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ABSTRACT

Acute physical exercise works as an activator of the responses of the human organism
to stress. This is based on the activation of the hypothalamic-pituitary—adrenal
(HPA) axis, affecting physical, physiological and psychological levels. This study
aimed to analyse the effects of a single bout of high-intensity resistance exercise on
cognitive-behavioural responses: visuo-spatial path learning and memory, as well as
physiological responses (salivary cortisol levels). Nineteen healthy male military-
trained powerlifting subjects were tested in a within-subject design on two
experimental days with an interval of 48 h. The stress and cognitive variables were
measured by cortisol levels and Ruff-Light trail-learning test (RULIT) test scores,
respectively. The results showed the immediate influence of acute exercise on
cortisol, with significantly higher cortisol levels found in subjects after completion of
the acute resistance exercise. In addition, this study found a significant deterioration
of memory and learning ability after a dose of intense resistance exercise.

In conclusion, the study highlights the relative effects of resistance exercise on
cortisol and cognitive performance depending on the intensity and type of the
exercise, the moment of measurement and the cerebral areas implicated.

Subjects Kinesiology, Psychiatry and Psychology, Biomechanics
Keywords Acute exercise, Cortisol, Cognitive performance, Memory, Learning

INTRODUCTION

Recently, most research on the effects of physical exercise has focused on the adult
population and the effect of physical activity on slowing down the ageing process, physical
abilities (e.g. muscular strength) and/or cognitive functions (e.g. learning and memory)
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since a lack of physical exercise is associated with disability and decreased life-span,
considerably affecting quality of life in the elderly (Murray et al., 2013; Herold et al., 2019).

The ability to orient oneself with maps or by recognising features in the environment is
an important mental activity in daily life that underlies both cognition and behaviour
(Taverniers et al., 2011). Moreover, it gains practical salience in occupations like the
military, police and emergency services, for whose employees path learning and
wayfinding under intense stress are commonly required skills with a profound operational
effect (Branaghan et al., 2010).

Attempts have been made to establish the effects of physical exercise, whether
chronic or acute, on various factors, such as sleep, mental health, physiological variables
(e.g. glucose absorption) or cognitive variables (e.g. memory or learning; Esteves et al.,
2009; Anderson & Shivakumar, 2013; Hotting & Roder, 2013; Rohling et al., 2016).

In relation to physical exercise and its effects on cognition, it is possible to distinguish
between those effects induced by specific physical exercise after a single session and those
based on chronic adaptation. Acute exercise has reversible short-term effects on the
cognitive system (Chang et al., 2012; McMorris et al., 2009). By contrast, those activities
planned through structured training programmes tend to have more lasting effects on
different brain structures and functions (Chaddock et al., 2011; Erickson et al., 2011).

Results from studies on the effects of high-intensity (acute) exercise on cognition vary;
different studies have shown that performance improves (Bermejo et al., 2018), does not
change (Mierau et al., 2014), declines (Moore et al., 2012) or may even reverse into an
impairment when exercise is prolonged and/or the individual reaches exhaustion
(Sudo et al., 2017).

Recent work (Roig et al., 2016; Loprinzi et al., 2018; Haynes et al., 2019) demonstrates
that acute aerobic exercise can enhance short- and long-term episodic memory function, as
well as semantic memory (Smith et al., 2013). In this sense, most of these studies have
examined the effects of aerobic exercise, although it has been shown that acute resistance
exercise may also enhance cognition, particularly inhibitory control (Soga et al., 2018), but
more research is needed on this exercise modality (Loprinzi, Loenneke ¢ Storm, 2021).

Although both aerobic and resistance exercise have been shown to favourably influence
cerebral blood flow and neurogenesis (Loprinzi et al., 2020), resistance exercise differs from
aerobic exercise in its physiological demands (e.g. cardiovascular, musculoskeletal,
metabolic; Fletcher et al., 2013) and influencing mechanisms in cognitive processes (e.g.
structural brain changes, increased neural excitability; Loprinzi et al., 2020), which may
have a contrary effect on its cognitive effects.

Some of these differential mechanisms are suggested in a review by Loprinzi et al.
(2020), while aerobic exercise increases hippocampal levels of brain-derived neurotrophic
factor (BDNF) and Tropomyosin receptor kinase B (TrkB), protein kinases and
glutamatergic proteins. In addition, resistance exercise supports a reduction in IL-6
(Interleukin-6), which inhibits N-Methyl-D-aspartate (NMDA) activity. Moreover, the
increased IGF-1 (insulin-like growth factor 1) production is one of the most important
hormones for growth and development in humans (Sonntag, Ramsey ¢ Carter, 2005) and
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a recognised candidate factor that specifically connects resistance-exercise training and
cognition (Chang et al., 2011).

Regarding the relationship of resistance exercise and cognitive functions, we must
mention one of the most notable known hypotheses: “common cause hypothesis,” which
proposes that cognition and muscle strength may share brain regions and networks
(Christensen et al., 2001). This would mean that a bout of acute resistance exercise could
affect cognitive functions (Kim et al., 2018; Liu et al., 2019). The limited literature that has
examined the effects of a bout of acute resistance training has found contradictory results.
Most of these studies claim that acute resistance exercise has no effect on memory
(Weinberg et al., 2014; Loprinzi, Loenneke ¢ Storm, 2021) or that it may impair memory
function (Loprinzi et al., 2020).

All things considered, the aforementioned studies point to exercise intensity (high or
moderate) as an important factor in the exercise-cognition relationship (Tomporowski,
2003). This diversity of results does not necessarily challenge the assumption that there is a
positive relationship between acute exercise and cognition but rather demonstrates that
this relationship is complex and sensitive to multiple factors (Lambourne & Tomporowski,
2010). These factors include exercise intensity (Tomporowski, 2003), physical condition
(Ludyga et al., 2016), gender (Barha et al., 2017), exercise type, time of assessment and the
cognitive task tested (Lambourne ¢ Tomporowski, 2010), among others. In addition,
the time between the cessation of exercise and the evaluation of cognitive functions is
another crucial variable due to the transience of the psychophysiological effects of acute
exercise (Crabbe ¢~ Dishman, 2004).

Several mechanisms resulting from a further increase in the duration (beyond 1 h) of
prolonged exercise, however, such as dehydration or hypoglycaemia, have been linked to
central nervous system fatigue and decreased cognitive performance (Brisswalter,
Collardeau ¢ René, 2002). This is partly due to the fact that acute physical exercise works
as an activator of the human organism’s responses to stress, based on the activation of the
hypothalamic-pituitary-adrenal (HPA) axis, affecting the physical, physiological and
psychological levels (Heijnen et al., 2016) and causing a substantial increase in the
circulating concentrations of cortisol (Kraemer et al., 1999). This increase in circulating
cortisol may be critical to cognitive performance (Almela et al., 2012; Quesada et al., 2012).
In addition, we must bear in mind that most cortisol receptors are found in the
hippocampus, an essential area for learning and memory (Elzinga ¢» Bremner, 2002; Shin
¢ Liberzon, 2010). The relationship between acute stress and cognition, however, may not
always be linear; both high and low levels of circulating glucocorticoids can impair
memory performance compared to more moderate levels (Lupien et al., 2002).

Research has shown that human response to stress, based on the secretion of
glucocorticoids, can modulate learning and memory (by facilitating or impairing them;
Het, Ramlow & Wolf, 2005; Smeets et al., 2008; Wolf, 2009). Most research on acute
physical exercise and its effects has studied protocols based on short or long periods of
aerobic exercise (Bermejo et al., 2019; Chang ¢» Etnier, 2009; Pontifex et al., 2009). Research
examining the effects of acute resistance exercise on cognitive performance, however, is
limited (Chang et al., 2014), and substantially more research is needed to facilitate the
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understanding of whether acute resistance exercise benefits or impairs such performance.
Above all, we know that there are acute hormonal responses to a single bout of heavy
resistance exercise when the intensities of the load cause exhaustion. Moreover, there is an
even greater increase in stress hormones (e.g. cortisol), which can reach a tenfold increase
from the base level, which in turn quickly leads to a state of psychophysical overload
(Lehmann et al., 1980).

In general, these findings may have important implications for exercise prescription
purposes. For example, these implications include the timing of exercise and the duration
of the recovery period to try to optimise cognitive functions (Loprinzi et al., 2020) and in
particular may provide individuals with evidence of the efficacy of other modalities of
exercise, not as well studied, such as, in our case, resistance exercise.

Considering all of the above, the authors hypothesise that cognitive performance
declines after resistance-induced stress when it coincides with peak cortisol. To confirm or
deny this hypothesis, this study aimed to elucidate the effects of a single bout of acute
resistance exercise on cognitive behavioural responses: visuo-spatial path learning and
memory (working memory and delayed recall) and physiological (salivary cortisol levels).

