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SARS-CoV-2 Spike protein S2 subunit modulates
γ-secretase and enhances amyloid-β production in
COVID-19 neuropathy
Guanqin Ma1, Deng-Feng Zhang1,2,3, Qing-Cui Zou2, Xiaochun Xie1, Ling Xu1,2,3, Xiao-Li Feng2, Xiaohong Li1,
Jian-Bao Han2, Dandan Yu1,2,3, Zhong-Hua Deng2, Wang Qu2, Junyi Long2, Ming-Hua Li2✉,
Yong-Gang Yao 1,2,3,4✉ and Jianxiong Zeng1,2,3,5✉

Dear Editor,
SARS-CoV-2-induced multi-lineage neural cell dys-

regulation has been documented1. SARS-CoV-2 infec-
tion elevates neuroinflammation2, alters brain structure3

leads to abnormal accumulation of neurodegenerative
amyloid-β (Aβ) and phosphorylated tau4,5, and increases
the risk of cognitive impairment6 in COVID-19 patients.
However, the mechanism underlying neurological dys-
functions following SARS-CoV-2 infection remains
largely unknown.
To evaluate long-term impact of SARS-CoV-2 infection

to the brain, the hACE2 transgenic mice as described
previously7 were intranasally infected with a single low
dose (1 × 102 TCID50) of prototyped SARS-CoV-2 and
maintained for up to 30 days post infection (dpi) (Fig. 1a).
Presence of SARS-CoV-2 was found in cortex at 7 dpi but
not at 30 dpi by the viral Spike protein immunostaining
(Supplementary Fig. S1a). We found a remarkable acti-
vation of Iba1+ microglia and GFAP+ astrocytes in the
hippocampus and cortex of infected mice at 30 dpi
(Supplementary Fig. S1b–e), suggesting a persistent neu-
roinflammation. We looked for further brain changes by

analyzing transcriptomics of the hippocampal tissues at
30 dpi (Supplementary Fig. S2a). A series of dysregulated
genes or pathways were identified in response to SARS-
CoV-2 infection (Supplementary Table S1). Gene ontol-
ogy analysis revealed that the upregulated genes were
mainly enriched in pathways related to antiviral immune
response and aging, while the downregulated genes were
enriched in neuronal function-related pathways such as
synaptic vesicle clustering (Fig. 1b). Specifically, the neu-
roinflammatory genes Trem2, Ifitm3 and Gfap were sig-
nificantly upregulated, whereas the neuronal genes Map2
and Synapsin II (Syn2) were downregulated. Unexpect-
edly, mRNA levels of amyloid precursor protein (APP)
processing-related genes such as Bace1, Aph1, Presenilin 1
(Psen1), Nicastrin (Ncstn), and Psenen were unchanged
(Fig. 1c). The upregulation of Trem2 and Gfap, the
downregulation of Map2 and Syn2, and the un-alteration
of Bace1 and Psen1 were validated by quantitative real-
time PCR (Supplementary Fig. S2b). Such expression
patterns were also observed in the brain transcriptomic
dataset obtained from COVID-19 patients by single-
nucleus RNA sequencing2 (Supplementary Fig. S3a–c).
These results suggest that the presence of the neurode-
generative hallmarks in COVID-19 brain might not be
regulated at the transcriptional level but through an
unknown regulatory mechanism.
To explore potential mechanisms underlying COVID-

19-related neuropathology, we tested whether SARS-
CoV-2 membrane protein plays a role in this process.
The γ-secretase complex, comprising PEN-2, APH-1, PS1
and NCT, is a critical membrane complex contributing to
Aβ production in Alzheimer’s disease (AD) pathogenesis8.
Initially, we conducted co-immunoprecipitation (co-IP) in
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HEK293T cells and found that SARS-CoV-2 Spike
S2 subunit (S-S2), but not S-S1 protein, interacted indi-
vidually with PEN-2 (Fig. 1d), APH-1 (Fig. 1e), PS1 (Fig. 1f)
and NCT (Fig. 1g), and even bound to all these four
components (Fig. 1h). The inverse co-IP could validate
the interactions between S-S2 and PS1 or NCT (Supple-
mentary Fig. S4a, b). To determine whether C-terminal
transmembrane™ domain in S-S2 constitutes the struc-
tural basis for its interaction with γ-secretase, we exam-
ined membrane (M) protein of SARS-CoV-2 but found no
interaction with PEN-2 and PS1 (Supplementary Fig. S4c,
d), suggesting a specific interaction between S-S2 and
γ-secretase. We next performed glutathione s-transferase
(GST) pull-down and found that S-S2 can directly bind to
PS1 and NCT (Supplementary Fig. S4e, f). Immunocy-
tochemistry assay showed the co-colocalization of S-S2
with γ-secretase components individually in Hela cells
(Supplementary Fig. S4g–j) and in the brain sections of
infected mice at 7 dpi (Supplementary Fig. S4k).
SARS-CoV-2 Omicron variant (BA.1) Spike S2 subunit

