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Human tumors develop multiple strategies to evade recognition and efficient suppression
by the immune system. Therefore, a variety of immunotherapeutic strategies have been
developed to reactivate and reorganize the human immune system. The recent develop-
ment of new antibodies against immune check points may help to overcome the immune
silencing induced by human tumors. Some of these antibodies have already been approved
for treatment of various solid tumor entities. Interestingly, targeting antibodies may be
combined with standard chemotherapy or radiation protocols. Furthermore, recent evi-
dence indicates that intratumoral or intravenous injections of replicative oncolytic viruses
such as herpes simplex-, pox-, parvo-, or adenoviruses may also reactivate the human
immune system. By generating tumor cell lysates in situ, oncolytic viruses overcome cel-
lular tumor resistance mechanisms and induce immunogenic tumor cell death resulting
in the recognition of newly released tumor antigens. This is in particular the case of the
oncolytic parvovirus H-1 (H-1PV), which is able to kill human tumor cells and stimulate
an anti-tumor immune response through increased presentation of tumor-associated anti-
gens, maturation of dendritic cells, and release of pro-inflammatory cytokines. Current
research and clinical studies aim to assess the potential of oncolytic virotherapy and its
combination with immunotherapeutic agents or conventional treatments to further induce
effective antitumoral immune responses.

Keywords: immunotherapy, autonomous parvovirus, H-1PV, talimogene laherparepvec, T-VEC, JX-594, dendritic
cells, CTLA-4

INTRODUCTION
Human tumors develop complex strategies to circumvent the
human immune system and to become resistant to classical ther-
apies like radiotherapy or chemotherapy (1). Besides the low
immunogenicity of tumors, tumor-induced dysregulation of the
immune response leads to loss of effective immune defense
and uncontrolled tumor growth. Even though many classical
chemotherapy or radiation strategies induce some extent of tumor
surveillance (1), new approaches should be tested to overcome
early tumor resistance and recurrence. Thus, the basic challenge
of molecular immune targeting is to conquer local regulatory
mechanisms in order to re-introduce tumor immune recogni-
tion and promote tumor cell apoptosis and immunogenic cell
death (ICD) (2). Recently, loss of immune defense has been
shown to be caused by expression of different immune suppres-
sive receptors also called immune checkpoint pathways, such as
cytotoxic T-lymphocyte antigen-4 (CTLA-4) (3). Its ligation is
crucial to preventing immune overreaction by inhibiting T-cell
activation (4). The inhibitory CTLA-4 antibody ipilimumab [Yer-
voy, Bristol Myers Squibb (BMS)], approved for the treatment
of metastatic melanoma patients, blocks this negative immune
stimulatory receptor, thereby preventing downregulation of T-cell
activation (5).

Oncolytic virotherapy represents an emerging therapeutic
modality that has achieved tumor regression in several pre-clinical
models and in clinical trials (6). Preferential depletion of cancer
cells by oncolytic viruses (OV) is based on the fact that more
aggressive tumor cells show both impaired antiviral responses and
higher permissiveness for virus replication. Therefore, these agents
open up new horizons for the treatment of cancer types that com-
monly display poor prognosis (7, 8). Cancer virotherapy is an old
concept that arose from observations of unexpected tumor regres-
sions coinciding with virus infections. This can be exemplified by
a report on Newcastle disease virus (NDV) in gastric cancer dating
back to 1971 (9). It should be stated that viruses with natural or
engineered effects on the immune system are highly potent candi-
dates for cancer therapy (Table 1). Herein, oncolytic viruses can be
engineered to deliver therapeutic transgenes to cancer cells, caus-
ing additional anti-tumor effects through cytokine secretion and
induction of anti-tumor immune responses (10–14). For example,
the oncolytic vaccinia virus pexastimogene devacirepvec (Jen-
nerex, Inc., and Transgene SA; Pexa-Vec, JX-594) and herpes sim-
plex virus (HSV) talimogene laherparepvec (T-VEC, Amgen) were
“armed” with GM-CSF-expressing genes (15, 16) to initiate local
and systemic immune responses. Recently a randomized, Phase
III trial of talimogene laherparepvec or GM-CSF in patients (pts)
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with unresectable melanoma with regional or distant metastases
(OPTiM) met its primary endpoint by improving durable response
rates versus GM-CSF alone, and showed a tolerable safety profile
(17). A Phase II study of Pexa-Vec in primarily first-line liver cancer
(HCC) patients demonstrated survival improvement in patients
receiving intratumoral (it) injections of high-dose Pexa-Vec (18).
The following randomized Phase IIb study in second-line HCC
patients did not meet its primary endpoint of survival improve-
ment for Pexa-Vec compared to best supportive care (BSC) (19).
However, this trial was comprised primarily of patients with end-
stage disease and significant comorbidities such as liver cirrhosis,
therefore likely not the optimal population for successful OV ther-
apy. Therefore, further studies of Pexa-Vec in a less advanced HCC
population as well as other indications are warranted. Besides
above-mentioned agents, various other viruses were shown to have
oncolytic and/or immunostimulating properties, and are presently
used in clinical trials. These include Parvovirus, Adenovirus,Vesic-
ular Stomatitis Virus, Reovirus, NDV, Measles Virus, Seneca Valley
Virus, Poliovirus, and Coxsackie Virus (Table 1).