MATERIALS AND METHODS

Participants

To determine the appropriate sample size for this study, a preliminary power analysis was
conducted using the freely available software G*Power 3.1.9 (University of Diisseldorf,
Diisseldorf, Germany). The effect-size calculation was based on recent reviews of acute
stressors and cortisol responses (Dickerson ¢ Kemeny, 2004) and the effect of acute
exercise on cognitive performances (Chang et al., 2012). The optimal sample size of
nineteen participants was calculated by fixing the probability of a type 1 error at an alpha of
0.05 to yield a 0.80 power for an effect size of 0.28. Nineteen healthy male military-trained
powerlifting subjects (mean (SE); age: 32.5 (0.96) years; weight: 78.02 (1.63) kg; height:
175.35 (2.5) cm) were recruited to participate in this study. All subjects were physically
active (at least 5 days/week of physical activity practice), could lift at least 1.5 times their
body weight during the half-squat exercise and had no history of any neurological or
psychiatric diseases, drug abuse or medication intake that might influence their results
(Loprinzi, Loenneke ¢~ Storm, 2021). In addition, the participants were experienced map
readers (12.75 (6.6) years of practice) and were chosen because they were able to repeat the
same cognitive task (e.g. visuo-spatial path learning) in a similar way within two time
periods. The sample was randomly selected from the subjects who met the inclusion
criteria (www.random.org).

The subjects gave their written informed consent before participating in the study.
The protocols used in this research work received ethical clearance from the University of
Valencia’s Ethical Committee (Ref. H1402563451425). These protocols also met the
requirements set out in the Declaration of Helsinki, 1975, subsequently reviewed in 2008.
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Procedure

Participants were tested in a within-subject design on two experimental days with an
interval of 48 h. On day 1, a control condition Ruff-Light trail-learning test (RULIT) was
performed, as well as an incremental load protocol to reach the IRM (one-repetition
maximum) and a force-speed curve in a half-squat position (1IRMHS) to determinate the
Pmax load (the load that maximises power output and which has been shown to elicit
the greatest adaptations in muscular power; Garcia-Ramos et al., 2016). Day 2 consisted
of a squat induced-stress and cognitive task session. To exclude confounding effects
due to circadian cortisol variations (Nicolson, 2008) and circadian peak force rhythm
(Gabriel & Zierath, 2019), all testing took place in the afternoon between 14:00 and
18:00 h.

Before data acquisition, researchers informed the participants of the protocol to be
performed. Participants then gave their consent to join in the study. In this session,
participants were instructed to not take any stimulants less than 24 h before the study
(e.g. coffee).

Day 1: Familiarisation day

After their arrival at the laboratory, participants were fitted with a Polar M400 heart rate
monitor (Polar Electro Ltd., Kempele, Finland). Subsequently, the participants completed
a relaxation phase on a stretcher, and their breath was monitored with a metronome
marking of 40 beats/min for 10 min. Next, participants completed the cognitive task, the
Ruff-Light trail-learning test (RULIT), in order to familiarise themselves with the task.
Immediately afterwards, an incremental load protocol for calculating IRMHS and Pmax
were performed, as previously described in Garcia-Ramos et al. (2016). The kinematic
parameters for each repetition were calculated using a dynamic measurement system
(T-Force System; Ergotech, Murcia, Spain).

Day 2: Experimental day

In Session 2 (48 h after Session 1), all participants were fitted with a heart rate Polar M400
and repeated the relaxation phase. Each participant performed a fatigue protocol: two sets
of half-squats for each of the three loading conditions (Pmax, Pmax —15% and Pmax
+15%) (Garcia-Ramos et al., 2016), totalling six sets. Each set was performed to failure or a
maximum of 20 repetitions. All participants performed the half-squat using these loads
in increasing order from lightest to heaviest, and all repetitions were executed as quickly as
possible. The recovery time between sets of the same load was 1 min and between sets of
different loads was 3 min (Mayhew, Thyfault ¢ Koch, 2005).

During this session, the cognitive performance of the participants was evaluated by the
RULIT to measure learning and memory. Cognitive functions before and after 15 min
of physical stress were evaluated, coinciding with the expected highest cortisol
concentrations (Nicolson, 2008). After completing both cognitive tasks, cortisol (C) was
measured. Figure 1 depicts the experimental setup.
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Figure 1 Description of protocol study. Full-size 4] DOT: 10.7717/peer;j.13000/fig-1

Measures and materials

Saliva sampling and cortisol analysis

During day 2 (the experimental day), four salivary samples were collected according to the
criteria established by Chatterton et al. (1997):

C3 (after participants finished the relaxation phase),

C4 (15 min after the cognitive tasks and before the physical stress exercise),

C5 (15 min after this acute muscle exercise) and

C6 (15 min after completing the cognitive tasks).

On day 1 (the familiarisation day), two salivary samples were collected according to the
same criteria:

o CI (after participants finished the relaxation phase) and
e C2 (15 min after the cognitive tasks).

Saliva samples were taken, and cortisol analysis was performed as previously described
in Bermejo et al. (2019).

Ruff-Light trail-learning test

Visuo-spatial learning and memory were measured with an adapted military version
(Taverniers et al., 2011) of the Ruff-Light trail-learning test (RULIT; Ruff, Light ¢» Parker,
1996). The military-adapted RULIT stimulus card resembled a mock city plan that
simulated reconnaissance in built-up areas. In this activity, the participant is asked to learn
a specific trail by tracing with an index finger from a START circle to an END circle. From
each circle along the way, the person has 2-4 choices for the next circle. At each point
(step) along the trail, the researcher informs the person whether they have made a correct
or incorrect choice. If their choice was correct, the participant can proceed to the next
step; if incorrect, the participant goes back to the previous position on the trail and tries
again until the correct choice is made. Successive trials are given until the respondent has
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gone through the 15-step trail 10 times or until the trail can be recalled without error in
two consecutive trials. For more details, see Taverniers et al. (2011) figure.

The RULIT learning and memory test variables evaluated were (e.g. Ruff, Light ¢
Parker, 1996):

For learning:

(1) total correct scores, trials 2—10: total number of correct steps (of 15 possible) in the nine
trials. Once the task was learned, the 15 steps of each of the unused trials were counted.
(2) total step errors, trials 2-10: total number of erroneous steps in the nine trials.

(3) number of trials to completion: number of trials required to learn the task (9 out of 10

possible). The first trial was not taken into account, as it was the result of chance.
correct scores — errors

4) Performance =
) number of trials to completion

For memory:

(5) Successes followed (working memory): the correct scores followed before and after the
first error, to establish which part of the map route was best memorised and see how the
memorised steps increased (7 + 2, Miller’s magic number; Miller, 1956).

(6) Delayed recall: 15 min after taking the learning test, the participants repeated the test to
evaluate their retention capacity. Memory was evaluated by the number of total correct
score successes until the first mistake in a unique opportunity (just before C4 and C6
sampling).

The participants were each given one of three maps of the same level of difficulty (i.e. the
same number of changes of direction).

Statistical analysis

The statistical analysis was performed using SPSS 21 for Windows (IBM Corporation,
Armonk, NY, USA). First, we applied descriptive statistics to calculate the mean and
median as measures of central tendency and the standard deviation and interquartile range
as measures of dispersion. The assumption of normality was then checked by means of
Kolmogorov-Smirnoff test. In the case of cortisol, a parametric analysis was applied.
Concretely, a T-test was applied on the control day and before the acute exercise (C1 vs. C3
and C2 vs. C4) to determine the immediate influence of acute exercise on cortisol (C5 vs.
C4 and C6).

Related to the RULIT variables, some variables did not pass the assumption, and a
non-parametric test was performed. A Wilcoxon signed-rank test was applied to establish
differences between the control day and before and after the acute exercise stress in the
variables’ total correct scores and total step errors. A parametric T-test was applied for the
variables Trials, Performance and Memory recall. Additionally, to determine the effect
of acute exercise on learning curves, repeated measures of ANOVA were conducted
(2 acute exercise (pre and post) x 3 RULIT trial blocks (R2 to R4 (B1), R5 to R7 (B2), and
R8 to R10 (B3))). Moreover, other repeated measures of ANOVA were also carried out
(two successes followed (correct scores followed before and after first error) x 2 acute
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Figure 2 Cortisol data before and after exercise and RULIT test. An asterisk (*) indicates significant
differences (p < 0.05). Full-size K&l DOT: 10.7717/peer;j.13000/fig-2

exercises (pre and post)). On all ANOVA analyses, pairwise comparison was carried out
using Bonferroni correction. Finally, Spearman’s correlations were performed in order to
establish the lineal relationships between CORT and the RULIT learning test variables.
The effect size of the differences was calculated (r value). The level of significance was set at
p < 0.05 for all analyses.

RESULTS

The maximal dynamic strength (1RM) corresponded to 151.3 + 19.5 kg obtained through a
test of 3.6 * 1.9 repetitions. The loads displaced were : 77.8 + 11.8 kg for Pmax —15%,
101.1 + 14.0 kg for Pmax and 123.4 + 16.8 kg for Pmax +15%, corresponding to

51.5 + 5.3%, 66.9 + 5.4% and 81.6 + 5.2% of 1RM, respectively.

Cortisol time-course
Further CORT-related analyses revealed that CORT basal C1 Familiarisation Day (Cbf)
measures differed significantly between the CORT basal C1 Experimental Day (Cbe)
(Cbc = 5.65, SE = 0.59; Cbe = 3.56, SE = 0.24), #(18) = 3.79, p < 0.001), which indicates
relatively high levels of stress for the group on the Familiarisation Day. Additionally,
Post-Cognitive CORT C2 Control Day (Pcf) measures differed significantly between the
Post-Cognitive CORT C2 Experimental Day 1 (Pce; Pcc = 4.90, SE = 0.65; Pce = 3.29,
SE = 0.33), #(18) = 3.21, p = 0.01).