possesses six mutations (N764K, D796Y, N856K, Q954H,
N969K, and L981F) compared to the prototype9. To see
whether these mutations would interfere with its inter-
action with γ-secretase, co-IP assay in HEK293T cells
showed that Omicron S-S2 not only interacted efficiently
with PS1 and NCT (Supplementary Fig. S5a, b), but also
had a comparable binding capacity to PS1 and NCT as
prototyped S-S2 (Supplementary Fig. S5c, d), suggesting
Omicron BA.1 S-S2 is capable of binding to γ-secretase.
An enzymatic cleavage of the APP by both β-secretase

and γ-secretase, acting together, produces Aβ, which can
cause widespread neuropathy within brain and is a
pathological hallmark of AD10. The cleavage site of γ-
secretase is located on C-terminal APP, namely APP

C-terminal 99 fragment (APP-C99) only contains the
cleavage site of γ-secretase. As a result, APP intracellular
domain (AICD) at C-terminal C99 domain is produced by
γ-secretase cleavage11. To examine whether the interac-
tion between S-S2 and γ-secretase modulates the cleavage
activity, we initially detected the production of AICD.
Immunoblot showed that prototyped S-S2 promoted the
production of flag-tagged AICD, whereas the expression
of APP and NCT was largely unchanged (Fig. 1i). This was
validated by the observation of the increased production
of flag-tagged AICD in U251-C99 cells while the expres-
sion of APP and NCT was largely unaltered (Fig. 1j).
Similarly, Omicron S-S2 also increased the production of
flag-tagged AICD, while the expression of APP and PS1
was unchanged (Fig. 1k). These results demonstrate that
the increased production of AICD from the APP cleavage
was caused by S-S2 modulation of γ-secretase.
HEK-APP69512 cells transfected with prototyped S-S2,

but not the M, produced higher level of Aβ40 than non-
transfected cells via enzyme-linked immunosorbent assay
(ELISA), while a similar increase of Aβ40 was also
observed upon the transfection of IFITM3 as a positive
control13 (Supplementary Fig. S6a). To further evaluate
this effect, we used neuronal cells including U251 and
mouse primary neurons, both endogenously expressing
APP protein. Lentiviral transduction of prototyped S-S2
or IFITM3 invariably caused the increase of Aβ40 or Aβ42
production as compared to empty-vector lentivirus
transduction in U251 cells (Supplementary Fig. S6b) and
mouse primary neurons (Fig. 1l), whereas lentiviral
transduction of the M did not have such an effect. As
expected, mouse primary neurons transduced with lenti-
viral Omicron-S-S2 produced higher Aβ40 and Aβ42
levels (Supplementary Fig. S6c). These results demonstrate