The aim of this article is to provide an overview of upcoming
oncolytic viruses and their potential immunogenic therapeutic
effects. A first insight into this issue is provided through our
pioneer studies showing that infection with the autonomous par-
vovirus H-1 (H-1PV) generated immunogenic tumor cell lysates
(TCLs) (14). H-1PV-infected TCLS proved able to induce mat-
uration of dendritic cells (DCs), release of pro-inflammatory
cytokines, tumor-associated antigens (TAA) cross-presentation,
and T-cell stimulation in an ex vivo human melanoma model
(see Figures 1 and 2) (7, 14, 55, 56). On the basis of these
observations, we present the prospects of H-1PV and other OVs
activating the human immune system either alone or in com-
bination with immunomodulators, such as antibodies blocking
immune suppressive receptors.

METHODS
The human ex vivo melanoma model (Figure 2) represents a sys-
tem that mimics the in vivo situation (14). Thus, it was used to
investigate effects of H-1PV-infected or tremelimumab-treated
tumor cells on immune activation. The human melanoma cells
MZ7-Mel, SK29-Mel-1, and SK29-Mel-1.22 used were a gift from
T. Woelfel (Mainz, Germany) (57). The SK29-Mel-1.22 cell line
(A2−) is an in vitro selected HLA-A2-loss variant of HLA-A2-
positive SK29-Mel-1 (A2+) line (58, 59). The cytotoxic T-cell
clones CTL2/9 and CTL IVSB recognize different antigens of
SK29-Mel-1 cells in association with HLA-A2 (57, 58), lyse SK29-
Mel cells, and release interferon γ (IFNγ) upon specific recognition
of SK29-Mel-specific TAA (58).

Peripheral blood mononuclear cells (PBMCs) were derived
from buffy coats of healthy blood donors. Monocytes were isolated
via adherence, and differentiation into immature DCs (iDCs) was
achieved by stimulation with GM-CSF and interleukin-4. Matured
DCs (mDCs) were generated by stimulation with a cytokine cock-
tail for 2 days (60). For coculture experiments, melanoma cells
were kept in FCS-free medium. For induction of maturation and
phagocytosis, tumor cells were co-cultured with iDCs at a ratio
of 1:3 for 2 days. CTL-Coculture with DC was performed at 1:10
ratio (60).