On the other hand, an immediate influence of acute exercise on cortisol was found;
a T-test showed significant differences between Post-Physical Stress C5 and C4
Post-Cognitive CORT (#(18) = -2.42; p = 0.026; r = 0.25) and C6 Post-Cognitive CORT in
Experimental Day (#(18) = 4.04; p = 0.01; r = 0.48). Pairwise comparisons and ¢-test results
are shown in Fig. 2.

Contrary to expectations, no correlations were found between the RULIT learning test
variables evaluated and CORT reactivity under any condition.
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Table 1 Differences between pre and post-acute exercise in RULIT task.

RULIT pre-acute exercise RULIT post-acute exercise
Total correct scores 122.4 (3.25) 120.1 (5.93)*
Total step errors 4.2 (3.93) 6.5 (4.64)*
Performance 12.6 (0.93) 11.8 (0.98)"
Trials 4.6 (1.92) 4.8 (1.48)

Notes:
The data are expressed as mean (standard error).
An asterisk () indicate significant differences related to pre-acute exercise (p < 0.05).

Ruff-Light trail-learning test

Learning variables

For the RULIT scores (Table 1), a Wilcoxon signed-rank test revealed (Familiarisation Day
vs. Experimental Day) a significant effect for: total correct scores (z = -3.14; p = 0.002;

r = -0.74), total steps errors (z = -3.31; p = 0.001; r = -0.78), performance (£#(18) = -3.99;
p <0.001; r = 0.55) and trials (#(18) = 2.14; p = 0.046; r = 0.45). Accordingly, the
Familiarisation Day (vs. Experimental Day) exhibited fewer correct steps, a higher error
rate, and a significantly negative performance index for completing the path.

On the other hand, for the visuo-spatial learning outcomes on the Experimental Day,
there were significant differences between pre- and post-acute exercise in the RULIT
learning variables, total correct scores (z = -2.26; p = 0.024; r = -0.52), total step errors
(z=2.46; p = 0.014; r = 0.56) and performance (#(18) = 6.1; p = 0.01; r = 0.8) (Table 1).

Learning curves

There were some main effects of the RULIT trial blocks (F (2, 36) = 84.3, p < 0.001, partial
1’ = 0.82) on learning. Moreover, exercise-induced stress x RULIT trail block interaction
(F (2, 36) = 3.67, p = 0.035, partial n> = 0.17) was found. Pairwise comparisons of the
Learning Curves are shown in Fig. 2.

Successes followed (working memory)

Our results showed a significant main effect of successes followed (F (1, 18) = 18.33,

p < 0.001, partial n> = 0.505), showing an increase in correct scores after the first error
(M =7.3; SD = 0.4) respect before (M = 5.4; SD = 0.6). Moreover, a significant main effect
of exercise-induced stress was observed (F (1, 18) = 15.49, p = 0.001, partial q2 =0.462).
Specifically, in post-physical stress (M = 5.15; SD = 0.3) the scores were lower than under
the pre-physical stress condition (M = 7.5; SD = 0.7); Fig. 3. No significant interaction
between successes followed X exercise-induced stress was found (F (1, 18) = 1.31, p = 0.27,
partial > = 0.068).

Delayed recall

There were significant differences between pre- and post-acute exercise in RULIT delayed
recall scores (#(18) = 4.83; p < 0.001; r = 0.7). Concretely, the successes were superior before
(mean = 7.3, SD = 3.2) than after (mean = 4.6, SD = 1.5) acute exercise (Fig. 4).
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DISCUSSION

The present study investigated CORT reactivity and visuo-spatial path learning under
physical stress. It was assumed that performing a single bout of acute resistance exercise
would provoke physical stress and trigger substantial CORT responses (Heijnen et al,
2016). Subsequently, assuming that high post-stress CORT responses affect the
hippocampus and retrosplenial brain areas, an impairment in visuo-spatial learning and
memory capacity would be expected.

The current findings confirmed that performing a single bout of acute resistance
activates the hypothalamic-pituitary-adrenal (HPA) axis, leading to substantial
differences in CORT concentrations between both conditions (pre- vs. post-acute stress
exercise). In addition, post-acute stress exercise, participants showed worse performance in
their visuo-spatial learning task (as expressed by fewer correct path steps and increased
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error rates and trail numbers) and memory (WM and delayed recall) capacity.
Furthermore, with respect to the learning curves, slower learning to completion under
stress conditions was found in the initial learning trials.

CORT concentrations differed significantly immediately after the acute exercise. This
effect was expected and is in line with findings from previous research that showed strong
endocrine and psychophysiological effects during and immediately after acute exercise,
due to the stress that intense exercise generates in the body; the HPA axis is activated by
increasing the level of cortisol (Heijnen et al., 2016). This increase can last several hours
after intense or exhausting exercise (Willoughby, Taylor ¢» Taylor, 2003). The results of
this study show that subjects showed significantly higher levels of cortisol after an intense
resistance exercise session. This increase in cortisol has been shown to be one of the causes
of changes in cognition after intense physical exercise (Wang et al., 2019).

Single bouts of exercise increase, and regular exercise decreases, the oxidative challenge
to the body, whereas excessive exercise and overtraining lead to damaging oxidative
stress and thus are an indication of the other end point of the hormetic response (Radak
et al., 2008). This means that, to obtain positive effects through a stressor, we must apply
it in low doses because, if it is over-applied, it would cause harmful consequences to
the body. Acute resistance exercise impaired cognitive performance, which supports the
results from previous work that investigated post-stress visuo-spatial path-learning efficacy
(Branaghan et al., 2010; Taverniers et al., 2011) and memory (Almela et al., 2012;
Guenzel, Wolf & Schwabe, 2014). In this sense, Gathercole ¢ Alloway (2008) have reported
that the capacity of working memory is closely related to learning ability.

In addition, higher levels of cortisol were observed on the familiarisation day than
on the experimental day (with a 48 h difference). Taking as a reference the four contextual
factors of Lupien et al.’s (2009) experience of psychological stress—the effect of
unpredictability, loss of control, novelty and threat to the ego—it appears that an unknown
environment (Schnell et al., 2013) and the threat of cognitive-capacity assessment (Ennis
et al., 2001) caused increased cortisol reactivity in response to stress. This is an important
factor to take into account, since any investigation could be affected if it is carried out on a
single day because the levels of excitability should not be controlled.

Neuropsychological findings and functional magnetic resonance imaging (fMRI)
studies have confirmed the essential role of the hippocampus in human topographical
mapping (e.g., the right hippocampus is strongly associated with knowledge of a spatial
location and with navigating accurately between specific locations; Bohbot, laria ¢
Petrides, 2004; Ekstrom et al., 2003; Maguire, 2001). This is why high post-stress CORT
responses after exercise affect the hippocampus and retrosplenial brain areas, impairing
visuo-spatial learning and memory-recall capacity.

Our results seem to suggest that these brain areas that were assessed with cognitive tasks
were affected by high CORT concentrations. This assumption, however, is merely
speculative, because no correlation has been found between cognitive-task performance
and CORT concentrations. This lack of correlation could be attributed to the broad
dispersion of salivary CORT responses to between the individual participants (Kudielka,
Hellhammer ¢ Wiist, 2009) and would be in line with other researchers (Deinzer et al.,
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1997; Taverniers et al., 2011) who found as many different CORT response patterns as
subjects assessed, thus making this correlation difficult. Even so, several studies have linked
decreases in cognitive performance when testing coincides with the peak of cortisol
(Bermejo et al., 2021) and increases in cognitive performance to acute decreases in cortisol
levels (Heaney, Carroll & Phillips, 2013; Tsai et al., 2014). There seems, then, to be a
cause—effect relationship.

Another explanation of the results would come from the term hormesis (Calabrese et al.,
2007), defined as an adaptive response of cells and organisms to a moderate (usually
intermittent) stress. Examples include ischemic preconditioning, exercise, dietary-energy
restriction and exposures to low doses of certain phytochemicals (Mattson, 2008). This
dose-response phenomenon, characterised by stimulation at low doses and inhibition at
high doses (bouts of acute exercise), results in an inverted-J- or U-shaped response curve to
new doses.

The limits of the hormetic response are determined by the ability to adapt, or so-called
“plasticity.”

According to arousal theory, the relationship between stress and activation follows an
inverted “U” function (Joéls, 2006), which also occurs with other cognitive variables that
depend to a greater or lesser extent on such activation. According to this function,
while moderate stress levels cause cortisol reactivity and a moderate increase in cortisol
secretion, which usually have a positive effect on cognitive performance (Guenzel, Wolf &
Schwabe, 2014), very high levels of stress often lead to large increases in cortisol secretion
associated with significant reductions in performance of different cognitive functions
(Morgan et al., 2006, 2011; Taverniers et al., 2011; de Veld, Riksen-Walraven ¢ de Weerth,
2014). In this regard, Tsai et al. (2014) found higher levels of cortisol after intense
resistance exercise than after intense aerobic exercise.

It is, therefore, not surprising that there remains so much controversy in the literature
relating acute exercise to cognitive performance, due mainly to the heterogeneity of the
exercise protocols proposed in both the type of exercise and its intensity, as well as the
diversity of tests that measure cognitive performance and all the variables related to it
(Loprinzi, Loenneke & Storm, 2021).

