considerations and the future 
directions

Despite the elaboration upon the concept, importance and 
the factors regulating RPP, there is a dearth of literature on 
the practical application of the effective RPP in the context 
of AKI.[49,50]Kopitkó and colleagues are credited for their 
evaluation of the collaborative value of haemodynamics, IAP 
and mean airway pressure (Pmean) monitoring in predicting 
AKI in the first 12 hours following major abdominal surgery 
wherein a neoteric formula for the effective RPP being 
equivalent to MAP‑ (CVP + IAP + Pmean) was employed 
by the research group.[49]In a cohort of 84 patients, the group 
discovered significant RPP differences between the AKI and 
the non‑AKI groups at 12 h post‑ICU admission (median and 
interquartile range: 40 (36‑52) v/s 57 (42‑64); P < 0.05). 
Below the median RPP value of 40.7 mmHg, postoperative 
AKI developed in all the study patients.[49]The same group 
of researchers compared the AKI predictive value of a 
range of permutation for the RPP formulas wherein, the 
aforementioned formula [MAP‑ (CVP + IAP + Pmean)]
revealed the highest sensitivity and specificity.[50]

Although the effective RPP computed using this formula 
can be monitored continuously, enabling timely optimization 
of the haemodynamic therapies and mechanical ventilation, 
the predictive value requires additional validation in more 
diverse and larger subset of the patient populations.[50]In 
addition, the suitability of the formula in predicting the renal 
recovery following the initiation of RRT, (either in the setting 
of conventional haemodialysis or continuous RRT) and the 
value of the computed effective RPP in the de‑resuscitative 
phase of septic shock remain to be established.

While the relevance of the venous circulation to the overall renal 
perfusion dynamics continues to be increasingly recognised, 
novel imaging parameters such as a renal ultrasound based 
evaluation of the venous impedance index (VVI = maximum 
velocity − minimum velocity/maximum velocity, described 
initially in CCF) can provide exciting future avenues given 
the renal veins portray a high capacitance with pulsations 

synchronous with the phases of respiration and the right atrial 
contraction.[24,51]

Conclusion

To conclude, the renal haemodynamics and optimum 
oxygenation play an important role in the genesis of AKI, 
albeit the concept of effective RPP is underemphasized in 
the existing literature which continues to simplistically provide 
magical cut‑offs of MAP values and duration in predicting 
AKI. Not only the heterogeneous settings confound the 
extrapolation of these MAP cut‑offs [52], the interplay of 
other innate pressures such as CVP, IAP and Pmean can also 
significantly alter renal perfusion in the critically ill. Therefore, 
an individualized haemodynamic optimization aimed at 
favourably modulating the effective RPP,[53‑55] in order to 
minimize the overall AKI incidence, is certainly the need of the 
hour, particularly pertinent in this era of precision medicine.
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