RESULTS: ONCOLYTIC VIRUSES ARE ABLE NOT ONLY TO KILL
HUMAN TUMOR CELLS BUT ALSO TO STIMULATE
ANTI-TUMOR IMMUNE RESPONSES: THE CASE OF
PARVOVIRUS H-1PV
Over the last years, OV therapy has shown promising results in
both pre-clinical and clinical studies against various solid tumors
(61). It is worth noting that besides their own anti-tumor effi-
ciency, OVs can resensitize resistant tumors to chemotherapeutics,
thereby highlighting the potential of OVs in multimodal treat-
ments (12, 13). We were particularly interested in the oncolytic
parvovirus H-1PV [for reviews, see Ref. (20, 62)]. The mode of
action of H-1PV involves both direct oncolytic and immune-
mediated components, making this virus an attractive candidate
for inclusion in the cancer immunotherapy armamentarium (60).
H-1PV is a small nuclear-replicating DNA virus, which prefer-
entially multiplies in oncogene-transformed and tumor-derived
cells (7). This oncotropism results at least in part from the depen-
dence of H-1PV on proliferation and differentiation factors that
are dysregulated in neoplastic cells (20). In consequence, H-
1PV exerts oncolytic effects, which were documented in human
cells from various tumor entities including melanoma, pancreatic
(PDAC), hepatocellular (HCC), colorectal or gastric carcinomas,
sarcoma, glioma, and other neuroectodermal tumors (7, 20, 21,
62–64). Most interestingly, the death mechanisms activated by
parvoviruses allow them to overcome resistance of tumor cells to
conventional cytotoxic agents (22, 65). Another intriguing aspect
of H-1PV-mediated OV lies in the possibility of combining H-1PV
with conventional cytotoxic drugs to achieve synergistic tumor cell
killing effects, as demonstrated for instance in the PDAC system
(13, 21, 22, 66).

Though not or poorly infectious for humans under natural con-
ditions, H-1PV can be administered experimentally to patients,
resulting in viremia and seroconversion (67). Infections with H-
1PV appear to be clinically silent (68). It should also be stated
that recombinant parvoviruses can be constructed, for example to
transduce immunostimulatory cytokines (62). This arming strat-
egy was found to increase the anti-tumor effects of parvoviruses
in certain models (69–71).

BRINGING H-1PV FROM THE BENCH TO THE BEDSIDE
Recent work using an immunocompetent rat glioma model
showed that H-1PV was able to efficiently cure gliomas, while
raising an anti-tumor memory immune response. This oncosup-
pressive effect appears to rely on both the direct oncolytic activity
of H-1PV and its handover to the host immune system (23).
These pre-clinical data led to the current clinical evaluation of
H-1PV it and intravenous (iv) administration to patients with
recurrent resectable GBM progressing in spite of conventional
therapies (27).

H-1PV-INDUCED TUMOR CELL LYSATES TRIGGER MATURATION OF iDCs
AND EXERT IMMUNOSTIMULATING EFFECTS
H-1PV had little direct killing activity on human immune cells
in vitro, in particular APCs and CTLs. Interestingly, the analy-
sis of infected PBMCs revealed the induction of markers of
both macrophage and Th1cell activation (Table 2). This Th1
bias is indicative of a possible direct immunostimulating capacity
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Table 1 | Oncolytic viruses.

Oncolytic virus Family Pre-clinical data Clinical trial Selected reference

Parvovirus H-1 Parvoviridae Oncotoxicity of the viral protein NS1 Phase I/IIa glioblastoma

multiforme (ParvOryx01)

Clinical: NCT01301430

(27)ss DNA

Icosahedral capsid

Virus replication-associated

cytopathic/lytic effects

Activation of immune responses

Transgene expression

(cyto/chemokines)

Inhibition of neo-angiogenesis

Ref. (12–14, 20–26)

Vaccinia/poxvirus Poxviridae

ds DNA

Enveloped

Pexastimogene devacirepvec

(Pexa-Vec; JX-594): engineered

from Wyeth vaccine strain

GLV-1h68 (GL-ONC1): engineered

from vaccinia virus Lister strain

Cell lysis caused by viral replication Phase IIB, hepatocellular

carcinoma, Pexa-Vec

Clinical: NCT01387555;

NCT01394939;

NCT01766739;

NCT01443260

Thymidine kinase (TK) gene-inactivated,

selective replication

Phase II, colorectal cancer,

Pexa-Vec

Transgene expression (GM-CSF) (28) Phase II renal cell

carcinoma, Pexa-Vec

Disruption of tumor-associated

vasculature (29)

Phase I and II, malignant

pleural effusion, peritoneal

carcinomatosis (GL-ONC1)

Induction of antibody-mediated

complement-dependent cancer cell

lysis (30)