In addition, the time elapsed between the cessation of exercise and the evaluation
of cognitive functions is another crucial variable due to the transience of the
psychophysiological effects of acute exercise (Crabbe ¢ Dishman, 2004). Depending on the
intensity, duration and rest intervals, resistance exercise can strongly stimulate the HPA
axis, which can lead to an increase in adrenocorticotropic hormone (ACTH) and
circulating cortisol (Kraemer et al., 1993; Kraemer et al., 1999, 1998).

Having noted all this, and focusing on the cognitive variables measured in this study, in
terms of memory, different studies have shown that memory improves after intense
aerobic exercise (Frith, Sng ¢ Loprinzi, 2017; Jeon ¢ Ha, 2017). As mentioned above,
however, there is some controversy in the literature about this, as some authors have not
found improvements in memory related to intense exercise or have found even some
deterioration in memory (Guenzel, Wolf & Schwabe, 2014; Taverniers et al., 2011). Most
existing publications regarding the effect of intense exercise on memory have considered
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the aerobic exercise (Chang et al., 2012). Far fewer studies have examined the effect of
bouts of acute resistance exercise on memory (Wilke et al., 2019), and there remains
controversy over the results. Many authors have found improvements in working memory
after acute resistance exercise (Chang et al., 2014; Hsieh et al., 2016; Wu et al., 2019), while
other researchers have studied the ideal exercise doses, so that there are positive results
ruling out maximum or sub maximum exercises (Brush et al., 2016; Wilke et al., 2019).

There is considerable evidence that cortisol responses influence memory, and a number
of models have proposed that the cortisol response is critically involved in producing the
observed memory effects (Joéls, Fernandez & Roozendaal, 2011; Schwabe et al., 2012;
Gagnon & Wagner, 2016). The main pathway claimed is an increase in glucocorticoids via
the activation of the HPA axis (Allen et al., 2014; McEwen, 2007). In the same line, studies
with animals have shown that glucocorticoids can exert causal influences on memory
(de Quervain, Roozendaal & McGaugh, 1998; Roozendaal, 2002). Furthermore, cortisol
administration independently influences memory encoding and retrieval (Het, Ramlow &
Wolf, 2005).

In a meta-analysis by Shields et al. (2017), the effects of stress on cortisol did not predict
effects on memory during any memory phase, indicating that stress may also act through
pathways other than cortisol to influence memory.

Loprinzi et al. (2020) assessed memory function using a multiple trial, word-list episodic
memory task (the Rey Auditory Verbal Learning Test, RAVLT), then performed a
comprehensive, computerised assessment of episodic memory (the Treasure Hunt task,
THT), which involved a spatio-temporal assessment of the identify, location and timing of
components of episodic memory. The results demonstrated that acute high-intensity
resistance exercise may impair episodic memory when a short exercise recovery period is
employed, but with a longer recovery period, acute high-intensity resistance exercise may
potentially enhance episodic memory (Loprinzi et al., 2020).

The results of this study reinforce the different publications that have concluded that
acute resistance exercise at a certain intensity does not lead subjects to obtain better results
on memory tests (Brush et al., 2016; Chang & Etnier, 2009); in our study, participants’
scores declined after exercise. The study’s limited capacity for information processing and
memorisation is well known, so disproportionate storage or excessive demands can have
serious consequences for ongoing cognitive activities (Alloway et al., 2009) or the ability
to filter relevant and irrelevant information (Awh & Vogel, 2008). This capacity is limited
by approximately 5-9 elements (7 + 2, Miller’s magic number, 1956). This standard error
of +2 is reflected in the significant differences of Successes followed (WM) and the
exercise’s effects on this variable. Thus, we can see that, after exercise, the manipulation of
the information (WM) necessary for the achievement of the learning task is limited.

As for the relationship between intense exercise and learning ability, far fewer authors
have studied this (Winter et al., 2007; Frith, Sng & Loprinzi, 2017). Some evidence,
however, has been found that intense aerobic exercise can aid concentration and improve
learning (Chang et al., 2014; Coles ¢ Tomporowski, 2008). It must be highlighted that there
exist very few studies that have analysed the influence of intense resistance exercise on
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learning (Chang et al., 2012; Wilke et al., 2019). Our results showed that, after an intense
resistance exercise session, subjects showed a lower learning ability than before the session.

As described previously, this relationship may be due to the high intensity of the
exercise protocol proposed in this study, as well as the waiting time between the
performance of the physical exercise and the cognitive test carried out. It would be
necessary, however, to analyse whether lower intensities of resistance exercise have the
same effects on memory capacity and learning.

On the other hand, we should not forget that working memory enables the temporary
storage and manipulation of the information needed to perform complex cognitive tasks,
such as language understanding, learning and reasoning (Gathercole et al., 2006).
Therefore, the deterioration of this factor (WM) should be expected to affect any
associated task (learning in our case) irreparably.

Related to the cortisol time-curse, there was a significant reduction in cortisol after
the cognitive tests in both conditions (pre- and post-exercise). From this fact it can be
deduced that the cognitive task used in this study is not sufficient to maintain or increase
cortisol (Veltman ¢ Gaillard, 1998). Usually, the maximum peak of cortisol is 0-20 min
after exercise and cortisol returns to pre-stressor levels by 41-60 min after the end of
the stressor (Dickerson ¢» Kemeny, 2004). The trend in our case would be to recover the
initial cortisol levels.

This trend is of utmost importance, especially knowing that the majority of cortisol
receptors are found in the hippocampus, an area fundamental to learning and memory
(Elzinga & Bremner, 2002; Shin ¢ Liberzon, 2010). A proper cortisol response is crucial for
the physiological allostasis, whereas high loads of CORT are more likely to lead to the
development of metabolic and/or brain disorders (Duman, 2002; Eiden, 2010). Numerous
studies have documented the role of brain-derived neurotrophic factor (BDNF) in
supporting learning and memory; Molteni, Ying ¢ Gomez-Pinilla (2002) suggest that
hippocampal levels of BDNF may be directly related to learning efficiency and memory
stability. BDNF and cortisol play complementary roles in the nervous system, where
cortisol is a regulator of positive/negative effects (de Assis ¢» Gasanov, 2019). Secondly,
resistance exercise supports the reduction in IL-6, which inhibits NMDA activity and
increases in IGF-1 production (Loprinzi et al., 2020), both being determining factors in
possible changes in cognition (Chang et al., 2012).

Finally, another important point to consider is the resistance exercise protocol used;
working with multi-joint resistance exercises that vary the degree of balance required to
complete the task increases cognitive demand (Loprinzi, Loenneke ¢ Storm, 2021), which
can lead to a limitation of the resources available after exercise.

CONCLUSIONS

The study highlights the importance of load-, volume- and intensity-resistance exercise for
better HPA activation control and, consequently, cortisol production, which could
impair cognitive performance. This does not necessarily mean that resistance exercise will
always have the same effect, as results may vary widely depending on the intensity and type
of exercise, the moment of measurement and the cerebral areas implicated.
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LIMITATIONS

The experimental design and the technical capabilities of the researchers did not allow for
use to address the effects of catecholamines or the interruption of cerebral oxygenation,
physiological parameters that can also affect cognitive performance when performing
intense acute exercise.

ACKNOWLEDGEMENTS

Thanks to all the participants for their participation in the study.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

e José-Luis Bermejo conceived and designed the experiments, performed the experiments,
prepared figures and/or tables, and approved the final draft.

e Raul Valldecabres performed the experiments, analyzed the data, prepared figures
and/or tables, and approved the final draft.

o Israel Villarrasa-Sapifia conceived and designed the experiments, performed the
experiments, analyzed the data, prepared figures and/or tables, and approved the final
draft.

e Gonzalo Monfort-Torres conceived and designed the experiments, authored or reviewed
drafts of the paper, and approved the final draft.

e Adria Marco-Ahull6 performed the experiments, analyzed the data, authored or
reviewed drafts of the paper, and approved the final draft.

e Bruno Ribeiro Do Couto performed the experiments, authored or reviewed drafts of the
paper, and approved the final draft.

Human Ethics
The following information was supplied relating to ethical approvals (i.e., approving body
and any reference numbers):

University of Valencia’s Ethical Committee approved the study (Ref. H1402563451425).

Data Availability
The following information was supplied regarding data availability:
The raw data are available in the Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peer;j.13000#supplemental-information.

Bermejo et al. (2022), PeerdJ, DOI 10.7717/peerj.13000 15/23


http://dx.doi.org/10.7717/peerj.13000#supplemental-information
http://dx.doi.org/10.7717/peerj.13000#supplemental-information
http://dx.doi.org/10.7717/peerj.13000#supplemental-information
http://dx.doi.org/10.7717/peerj.13000
https://peerj.com/

Peer/

REFERENCES

Allen AP, Kennedy PJ, Cryan JF, Dinan TG, Clarke G. 2014. Biological and psychological
markers of stress in humans: focus on the trier social stress test. Neuroscience ¢» Biobehavioral
Reviews 38(Suppl. 1):94-124 DOI 10.1016/j.neubiorev.2013.11.005.

Alloway TP, Gathercole SE, Kirkwood H, Elliott J. 2009. The working memory rating scale: a
classroom-based behavioral assessment of working memory. Learning and Individual
Differences 19(2):242-245 DOI 10.1016/j.1indif.2008.10.003.

Almela M, van der Meij L, Hidalgo V, Villada C, Salvador A. 2012. The cortisol awakening
response and memory performance in older men and women. Psychoneuroendocrinology
37(12):1929-1940 DOI 10.1016/j.psyneuen.2012.04.009.