(see figure on previous page)
Fig. 1 SARS-CoV-2 Spike protein S2 subunit binds to and modulates γ-secretase to enhance Aβ production. a hACE2 transgenic mice were
intranasally (i.n.) infected by prototyped SARS-CoV-2. Brain cortical or hippocampal tissues were collected for immunofluorescence (7 or 30 dpi) and
RNA-seq analysis (30 dpi). b Enrichment analysis of representative biological processes in the hippocampal RNA-seq data at 30 dpi in a. c Expression
pattern of representative genes within the categorized gene ontology as indicated. d–g co-IP assays of anti-flag monoclonal antibody in
HEK293T cells transfected with vector, S-S1-flag or S-S2-flag, together with myc-tagged PEN-2 (d), APH-1 (e), PS1 (f), and NCT (g). h co-IP assays of
anti-flag monoclonal antibody in HEK293T cells co-transfected with myc-tagged PEN-2, APH-1, PS1 and NCT, together with S-S2-flag. i HEK293T cells
were transfected with expression vector of APP-C99 with C-terminal flag tag (0.5 μg) and increasing amount of prototyped S-S2-Flag (0, 0.25, and
0.5 μg) in 12-well plates for 36 h. j U251-C99 cells were transduced with lentivirus carrying prototyped S-S2-Flag in 12-well plates for 36 h. The
production of AICD (red arrows) in i and j was examined by immunoblot analysis. k HEK293T cells were co-transfected with expression vector of APP-
C99 with C-terminal flag tag (APP-C99-Flag, 0.5 μg) and increasing amount (0, 0.25 or 0.5 μg) of Omicron S-S2-Flag in 12-well plates for 36 h. The
production of AICD (red arrow) from APP-C99 was detected by immunoblot analysis. l Mouse primary neurons were isolated from embryonic (E18.5)
brains and cultured in 24-well plates. Neurons were transduced with lentivirus carrying empty vector (vector), prototyped S-S2, M, or IFITM3 for 36 h.
The Aβ40 (left) and Aβ42 (right) levels in the supernatants were quantified by ELISA. Means ± SD; n= 4; n.s., not significant; *P < 0.05; **P < 0.01, one-
way ANOVA with Bonferroni’s post hoc test. m Representative anti-Aβ antibody staining of cortical (CTX) and hippocampal (HP) sections in APP/
PS1ΔE9 mice with AAV delivery of prototyped S-S2 (AAV-S-S2) and AAV control (AAV-Vector). Scale bar, 500 μm. n Quantitative analysis of the number
of Aβ plaques and the percentage of area covered by Aβ plaques in cortical (upper) and hippocampal (bottom) tissues inm. Each slide was counted
for Aβ plaque number and Aβ plaque area via ImageJ software, and the percentage of the plaque area was calculated. o Representative
immunofluorescence of microglial marker TMEM119 protein in hippocampal sections of AAV-S-S2 or AAV-Vector. Scale bar, 30 μm. p Quantification
of percentage of TMEM119+ area in o. Statistical analyses for n and p, Means ± SD; n= 6 (AAV-Vector group) or n= 7 (AAV-S-S2 group); *P < 0.05;
**P < 0.01; ***P < 0.001, Student’s t-test.
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that SARS-CoV-2 Spike S2 subunit can modulate γ-
secretase to increase Aβ production.
To investigate whether S-S2 modulates γ-secretase

in vivo, we examined hippocampal and cortical tissues of
APPswe/PSEN1dE9 (hereafter referred to as APP/
PS1ΔE9) mice, which have mutated human APP (Swedish
mutations K595N/M596L) and the human PSEN1/PS1
lacking exon 914, 2 months after AAV delivery of S-S2.
Immunohistochemistry showed a widespread over-
expression of S-S2 in hippocampal tissues (Supplemen-
tary Fig. S7a). Measurement of soluble and insoluble Aβ
levels using ELISA showed that soluble Aβ42 species, but
not insoluble Aβ40 and Aβ42 and soluble Aβ40, were
markedly increased in cortical tissues of APP/PS1ΔE9
mice with S-S2 overexpression relative to empty vector
group (Supplementary Fig. S7b–e). Similarly, immunos-
taining showed a significant increase of Aβ burden in
cortical and hippocampal tissues of APP/PS1ΔE9 mice
after S-S2 delivery (Fig. 1m). The delivery of S-S2
increased the Aβ plaque-deposited area in cortical and
hippocampal tissues of APP/PS1ΔE9 mice (Fig. 1n).
Overall, overexpression of SARS-CoV-2 S-S2 in hippo-
campus exacerbated Aβ burden in APP/PS1ΔE9 mice.
Neuroinflammation, an important factor in AD patho-

genesis, promotes Aβ pathology15. A significant increase
of Iba1+ microglia and GFAP+ astrocytes (Supplementary
Fig. S8a–c) was observed in hippocampal tissues of APP/
PS1ΔE9 mice after delivery of S-S2. Staining of microglial
marker TMEM119 validated the elevated neuroin-
flammation following S-S2 delivery (Fig. 1o, p). These
results demonstrated that S-S2 overexpression increased
Aβ deposit and caused neuroinflammation in Aβ pathol-
ogy of APP/PS1ΔE9 mice. Both the area covered by
NeuN-labeled neuronal cells and the thickness of NeuN-
labeled CA1 subfield (Supplementary Fig. S8d–f) were not
significantly altered in hippocampal tissues following S-S2
delivery, suggesting that S-S2 overexpression might not
cause neuronal loss after AAV delivery for 2 months.
In summary, we have identified S-S2 subunit as a γ-

secretase modulatory protein and revealed a previously
unknown mechanistic insight into COVID-19-related
neuropathological sequelae (Supplementary Fig. S9). A
systematical examination of multiple Omicron sub-
variants (Supplementary Fig. S10) on potential brain
dysfunction would be inspired in future studies. The Spike
protein could function as an immune switch to increase γ-
secretase activity and Aβ production and contribute to
neurological changes in COVID-19 patients.
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