HSV-1 Herpesviridae Cell lysis caused by viral replication Phase III complete,

malignant melanoma

(talimogene laherparepvec)

Clinical: NCT00769704

(32, 33)ds DNA ICP34.5 functional deletion

(neurovirulence factor)

Icosahedral capsid ICP47 deletion

Enveloped Activation of anti-tumor immunity

Talimogene laherparepvec:

engineered from JS1 strain

Transgene expression (GM-CSF) (31)

Adenovirus Adenoviridae Cell lysis caused by viral replication Phase II and III, bladder

cancer (CG0070)

Clinical: NCT01438112

(37, 38)

ds DNA Activation of anti-tumor immunity Approved therapeutic

(China), head and neck

cancer (Oncorine)
Oncorine based on H101-virus Cytotoxicity by viral proteins (E4ORF4)

(34)

Transgene expression (GM-CSF by

CG0070) (35, 36)

Vesicular

stomatitis

virus (VSIV,

often VSV)

Rhabdoviridae

ss RNA

Expression of IFN-β (39, 40) Phase I, liver cancer (IFN-β

expressing VSV)

Clinical: NCT01628640

Reovirus Reoviridae Cytopathic effect Phase I-III, several entities,

e.g., head and neck cancer,

non-small cell lung cancer,

prostate cancer, colorectal

cancer (Reolysin)

Clinical: NCT01166542;

NCT01708993;

NCT01619813;

NCT01622543

ds RNA Activation of immune response (41)

Icosahedral capsid

Newcastle

disease virus

Paramyxoviridae Activation of anti-tumor immunity

(42–47)

Phase I and II study in

glioblastoma, sarcoma and

neuroblastoma

Clinical: NCT01174537

ssRNA

(Continued)
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Table 1 | Continued

Oncolytic virus Family Pre-clinical data Clinical trial Selected reference

Measles virus Paramyxoviridae

ss RNA

Cytopathic effect (48)

Anti-tumor activity (49)

Phase I study in malignant

solid tumor, breast cancer,

malignant tumor of colon,

GIST, ovarian cancer

Clinical: NCT01376505;

NCT00450814;

NCT01846091;

NCT01503177;

NCT00390299;

NCT02068794 (50–52)

Phase I study in multiple

myeloma and plasma cell

neoplasm

Phase I study in metastatic

squamous cell carcinoma

of the head and neck

cancer

Phase I in malignant

pleural mesothelioma

Phase I in brain and central

nervous system tumors

Phase I in ovarian cancer,

peritoneal cavity cancer

Phase I and II study in

recurrent ovarian cancer

Seneca valley

virus

Picornaviridae

ss RNA

Antineoplastic activity (53) Phase I safety study, solid

tumors with

neuroendocrine features

Clinical: NCT00314925;

NCT01017601;

NCT01048892 (54)

Phase II after

chemotherapy in small cell

lung cancer

Phase II with

cyclophosphamide in

neuroblastoma,

rhabdomyosarcoma

Cavatak virus

(Coxsackie

virus A21)

Picornaviridae

ss RNA

Capsid

Phase I study in non-small

cell lung cancer, castrate

resistant prostate cancer,

and melanoma and bladder

cancer

Clinical: NCT02043665;

NCT00636558;

NCT00438009;

NCT00832559;

NCT01227551;

NCT01636882Phase I study in

melanoma, breast, and

prostate cancer

Phase I study in melanoma

Phase I study in head and

neck cancer

Phase II study, malignant

melanoma

Oncolytic viruses in clinical trials (ds, double stranded; ss, single stranded).

of the parvovirus. Nevertheless, a major impact of H-1PV on
the immune system appears to be indirect, i.e., mediated by
infected tumor cells, as discussed in the following sections. H-
1PV caused the death of human melanoma cells in culture,
including the above-mentioned SK29-Mel-1 and SK29-Mel-1.22
lines. The extent of cell killing varied between tested lines,
was dependent on the multiplicity of infection (MOI) and

correlated with expression of the replicative viral non-structural
protein NS1. In this system, H-1PV induced an apoptotic cell
death, which was accompanied with the release of immunogenic
HSP72 (63).