Anderson EH, Shivakumar G. 2013. Effects of exercise and physical activity on anxiety. Frontiers
in Psychiatry 4:1-4 DOI 10.3389/fpsyt.2013.00027.

Awh E, Vogel EK. 2008. The bouncer in the brain. Nature Neuroscience 11(1):5-6
DOI 10.1038/nn0108-5.

Barha CK, Davis JC, Falck RS, Nagamatsu LS, Liu-Ambrose T. 2017. Sex differences in exercise
efficacy to improve cognition: a systematic review and meta-analysis of randomized controlled
trials in older humans. Frontiers in Neuroendocrinology 46(2014):71-85
DOI 10.1016/.yfrne.2017.04.002.

Bermejo J-L, Marco-Ahull6 A, Ribeiro do Couto B, Monfort-Torres G, Pardo A. 2021. Effect of
high intensity strength exercise on cognitive performance. Revista Internacional de Medicina y
Ciencias de la Actividad Fisica y del Deporte 21(84):653-665 DOI 10.15366/rimcafd2021.84.002.

Bermejo JL, do Couto BR, Marco-Ahullé A, Villarrasa-Sapiiia I, Garcia-Masso X. 2019. Effects
of an incremental maximal endurance exercise stress-induced cortisol on cognitive performance.
Journal of Human Sport and Exercise 14(3):632-644 DOI 10.14198/jhse.2019.143.13.

Bermejo JL, Garcia-Masso6 X, Paillard T, Noé F. 2018. Fatigue does not conjointly alter postural
and cognitive performance when standing in a shooting position under dual-task conditions.
Journal of Sports Sciences 36:429-435 DOI 10.1080/02640414.2017.1313443.

Bohbot VD, Iaria G, Petrides M. 2004. Hippocampal function and spatial memory: evidence from
functional neuroimaging in healthy participants and performance of patients with medial
temporal lobe resections. Neuropsychology 18(3):418-425 DOI 10.1037/0894-4105.18.3.418.

Branaghan RJ, Takamura J, Palmer MT, Hildebrand EA, Sevier DC. 2010. Mapping information
requirements for police patrol and response to informational displays. Journal of Cognitive
Engineering and Decision Making 4(2):113-128 DOI 10.1518/155534310X12832748852111.

Brisswalter J, Collardeau M, René A. 2002. Effects of acute physical exercise characteristics on
cognitive performance. Sports Medicine 32(9):555-566
DOI 10.2165/00007256-200232090-00002.

Brush CJ, Olson RL, Ehmann PJ, Osovsky S, Alderman BL. 2016. Dose-response and time course
effects of acute resistance exercise on executive function. Journal of Sport and Exercise Psychology
38(4):396-408 DOI 10.1123/jsep.2016-0027.

Calabrese EJ, Bachmann KA, Bailer AJ, Bolger PM, Borak J, Cai L, Cedergreen N, Cherian MG,
Chiueh CC, Clarkson TW, Cook RR, Diamond DM, Doolittle DJ, Dorato MA, Duke SO,
Feinendegen L, Gardner DE, Hart RW, Hastings KL, Hayes AW, Hoffmann GR, Ives JA,
Jaworowski Z, Johnson TE, Jonas WB, Kaminski NE, Keller JG, Klaunig JE, Knudsen TB,
Kozumbo WJ, Lettieri T, Liu S-Z, Maisseu A, Maynard KI, Masoro EJ, McClellan RO,
Mehendale HM, Mothersill C, Newlin DB, Nigg HN, Oehme FW, Phalen RF, Philbert MA,
Rattan SIS, Riviere JE, Rodricks J, Sapolsky RM, Scott BR, Seymour C, Sinclair DA,
Smith-Sonneborn J, Snow ET, Spear L, Stevenson DE, Thomas Y, Tubiana M, Williams GM,

Bermejo et al. (2022), PeerdJ, DOI 10.7717/peerj.13000 16/23


http://dx.doi.org/10.1016/j.neubiorev.2013.11.005
http://dx.doi.org/10.1016/j.lindif.2008.10.003
http://dx.doi.org/10.1016/j.psyneuen.2012.04.009
http://dx.doi.org/10.3389/fpsyt.2013.00027
http://dx.doi.org/10.1038/nn0108-5
http://dx.doi.org/10.1016/j.yfrne.2017.04.002
http://dx.doi.org/10.15366/rimcafd2021.84.002
http://dx.doi.org/10.14198/jhse.2019.143.13
http://dx.doi.org/10.1080/02640414.2017.1313443
http://dx.doi.org/10.1037/0894-4105.18.3.418
http://dx.doi.org/10.1518/155534310X12832748852111
http://dx.doi.org/10.2165/00007256-200232090-00002
http://dx.doi.org/10.1123/jsep.2016-0027
http://dx.doi.org/10.7717/peerj.13000
https://peerj.com/

Peer/

Mattson MP. 2007. Biological stress response terminology: Integrating the concepts of adaptive
response and preconditioning stress within a hormetic dose-response framework. Toxicology
and Applied Pharmacology 222(1):122-128 DOI 10.1016/j.taap.2007.02.015.

Chaddock L, Pontifex MB, Hillman CH, Kramer AF. 2011. A review of the relation of aerobic
fitness and physical activity to brain structure and function in children. Journal of the
International Neuropsychological Society 17(6):975-985 DOI 10.1017/51355617711000567.

Chang Y-K, Pan C-Y, Chen FT, Tsai C-L, Huang C-C. 2011. Effect of resistance-exercise training
on cognitive function in healthy older adults: a review. Journal of Aging and Physical Activity
20:497-517 DOI 10.1123/japa.20.4.497.

Chang YK, Labban JD, Gapin JI, Etnier JL. 2012. The effects of acute exercise on cognitive
performance: a meta-analysis. Brain Research 1453(1-2):87-101
DOI 10.1016/j.brainres.2012.02.068.

Chang Y-K, Etnier JL. 2009. Exploring the dose-response relationship between resistance exercise
intensity and cognitive function. Journal of Sport and Exercise Psychology 31(5):640-656
DOI 10.1123/jsep.31.5.640.

Chang Y-K, Tsai C-L, Huang C-C, Wang C-C, Chu I-H. 2014. Effects of acute resistance exercise
on cognition in late middle-aged adults: general or specific cognitive improvement? Journal of
Science and Medicine in Sport 17(1):51-55 DOI 10.1016/.jsams.2013.02.007.

Chatterton RT, Vogelsong KM, Lu Y, Hudgens GA. 1997. Hormonal responses to psychological
stress in men preparing for skydiving. Journal of Clinical Endocrinology ¢ Metabolism
82(8):2503-2509 DOI 10.1210/jc.82.8.2503.

Christensen H, Mackinnon AJ, Korten A, Jorm AF. 2001. The common cause hypothesis of
cognitive aging: evidence for not only a common factor but also specific associations of age with
vision and grip strength in a cross-sectional analysis. Psychology and Aging 16(4):588-599
DOI 10.1037/0882-7974.16.4.588.

Coles K, Tomporowski PD. 2008. Effects of acute exercise on executive processing, short-term and
long-term memory. Journal of Sports Sciences 26(3):333-344 DOI 10.1080/02640410701591417.

Crabbe JB, Dishman RK. 2004. Brain electrocortical activity during and after exercise: a
quantitative synthesis. Psychophysiology 41(4):563-574 DOI 10.1111/j.1469-8986.2004.00176.x.

de Assis GG, Gasanov EV. 2019. BDNF and cortisol integrative system—plasticity vs. degeneration:
implications of the Val66Met polymorphism. Frontiers in Neuroendocrinology 55(10):100784
DOI 10.1016/j.yfrne.2019.100784.

de Quervain DJ-F, Roozendaal B, McGaugh JL. 1998. Stress and glucocorticoids impair retrieval
of long-term spatial memory. Nature 394(6695):787-790 DOI 10.1038/29542.

de Veld DMJ, Riksen-Walraven JM, de Weerth C. 2014. Acute psychosocial stress and children’s
memory. Stress 17(4):305-313 DOI 10.3109/10253890.2014.919446.

Deinzer R, Kirschbaum C, Gresele C, Hellhammer DH. 1997. Adrenocortical responses to
repeated parachute jumping and subsequent h-CRH challenge in inexperienced healthy subjects.
Physiology ¢~ Behavior 61(4):507-511 DOI 10.1016/S0031-9384(96)00465-9.

Dickerson SS, Kemeny ME. 2004. Acute stressors and cortisol responses: a theoretical integration
and synthesis of laboratory research. Psychological Bulletin 130(3):355-391
DOI 10.1037/0033-2909.130.3.355.

Duman RS. 2002. Pathophysiology of depression: the concept of synaptic plasticitylTo be
presented at ECNP Barcelona, 5-9 October 2002, during the symposium A new pharmacology of
depression: the concept of synaptic plasticity. European Psychiatry 17(53):306-310
DOI 10.1016/50924-9338(02)00654-5.