In further experiments it was shown that H-1PV-infected
melanoma TCLs were phagocytosed by iDCs and induced their
maturation, in particular the secretion of pro-inflammatory
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FIGURE 1 | Oncolytic viruses and their possible function in tumor therapy [changed after Ref. (14)].
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FIGURE 2 |The ex vivo human melanoma model.

cytokines such as TNFα and IL-6 (13, 63). Lysates of infected
SK29-Mel-1.22 and MZ7-Mel cells were both competent for
inducing DC maturation, although the former were more potent
than the latter in this regard (13, 14). Primary immune cells were
not permissive for H-1PV infection. Little direct killing effect, no

apoptosis, and no progeny virus production could be detected
in infected lymphocytes, monocytes, immature, and mature DCs
(Table 2) (63).

We also demonstrated that human DCs coincubated with
H-1PV-induced melanoma TCLs showed enhanced expression
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Table 2 | Direct immunostimulating effects of parvovirus H-1PV.

of TLR3, TLR9, and other maturation markers. This suggested
that virus-induced TCLs contained molecular patterns triggering
TLR signaling in DCs, as further evidenced by increased NF-
κB levels and production of pro-inflammatory cytokines (12).
Some of these immunostimulating patterns may consist of viral
constituents, given the known ability of TLR3 and TLR9 for
sensing viral determinants.

Combination of the oncolytic virus with cytostatic (cisplatin,
vincristine) or targeted (sunitinib) drugs resulted in a further
increase in melanoma cell apoptosis but failed to strengthen
maturation of DCs. It was verified that the cytotoxic or tar-
geted drug regimen used did not interfere with H-1PV infec-
tion (13). Interestingly, the interleukin profile of DCs was
altered upon exposure to H-1PV plus sunitinib-cotreated TCLs.
It therefore appears that H-1PV combination with this anti-
angiogenic drug may reinforce its capacity not only for jeopar-
dizing tumor cell survival but also for modulating the immune
system.

H-1PV INDUCE ACTIVATION OF ANTIGEN-SPECIFIC CYTOTOXIC T-CELLS
AND OTHER ANTI-TUMOR IMMUNE EFFECTORS
To further assess whether phagocytosis of H-1-infected TCLs
by DCs induces cross-presentation of TAAs to antigen-specific
CTLs in an HLA-class I-restricted manner, the above-mentioned
human melanoma in vitro model was used (58, 72). Both
melanoma-specific CTL clones tested were found to release
increased levels of IFNγ after being co-cultured with DCs
preincubated with H-1PV-infected SK29-Mel-1 or HLA-negative
SK29-Mel-1.22 cells (14). Thus, H-1PV-induced TCLs stimulated
cross-presentation of TAAs by DCs. This effect may contribute
to reinforce the anti-tumor immune response by generating
tumor-specific CTLs (14). In addition, several H-1PV-infected

tumor cells were recently found to acquire an enhanced
capacity for activating NK cells and getting killed by these
cells (73, 74). The adjuvant effect of H-1PV was also evi-
denced in vivo by the virus-enhanced efficacy of an autolo-
gous tumor cell vaccine (24) and the adoptive transfer of anti-
tumor immune cells from animals undergoing oncolytic H-1PV
therapy (75).

ONCOLYTIC H-1PV VIROTHERAPY CAN BE COMBINED WITH
IMMUNOTHERAPEUTIC AGENTS TO ENHANCE TREATMENT EFFICACY
Recent evidence for the expression of the immunosuppressing
molecule CTLA-4 on regulatory T-cells (Tregs) and tumors gen-
erated widespread interest in the role of CTLA-4 in tumor escape
and peripheral tolerance (3, 58). In particular, the human colon
adenocarcinoma line SW480 was found to express CTLA-4 on
the cell surface. This prompted us to extend the analysis of H-
1PV anti-tumor effects to the SW480 system in combination
with the anti-CTLA-4 antibody tremelimumab. When applied
alone, this antibody had no detectable effect on SW480 cell via-
bility and DC maturation. On the other hand, H-1PV alone
was able to kill SW480 cells in a MOI-dependent manner. H-
1PV-induced SW480 TCLs triggered iDC maturation in coculture
experiments, as revealed in particular by increased release of the
pro-inflammatory cytokines IFNγ, TNFα, and IL-6 (64). The
secretion of IFNγ was stimulated to a low extent by treatment
of the coculture with tremelimumab, recommend the use of the
H-1PV/tremelimumab combination treatment to enhance tumor
immunogenicity through both DC activation and CTLA-4 mask-
ing. It should also be stated that other (immuno)modulators,
namely IFNγ (75) and HDAC inhibitors (76), were recently
reported to cooperate with H-1PV for tumor suppression in
human carcinoma animal models.
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CLINICAL EVIDENCE OF OV-MEDIATED ACTIVATION OF
IMMUNE RESPONSES IN HUMANS
Extensive analyses were performed to evaluate mechanisms-of-
action of the oncolytic and immunotherapeutic vaccinia virus
Pexa-Vec in patients. These include oncolysis (15, 77, 78),
acute vascular disruption (29) as well as anti-tumor immune
response induction. Pexa-Vec was engineered to express GM-
CSF to stimulate white blood cell production and activate DCs.
Detectable concentrations of GM-CSF in plasma were measured
4–15 days after treatment and associated with increased neu-
trophil, monocyte, and eosinophil production in patients receiv-
ing iv or it iPexa-Vec (77, 78). Inflammatory cell recruitment to
tumors was confirmed on biopsy following Pexa-Vec adminis-
tration in patients with melanoma (79, 80). Furthermore, func-
tional anti-cancer immunity of Pexa-Vec treatment was demon-
strated in patients by measuring induction of antibody-mediated
complement-dependent cytotoxicity (CDC) utilizing a panel of
tumor cell lines of different histologies (30). Low concentrations
of serum ex vivo incubated with tumor cells resulted in a dramatic
reduction in tumor cell viability; when normal cells did not exhibit
decreased viability. This activity was shown to be dependent on
both active complement as well as IgG antibody. Reproducible
CDC activity was also observed in a Phase II study in HCC patient
(18). Furthermore, T-cell responses to β-galactosidase peptides
were detected in HCC patients treated with Pexa-Vec, as shown
by ELISPOT analysis. In that way, the proof-of-concept provides
that T-cell responses can be induced to transgenes encoded by
oncolytic vaccinia viruses (18).

Talimogene laherparepvec is an oncolytic immunotherapy
comprising a modified HSV type 1 engineered to selectively
replicate in tumor cells and to express the immune-stimulating
cytokine GM-CSF, while retaining sensitivity to antiherpetic
agents (16). Local effects after intralesional injection include
selective lysis of tumor cells and subsequent release of tumor
antigen, as well as secretion of GM-CSF into the local environ-
ment, which results in the stimulation and maturation of DCs
(32, 81). Antigen presentation by stimulated DCs to CD4+ and
CD8+ cells may induce an adaptive systemic immune response
(16, 82, 83). Recently a randomized, Phase III trial of talimo-
gene laherparepvec in patients (pts) with unresected melanoma
with regional or distant metastases (OPTiM) met its primary
endpoint, demonstrating a significant improvement in durable
response rate (defined as partial or complete responses that were
maintained for≥6 months starting within 12 months) versus GM-
CSF alone (16 versus 2%, p < 0.0001) (17). Overall response rate
was also higher in the talimogene laherparepvec arm (26.4 versus
5.7%, p < 0.0001). Subjects treated with talimogene laherparepvec
showed a tolerable safety profile with the only grade 3/4 adverse
event that occurred in >2% of patients being cellulitis (2.1%).
A trend toward improved overall survival was seen based on a
planned interim analysis (17). The primary overall survival results
are pending. Evidence of durable responses together with the
safety profile of talimogene laherparepvec supports evaluation of
combinations with other immunotherapies, such as high-dose IL-
2 or immune checkpoint blockade and with radiation therapy,
chemotherapy, and/or targeted therapies that might amplify the
anti-tumor response generated by talimogene laherparepvec (32).