Bermejo et al. (2022), PeerdJ, DOI 10.7717/peerj.13000 17/23


http://dx.doi.org/10.1016/j.taap.2007.02.015
http://dx.doi.org/10.1017/S1355617711000567
http://dx.doi.org/10.1123/japa.20.4.497
http://dx.doi.org/10.1016/j.brainres.2012.02.068
http://dx.doi.org/10.1123/jsep.31.5.640
http://dx.doi.org/10.1016/j.jsams.2013.02.007
http://dx.doi.org/10.1210/jc.82.8.2503
http://dx.doi.org/10.1037/0882-7974.16.4.588
http://dx.doi.org/10.1080/02640410701591417
http://dx.doi.org/10.1111/j.1469-8986.2004.00176.x
http://dx.doi.org/10.1016/j.yfrne.2019.100784
http://dx.doi.org/10.1038/29542
http://dx.doi.org/10.3109/10253890.2014.919446
http://dx.doi.org/10.1016/S0031-9384(96)00465-9
http://dx.doi.org/10.1037/0033-2909.130.3.355
http://dx.doi.org/10.1016/S0924-9338(02)00654-5
http://dx.doi.org/10.7717/peerj.13000
https://peerj.com/

Peer/

Eiden LE. 2010. Commentary on chapters ‘Clinical and Developmental Aspects’ and ‘stress
responses of the adrenal medulla’. Cellular and Molecular Neurobiology 30(8):1371-1375
DOI 10.1007/s10571-010-9607-8.

Ekstrom AD, Kahana M]J, Caplan JB, Fields TA, Isham EA, Newman EL, Fried I. 2003. Cellular
networks underlying human spatial navigation. Nature 425(6954):184-188
DOI 10.1038/nature01964.

Elzinga BM, Bremner JD. 2002. Are the neural substrates of memory the final common pathway
in posttraumatic stress disorder (PTSD)? Journal of Affective Disorders 70(1):1-17
DOI 10.1016/50165-0327(01)00351-2.

Ennis M, Kelly KS, Wingo MK, Lambert PL. 2001. Cognitive appraisal mediates adrenomedullary
activation to a psychological stressor. Stress and Health 17(1):3-8
DOI 10.1002/1532-2998(200101)17:1<3::AID-SM1868>3.0.CO;2-W.

Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, Kim JS, Heo S, Alves H,
White SM, Wojcicki TR, Mailey E, Vieira VJ, Martin SA, Pence BD, Woods JA, McAuley E,
Kramer AF. 2011. Exercise training increases size of hippocampus and improves memory.
Proceedings of The National Academy of Sciences of The United States of America
108(7):3017-3022 DOI 10.1073/pnas.1015950108.

Esteves AM, De Mello MT, Pradella-Hallinan M, Tufik S. 2009. Effect of acute and chronic
physical exercise on patients with periodic leg movements. Medicine & Science in Sports &
Exercise 41(1):237-242 DOI 10.1249/MSS.0b013e318183bb22.

Frith E, Sng E, Loprinzi PD. 2017. Randomized controlled trial evaluating the temporal effects of
high-intensity exercise on learning, short-term and long-term memory, and prospective
memory. European Journal of Neuroscience 46(10):2557-2564 DOI 10.1111/ejn.13719.

Fletcher GF, Ades PA, Kligfield P, Arena R, Balady GJ, Bittner VA, Coke LA, Fleg JL,
Forman DE, Gerber TC, Gulati M, Madan K, Rhodes J, Thompson PD, Williams MA. 2013.
Exercise standards for testing and training: a scientific statement from the American Heart
Association. Circulation 128(8):873-934 DOI 10.1161/CIR.0b013e31829b5b44.,

Gabriel BM, Zierath JR. 2019. Circadian rhythms and exercise—re-setting the clock in metabolic
disease. Nature Reviews Endocrinology 15(4):197-206 DOI 10.1038/s41574-018-0150-x.

Gagnon SA, Wagner AD. 2016. Acute stress and episodic memory retrieval: neurobiological
mechanisms and behavioral consequences: acute stress and episodic memory retrieval. Annals of
the New York Academy of Sciences 1369:55-75 DOI 10.1111/nyas.12996.

Garcia-Ramos A, Nebot V, Padial P, Valverde-Esteve T, Pablos-Monzé A, Feriche B. 2016.
Effects of short inter-repetition rest periods on power output losses during the half squat
exercise. Isokinetics and Exercise Science 24(4):323-330 DOI 10.3233/IES-160634.

Gathercole S, Alloway TP. 2008. Working memory and learning: a practical guide for teachers.
Thousand Oaks: Sage.

Gathercole SE, Alloway TP, Willis C, Adams A-M. 2006. Working memory in children with
reading disabilities. Journal of Experimental Child Psychology 93(3):265-281
DOI 10.1016/j.jecp.2005.08.003.

Guenzel FM, Wolf OT, Schwabe L. 2014. Glucocorticoids boost stimulus-response memory
formation in humans. Psychoneuroendocrinology 45(3):21-30
DOI 10.1016/j.psyneuen.2014.02.015.

Haynes JT, Frith E, Sng E, Loprinzi PD. 2019. Experimental effects of acute exercise on episodic

memory function: considerations for the timing of exercise. Psychological Reports
122(5):1744-1754 DOI 10.1177/0033294118786688.

Bermejo et al. (2022), PeerdJ, DOI 10.7717/peerj.13000 18/23


http://dx.doi.org/10.1007/s10571-010-9607-8
http://dx.doi.org/10.1038/nature01964
http://dx.doi.org/10.1016/S0165-0327(01)00351-2
http://dx.doi.org/10.1002/1532-2998(200101)17:1%3C3::AID-SMI868%3E3.0.CO;2-W
http://dx.doi.org/10.1073/pnas.1015950108
http://dx.doi.org/10.1249/MSS.0b013e318183bb22
http://dx.doi.org/10.1111/ejn.13719
http://dx.doi.org/10.1161/CIR.0b013e31829b5b44
http://dx.doi.org/10.1038/s41574-018-0150-x
http://dx.doi.org/10.1111/nyas.12996
http://dx.doi.org/10.3233/IES-160634
http://dx.doi.org/10.1016/j.jecp.2005.08.003
http://dx.doi.org/10.1016/j.psyneuen.2014.02.015
http://dx.doi.org/10.1177/0033294118786688
http://dx.doi.org/10.7717/peerj.13000
https://peerj.com/

Peer/

Heaney JLJ, Carroll D, Phillips AC. 2013. DHEA, DHEA-S and cortisol responses to acute
exercise in older adults in relation to exercise training status and sex. Age (Dordrecht,
Netherlands) 35(2):395-405 DOI 10.1007/s11357-011-9345-y.

Heijnen S, Hommel B, Kibele A, Colzato LS. 2016. Neuromodulation of aerobic exercise—a
review. Frontiers in Psychology 6(65):1678 DOI 10.3389/fpsyg.2015.01890.

Herold F, Torpel A, Schega L, Miiller NG. 2019. Functional and/or structural brain changes in
response to resistance exercises and resistance training lead to cognitive improvements—a
systematic review. European Review of Aging and Physical Activity 16(1):1676
DOI 10.1186/511556-019-0217-2.

Het S, Ramlow G, Wolf OT. 2005. A meta-analytic review of the effects of acute cortisol
administration on human memory. Psychoneuroendocrinology 30(8):771-784
DOI 10.1016/j.psyneuen.2005.03.005.

Hétting K, Roder B. 2013. Beneficial effects of physical exercise on neuroplasticity and cognition.
Neuroscience & Biobehavioral Reviews 37(9):2243-2257 DOI 10.1016/j.neubiorev.2013.04.005.

Hsieh S-S, Chang Y-K, Hung T-M, Fang C-L. 2016. The effects of acute resistance exercise on
young and older males’ working memory. Psychology of Sport and Exercise 22(1):286-293
DOI 10.1016/j.psychsport.2015.09.004.

Jeon YK, Ha CH. 2017. The effect of exercise intensity on brain derived neurotrophic factor and
memory in adolescents. Environmental Health and Preventive Medicine 22(1):27
DOI 10.1186/s12199-017-0643-6.

Joéls M. 2006. Corticosteroid effects in the brain: U-shape it. Trends in Pharmacological Sciences
27(5):244-250 DOI 10.1016/j.tips.2006.03.007.

Joéls M, Fernandez G, Roozendaal B. 2011. Stress and emotional memory: a matter of timing.
Trends in Cognitive Sciences 15(6):280-288 DOI 10.1016/j.tics.2011.04.004.

Kim KH, Park SK, Lee DR, Lee J. 2018. The relationship between handgrip strength and cognitive
function in elderly Koreans over 8 years: a prospective population-based study using Korean
longitudinal study of ageing. Korean Journal of Family Medicine 40(1):9-15
DOI 10.4082/kjfm.17.0074.

Kraemer WJ, Dziados JE, Marchitelli L], Gordon SE, Harman EA, Mello R, Fleck SJ,
Frykman PN, Triplett NT. 1993. Effects of different heavy-resistance exercise protocols on
plasma beta-endorphin concentrations. Journal of Applied Physiology 74(1):450-459
DOI 10.1152/jappl.1993.74.1.450.

Kraemer WJ, Fleck SJ, Maresh CM, Ratamess NA, Gordon SE, Goetz KL, Harman EA,
Frykman PN, Volek JS, Mazzetti SA, Fry AC, Marchitelli L], Patton JF. 1999. Acute
hormonal responses to a single bout of heavy resistance exercise in trained power lifters and
untrained men. Canadian Journal of Applied Physiology 24(6):524-537 DOI 10.1139/h99-034.