DISCUSSION: POTENTIAL OF THE IMMUNOVIROTHERAPY
CONCEPT
Despite recent improvements in surgical, locoregional, and sys-
temic therapies, the prognosis of patients with gastrointestinal,
hepatobiliary, and pancreatic cancers remains dismal, and treat-
ment is limited to palliation in the majority of patients. These limi-
tations indicate an urgent need for novel therapeutic strategies (13,
64, 66, 84). Combinations of oncolytic viruses with new targeted
therapies draw much attention. It is however necessary to pro-
ceed with caution, as these therapies may interfere with pathways,
which are needed for replication of genetically modified viruses.
It was demonstrated that by interacting with the EGFR/RAS/RAF
pathway, sorafenib inhibits replication of Pexa-Vec in liver cancer,
when applied in combination. This is not surprising as Pexa-Vec
replication is in part dependent on the EGFR/RAS/RAF pathway
(85). Nevertheless, sequential therapy with Pexa-Vec followed by
sorafenib resulted in decreased tumor perfusion and was associ-
ated with objective tumor responses for HCC (85). It is noteworthy
that some oncolytic viruses such as parvovirus H-1PV also have
potential to inhibit neo-angiogenesis. Therefore, OV-based com-
bination treatments targeting both tumor cell proliferation and
tumor angiogenesis represent a promising strategy for impeding
the growth of various cancers (25).

Besides their low expression of TAA and low immunogenic-
ity, tumors can induce an immune tolerance milieu by releasing
anti-inflammatory cytokines such as IL-10 or TGF-β or recruit-
ing Tregs to their microenvironment (86). T-cell activation relies
on both, recognition of major histocompatibility complex (MHC)
molecules by the T-cell receptor (TCR), and on costimulatory sig-
nals. Depending on the type of costimulatory receptor, T-cells
can be activated or become anergic. For example, T-cell acti-
vation was prevented by engagement of CTLA-4 receptors with
CD80 or CD86. In contrast, engagement of CD80 or CD86 with
CD28 induced T-cell activation, often with a low affinity (87).
Thus, a promising therapeutic option to achieve strong anti-tumor
immune responses is the use of monoclonal antibodies against
CTLA-4 and PD-1 alone or in combination. Herein, the constitu-
tive expression of CTLA-4 and PD-1 on Tregs may play a crucial
role in inhibiting anti-tumor T-cell responses. Tregs are often
found in the peripheral blood of cancer patients and in the tumor
microenvironment. These cells suppress an optimal anti-tumor
immune response by preventing infiltrating CD8+ T-cells from
proliferating and producing cytolytic granules (88). BMS devel-
oped an anti-CTLA-4 monoclonal antibody named ipilimumab
and an anti-PD-1 monoclonal antibody named nivolumab. Both
antibodies were already tested in Phase III trials and found to
achieve clinically significant benefits in median overall survival
(89, 90). First pre-clinical studies of the combination of these
antibodies to achieve blockade of both CTLA-4 and PD-1 showed
increased tumor infiltration by CD4+ and CD8+ T-cells, enhanced
IFNγ and TNFα production, and reduced amounts of Tregs (91).
A Phase I study of nivolumab and ipilimumab combination in
advanced melanoma patients showed an outstanding activity in
65% of patients with an objective response rate of 40% (92). As
part of their further development and mechanistic understand-
ing, these antibodies against immune check points would certainly
deserve to be combined with OV in order to optimize anti-tumor
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immune responses. Preliminary data from a Phase Ib trial com-
bining talimogene laherparepvec with ipilimumab indicated that
the combination was tolerable and devoid of unexpected toxicities
(93). Exploiting these combinations represents a promising strat-
egy to bring oncolytic viruses from bench to bedside and to estab-
lish oncolytic virotherapy as a new effective immunotherapeutic
approach.

KEY CONCEPTS
• Key concept1: There is a consistent need for immunotherapies

in the treatment of human cancer.
• Key concept2: Oncolytic viruses reduce tumor burden and show

first clinical results in humans.
• Key concept3: Oncolytic viruses, such as parvovirus H-1PV,

induce effective anti-tumor immune responses.
• Key concept4: Combinations of oncolytic viruses with

immunotherapeutics are likely to achieve enhanced immune
activation.
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