Kraemer WJ, Hikkinen K, Newton RU, McCormick M, Nindl BC, Volek JS, Gotshalk LA,
Fleck SJ, Campbell WW, Gordon SE, Farrell PA, Evans WJ. 1998. Acute hormonal responses
to heavy resistance exercise in younger and older men. European Journal of Applied Physiology
77(3):206-211 DOI 10.1007/s004210050323.

Kudielka BM, Hellhammer DH, Wiist S. 2009. Why do we respond so differently? Reviewing
determinants of human salivary cortisol responses to challenge. Psychoneuroendocrinology
34(1):2-18 DOI 10.1016/j.psyneuen.2008.10.004.

Lambourne K, Tomporowski P. 2010. The effect of exercise-induced arousal on cognitive task

performance: a meta-regression analysis. Brain Research 1341(3):12-24
DOI 10.1016/j.brainres.2010.03.091.

Bermejo et al. (2022), PeerdJ, DOI 10.7717/peerj.13000 19/23


http://dx.doi.org/10.1007/s11357-011-9345-y
http://dx.doi.org/10.3389/fpsyg.2015.01890
http://dx.doi.org/10.1186/s11556-019-0217-2
http://dx.doi.org/10.1016/j.psyneuen.2005.03.005
http://dx.doi.org/10.1016/j.neubiorev.2013.04.005
http://dx.doi.org/10.1016/j.psychsport.2015.09.004
http://dx.doi.org/10.1186/s12199-017-0643-6
http://dx.doi.org/10.1016/j.tips.2006.03.007
http://dx.doi.org/10.1016/j.tics.2011.04.004
http://dx.doi.org/10.4082/kjfm.17.0074
http://dx.doi.org/10.1152/jappl.1993.74.1.450
http://dx.doi.org/10.1139/h99-034
http://dx.doi.org/10.1007/s004210050323
http://dx.doi.org/10.1016/j.psyneuen.2008.10.004
http://dx.doi.org/10.1016/j.brainres.2010.03.091
http://dx.doi.org/10.7717/peerj.13000
https://peerj.com/

Peer/

Lehmann M, Keul J, Schmid P, Kindermann W, Huber G. 1980. Lucose, lactate and aerobic and
anaerobic capacity in young people. Sport Medicine 287-295.

Liu Y, Cao X, Gu N, Yang B, Wang J, Li C. 2019. A prospective study on the association between
grip strength and cognitive function among middle-aged and elderly Chinese participants.
Frontiers in Aging Neuroscience 11:1093 DOI 10.3389/fnagi.2019.00250.

Loprinzi PD, Frith E, Edwards MK, Sng E, Ashpole N. 2018. The effects of exercise on memory
function among young to middle-aged adults: systematic review and recommendations for
future research. American Journal of Health Promotion 32(3):691-704
DOI 10.1177/0890117117737409.

Loprinzi PD, Green D, Wages S, Cheke LG, Jones T. 2020. Experimental effects of acute
high-intensity resistance exercise on episodic memory function: consideration for post-exercise
recovery period. Journal of Lifestyle Medicine 10(1):7-20 DOI 10.15280/jlm.2020.10.1.7.

Loprinzi PD, Loenneke JP, Storm BC. 2021. Effects of acute aerobic and resistance exercise on
episodic memory function. Quarterly Journal of Experimental Psychology 74(7):1264-1283
DOI 10.1177/1747021821994576.

Ludyga S, Gerber M, Brand S, Holsboer-Trachsler E, Piihse U. 2016. Acute effects of moderate
aerobic exercise on specific aspects of executive function in different age and fitness groups: a
meta-analysis. Psychophysiology 53(11):1611-1626 DOI 10.1111/psyp.12736.

Lupien SJ, Wilkinson CW, Briére S, Ménard C, Ng Ying Kin NMK, Nair NPV. 2002. The
modulatory effects of corticosteroids on cognition: studies in young human populations.
Psychoneuroendocrinology 27(3):401-416 DOI 10.1016/50306-4530(01)00061-0.

Lupien SJ, McEwen BS, Gunnar MR, Heim C. 2009. Effects of stress throughout the lifespan on
the brain, behaviour and cognition. Nature Reviews Neuroscience 10(6):434-445
DOI 10.1038/nrn2639.

Maguire E. 2001. The retrosplenial contribution to human navigation: a review of lesion and
neuroimaging findings. Scandinavian Journal of Psychology 42(3):225-238
DOI 10.1111/1467-9450.00233.

Mattson MP. 2008. Hormesis defined. Ageing Research Reviews 7(1):1-7
DOI 10.1016/j.arr.2007.08.007.

Mayhew DL, Thyfault JP, Koch AJ. 2005. Rest-interval length affects leukocyte levels during heavy
resistance exercise. Journal of Strength and Conditioning Research; Champaign 19:16-22
DOI 10.1519/R-14113.1.

McEwen BS. 2007. Physiology and neurobiology of stress and adaptation: central role of the brain.
Physiological Reviews 87(3):873-904 DOI 10.1152/physrev.00041.2006.

McMorris T, Davranche K, Jones G, Hall B, Corbett J, Minter C. 2009. Acute incremental
exercise, performance of a central executive task, and sympathoadrenal system and
hypothalamic-pituitary-adrenal axis activity. International Journal of Psychophysiology
73(3):334-340 DOI 10.1016/j.ijpsycho.2009.05.004.

Mierau A, Hiilsdiinker T, Mierau J, Hense A, Hense J, Striider HK. 2014. Acute exercise induces
cortical inhibition and reduces arousal in response to visual stimulation in young children.
International Journal of Developmental Neuroscience 34(1):1-8
DOI 10.1016/j.ijdevneun.2013.12.009.

Miller GA. 1956. The magical number seven, plus or minus two: some limits on our capacity for
processing information. Psychological Review 63(2):81-97 DOI 10.1037/h0043158.
Molteni R, Ying Z, Gémez-Pinilla F. 2002. Differential effects of acute and chronic exercise on

plasticity-related genes in the rat hippocampus revealed by microarray. The European Journal of
Neuroscience 16(6):1107-1116 DOI 10.1046/j.1460-9568.2002.02158 x.

Bermejo et al. (2022), PeerdJ, DOI 10.7717/peerj.13000 20/23


http://dx.doi.org/10.3389/fnagi.2019.00250
http://dx.doi.org/10.1177/0890117117737409
http://dx.doi.org/10.15280/jlm.2020.10.1.7
http://dx.doi.org/10.1177/1747021821994576
http://dx.doi.org/10.1111/psyp.12736
http://dx.doi.org/10.1016/S0306-4530(01)00061-0
http://dx.doi.org/10.1038/nrn2639
http://dx.doi.org/10.1111/1467-9450.00233
http://dx.doi.org/10.1016/j.arr.2007.08.007
http://dx.doi.org/10.1519/R-14113.1
http://dx.doi.org/10.1152/physrev.00041.2006
http://dx.doi.org/10.1016/j.ijpsycho.2009.05.004
http://dx.doi.org/10.1016/j.ijdevneu.2013.12.009
http://dx.doi.org/10.1037/h0043158
http://dx.doi.org/10.1046/j.1460-9568.2002.02158.x
http://dx.doi.org/10.7717/peerj.13000
https://peerj.com/

Peer/

Moore RD, Romine MW, O’Connor PJ, Tomporowski PD. 2012. The influence of
exercise-induced fatigue on cognitive function. Journal of Sports Sciences 30(9):841-850
DOI 10.1080/02640414.2012.675083.

Morgan CA, Doran A, Steffian G, Hazlett G, Southwick SM. 2006. Stress-induced deficits in
working memory and visuo-constructive abilities in special operations soldiers. Biological
Psychiatry 60(7):722-729 DOI 10.1016/j.biopsych.2006.04.021.

Morgan CA III, Russell B, McNeil J, Maxwell J, Snyder PJ, Southwick SM, Pietrzak RH. 2011.
Baseline burnout symptoms predict visuospatial executive function during survival school
training in special operations military personnel. Journal of the International Neuropsychological
Society 17(3):494-501 DOI 10.1017/S1355617711000221.

Murray CJL, Richards MA, Newton JN, Fenton KA, Anderson HR, Atkinson C, Bennett D,
Bernabé E, Blencowe H, Bourne R, Braithwaite T, Brayne C, Bruce NG, Brugha TS,
Burney P, Dherani M, Dolk H, Edmond K, Ezzati M, Flaxman AD, Fleming TD,
Freedman G, Gunnell D, Hay RJ, Hutchings SJ, Ohno SL, Lozano R, Lyons RA, Marcenes W,
Naghavi M, Newton CR, Pearce N, Pope D, Rushton L, Salomon JA, Shibuya K, Vos T,
Wang H, Williams HC, Woolf AD, Lopez AD, Davis A. 2013. UK health performance:
findings of the Global Burden of Disease Study 2010. The Lancet 381(9871):997-1020
DOI 10.1016/S0140-6736(13)60355-4.

Nicolson N. 2008. Measurement of cortisol. In: Luecken LJ, Gallo LC, eds. Handbook of
Physiological Research Methods in Health Psychology. Thousand Oaks: Sage Publications Inc.,
37-74.

Pontifex MB, Hillman CH, Fernhall B, Thompson KM, Valentini TA. 2009. The effect of acute
aerobic and resistance exercise on working memory. Medicine & Science in Sports ¢ Exercise
41(4):927-934 DOI 10.1249/MSS.0b013e3181907d69.

Quesada AA, Wiemers US, Schoofs D, Wolf OT. 2012. Psychosocial stress exposure impairs
memory retrieval in children. Psychoneuroendocrinology 37(1):125-136
DOI 10.1016/j.psyneuen.2011.05.013.

Radak Z, Chung HY, Koltai E, Taylor AW, Goto S. 2008. Exercise, oxidative stress and hormesis.
Ageing Research Reviews 7(1):34-42 DOI 10.1016/j.arr.2007.04.004.

Rohling M, Herder C, Stemper T, Miissig K. 2016. Influence of acute and chronic exercise on
glucose uptake. Journal of Diabetes Research 2016(3):e2868652 DOI 10.1155/2016/2868652.

Roig M, Thomas R, Mang CS, Snow NJ, Ostadan F, Boyd LA, Lundbye-Jensen J. 2016.
Time-dependent effects of cardiovascular exercise on memory. Exercise and Sport Sciences
Reviews 44(2):81-88 DOI 10.1249/JES.0000000000000078.

Roozendaal B. 2002. Stress and memory: opposing effects of glucocorticoids on memory
consolidation and memory retrieval. Neurobiology of Learning and Memory 78(3):578-595
DOI 10.1006/nlme.2002.4080.

Ruff R, Light R, Parker S. 1996. Visuospatial learning: Ruff Light trail learning test. Archives of
Clinical Neuropsychology 11(4):313-327 DOI 10.1093/arclin/11.4.313.

Schnell I, Potchter O, Epstein Y, Yaakov Y, Hermesh H, Brenner S, Tirosh E. 2013. The effects of
exposure to environmental factors on Heart Rate Variability: an ecological perspective.
Environmental Pollution 183:7-13 DOI 10.1016/j.envpol.2013.02.005.

Schwabe L, Joéls M, Roozendaal B, Wolf OT, Oitzl MS. 2012. Stress effects on memory: an update
and integration. Neuroscience & Biobehavioral Reviews 36(7):1740-1749
DOI 10.1016/j.neubiorev.2011.07.002.

Bermejo et al. (2022), PeerdJ, DOI 10.7717/peerj.13000 21/23


http://dx.doi.org/10.1080/02640414.2012.675083
http://dx.doi.org/10.1016/j.biopsych.2006.04.021
http://dx.doi.org/10.1017/S1355617711000221
http://dx.doi.org/10.1016/S0140-6736(13)60355-4
http://dx.doi.org/10.1249/MSS.0b013e3181907d69
http://dx.doi.org/10.1016/j.psyneuen.2011.05.013
http://dx.doi.org/10.1016/j.arr.2007.04.004
http://dx.doi.org/10.1155/2016/2868652
http://dx.doi.org/10.1249/JES.0000000000000078
http://dx.doi.org/10.1006/nlme.2002.4080
http://dx.doi.org/10.1093/arclin/11.4.313
http://dx.doi.org/10.1016/j.envpol.2013.02.005
http://dx.doi.org/10.1016/j.neubiorev.2011.07.002
http://dx.doi.org/10.7717/peerj.13000
https://peerj.com/

Peer/

Shields GS, Sazma MA, McCullough AM, Yonelinas AP. 2017. The effects of acute stress on
episodic memory: a meta-analysis and integrative review. Psychological Bulletin 143(6):636-675
DOI 10.1037/bul0000100.

Shin LM, Liberzon I. 2010. The neurocircuitry of fear, stress, and anxiety disorders.
Neuropsychopharmacology 35(1):169-191 DOI 10.1038/npp.2009.83.

Smeets T, Otgaar H, Candel I, Wolf OT. 2008. True or false? Memory is differentially affected by
stress-induced cortisol elevations and sympathetic activity at consolidation and retrieval.
Psychoneuroendocrinology 33(10):1378-1386 DOI 10.1016/j.psyneuen.2008.07.009.

Smith JC, Nielson KA, Antuono P, Lyons J-A, Hanson RJ, Butts AM, Hantke NC, Verber MD.
2013. Semantic memory functional MRI and cognitive function after exercise intervention in
mild cognitive impairment. Journal of Alzheimer’s Disease 37(1):197-215
DOI 10.3233/JAD-130467.

Soga K, Masaki H, Gerber M, Ludyga S. 2018. Acute and long-term effects of resistance training
on executive function. Journal of Cognitive Enhancement 2(2):200-207
DOI 10.1007/s41465-018-0079-y.

Sonntag WE, Ramsey M, Carter CS. 2005. Growth hormone and insulin-like growth factor-1
(IGF-1) and their influence on cognitive aging. Ageing Research Reviews 4(2):195-212
DOI 10.1016/j.arr.2005.02.001.

Sudo M, Komiyama T, Aoyagi R, Nagamatsu T, Higaki Y, Ando S. 2017. Executive function after
exhaustive exercise. European Journal of Applied Physiology 117(10):2029-2038
DOI 10.1007/s00421-017-3692-z.

Taverniers J, Smeets T, Lo Bue S, Syroit J, Van Ruysseveldt J, Pattyn N, von Grumbkow J. 2011.
Visuo-spatial path learning, stress, and cortisol secretion following military cadets’ first
parachute jump: the effect of increasing task complexity. Cognitive, Affective, ¢ Behavioral
Neuroscience 11(3):332-343 DOI 10.3758/s13415-011-0043-0.

Tomporowski PD. 2003. Effects of acute bouts of exercise on cognition. Acta Psychologica
112(3):297-324 DOI 10.1016/S0001-6918(02)00134-8.

Tsai C-L, Wang C-H, Pan C-Y, Chen F-C, Huang T-H, Chou F-Y. 2014. Executive function and
endocrinological responses to acute resistance exercise. Frontiers in Behavioral Neuroscience
8(66):283 DOI 10.3389/fnbeh.2014.00262.

Veltman JA, Gaillard AWK. 1998. Physiological workload reactions to increasing levels of task
difficulty. Ergonomics 41(5):656-669 DOI 10.1080/001401398186829.

Wang C-C, Alderman B, Wu C-H, Chi L, Chen S-R, Chu I-H, Chang Y-K. 2019. Effects of acute
aerobic and resistance exercise on cognitive function and salivary cortisol responses 41(2):10.

Weinberg L, Hasni A, Shinohara M, Duarte A. 2014. A single bout of resistance exercise can
enhance episodic memory performance. Acta Psychologica 153:13-19
DOI 10.1016/j.actpsy.2014.06.011.

Wilke J, Giesche F, Klier K, Vogt L, Herrmann E, Banzer W. 2019. Acute effects of resistance
exercise on cognitive function in healthy adults: a systematic review with multilevel meta-
analysis. Sports Medicine 49(6):905-916 DOI 10.1007/s40279-019-01085-x.

Willoughby DS, Taylor M, Taylor L. 2003. Glucocorticoid receptor and ubiquitin expression after
repeated eccentric exercise. Medicine & Science in Sports & Exercise 35(12):2023-2031
DOI 10.1249/01.MSS.0000099100.83796.77.

Winter B, Breitenstein C, Mooren FC, Voelker K, Fobker M, Lechtermann A, Krueger K,
Fromme A, Korsukewitz C, Floel A, Knecht S. 2007. High impact running improves learning.
Neurobiology of Learning and Memory 87(4):597-609 DOI 10.1016/j.nlm.2006.11.003.

Bermejo et al. (2022), PeerdJ, DOI 10.7717/peerj.13000 22/23


http://dx.doi.org/10.1037/bul0000100
http://dx.doi.org/10.1038/npp.2009.83
http://dx.doi.org/10.1016/j.psyneuen.2008.07.009
http://dx.doi.org/10.3233/JAD-130467
http://dx.doi.org/10.1007/s41465-018-0079-y
http://dx.doi.org/10.1016/j.arr.2005.02.001
http://dx.doi.org/10.1007/s00421-017-3692-z
http://dx.doi.org/10.3758/s13415-011-0043-0
http://dx.doi.org/10.1016/S0001-6918(02)00134-8
http://dx.doi.org/10.3389/fnbeh.2014.00262
http://dx.doi.org/10.1080/001401398186829
http://dx.doi.org/10.1016/j.actpsy.2014.06.011
http://dx.doi.org/10.1007/s40279-019-01085-x
http://dx.doi.org/10.1249/01.MSS.0000099100.83796.77
http://dx.doi.org/10.1016/j.nlm.2006.11.003
http://dx.doi.org/10.7717/peerj.13000
https://peerj.com/

Peer/

Wolf OT. 2009. Stress and memory in humans: twelve years of progress? Brain Research
1293:142-154 DOI 10.1016/j.brainres.2009.04.013.

Wu C-H, Karageorghis CI, Wang C-C, Chu C-H, Kao S-C, Hung T-M, Chang Y-K. 2019. Effects
of acute aerobic and resistance exercise on executive function: an ERP study. Journal of Science
and Medicine in Sport 22(12):1367-1372 DOI 10.1016/.jsams.2019.07.009.

Bermejo et al. (2022), PeerdJ, DOI 10.7717/peerj.13000 23/23


http://dx.doi.org/10.1016/j.brainres.2009.04.013
http://dx.doi.org/10.1016/j.jsams.2019.07.009
http://dx.doi.org/10.7717/peerj.13000
https://peerj.com/

	Increased cortisol levels caused by acute resistance physical exercise impair memory and learning ability
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusions
	Limitations
	flink7
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


