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Abstract

In this review, we consider a selection of recent advances in chloroplast biology. These include new
findings concerning chloroplast evolution, such as the identification of Chlamydiae as a third partner
in primary endosymbiosis, a second instance of primary endosymbiosis represented by the
chromatophores found in amoebae of the genus Paulinella, and a new explanation for the longevity of
captured chloroplasts (kleptoplasts) in sacoglossan sea slugs. The controversy surrounding the three-
dimensional structure of grana, its recent resolution by tomographic analyses, and the role of the
CURVATURE THYLAKOID1 (CURT1) proteins in supporting grana formation are also discussed.
We also present an updated inventory of photosynthetic proteins and the factors involved in the
assembly of thylakoid multiprotein complexes, and evaluate findings that reveal that cyclic electron
flow involves NADPH dehydrogenase (NDH)- and PGRL1/PGR5-dependent pathways, both of which
receive electrons from ferredoxin. Other topics covered in this review include new protein
components of nucleoids, an updated inventory of the chloroplast proteome, new enzymes in
chlorophyll biosynthesis and new candidate messengers in retrograde signaling. Finally, we discuss the
first successful synthetic biology approaches that resulted in chloroplasts in which electrons from the
photosynthetic light reactions are fed to enzymes derived from secondary metabolism.

General characteristics of chloroplasts
The first photosynthetic eukaryotes originated more than
1000 million years ago through the primary acquisition
of a cyanobacterial endosymbiont by a eukaryotic host,
which subsequently gave rise to glaucophytes (whose
photosynthetic organelles are called “cyanelles”), red
algae (containing “rhodoplasts”) and green algae and
plants (with “chloroplasts”). Other major photosyn-
thetic eukaryotic lineages arose when eukaryotic hosts
engulfed a free-living photosynthetic eukaryote (e.g. red
or green alga), initiating secondary and tertiary endo-
symbioses [1]. Therefore, chloroplasts are organelles that
are characteristic of plant and green algal cells, but still
exhibit many prokaryotic features.

During evolution, the cyanobacterium-derived genomehas
undergone a dramatic reduction in size, mainly as a result

of outright gene loss and the large-scale transfer of genes to
the nuclear genome. Thus, the genomes of modern
chloroplasts (plastomes) contain only 120-130 genes,
most of which encode components of the organelle‘s
gene expression machinery and its photosynthetic
apparatus, and are organized in nucleoids that show
both prokaryotic and eukaryotic features. However,
chloroplasts contain many more protein species than
their plastomes can code for. Hence, the majority of
chloroplast proteins are now encoded by the nuclear
genome and must be imported post-translationally into
the organelle [2].

Apart from photosynthesis, chloroplasts are capable of
performing many other specialized functions that are
essential for plant growth and development — nitrate
and sulphate assimilation, and the synthesis of amino
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acids and fatty acids, chlorophyll and carotenoids. To
carry out these tasks, their membrane systems are
equipped with specialized transport functions. The
outer and inner envelope membranes mediate the
import and sorting of proteins and the exchange of
metabolites, while protein complexes in the thylakoid
membranes implement the proton and electron trans-
port processes that are an essential part of the photo-
synthetic light reactions. The thylakoids of land plants,
where photosynthesis takes place, display an intricate
architecture, with regions of stacked and appressed
thylakoid membranes forming so-called grana. More-
over, plastids communicate with the nucleus by retro-
grade signaling to adjust the expression of nuclear genes
according to the metabolic and developmental state of
the organelle.

Chloroplast evolution
Primary endosymbiosis: a ménage à trois?
New evidence implies that primary endosymbiosis
might have been more complex than has been
envisaged hitherto, possibly involving a “ménage à
trois”. Members of the genus Chlamydia are obligate
intracellular bacteria, which include important patho-
gens of humans and other animals, and are found as
endosymbionts in amoebae and insects. Although
Chlamydiae are not found in plants, an unexpected
number of chlamydial genes share significant simila-
rities with plant genes [3,4], and these often contain a
plastid-targeting signal [5]. In several studies, between
21 and 55 genes were shown to be transferred between
Chlamydiae and primary photosynthetic eukaryotes
[6-8]. This suggests that a protist lineage that could
enter into a symbiosis with a particular cyanobacter-
ium was routinely infected by an ancestor of extant
Chlamydia that facilitated the establishment of the
cyanobacterial endosymbiont by Chlamydia-to-protist
lateral gene transfer [7]. Recent studies suggest that the
chlamydial symbiont compartment was probably not
the site of any essential biochemical pathway and was
maintained only until all possible chlamydial genes
had been transferred to the host [6]. Thus, the two
critical steps in primary plastid endosymbiosis might
have been the secretion of effector proteins into the
host cytosol by intracellular chlamydial pathogens,
together with the maintenance of the afflicted host by
the cyanobiont, which supplied photosynthetic carbon
to a chlamydia-controlled assimilation pathway [6]. If
such complex interactions were indeed necessary for
the establishment of the primary endosymbiotic
relationship between plastid and host cytoplasms,
this could explain why endosymbiotic relationships
between heterotrophs and photoautotrophs were so
rarely successful in the long term [7].

A second primary endosymbiosis
Evidence has also emerged for an independent instance
of the primary endosymbiotic acquisition of a cyano-
bacterium — by the rhizarian amoeba Paulinella chroma-
tophora about 60 million years ago [9,10]. This organism
contains stably transmitted cyanobacterium-like photo-
synthetic organelles termed “chromatophores”, the
genome of which encodes about a quarter of the
protein-coding genes that can be found in its free-living
relative Synechococcus WH5701 [10]. Eleven putative
pseudogenes were identified, indicating that reductive
genome evolution is ongoing. More than 30 expressed
genes have been transferred from the chromatophore to
the nuclear genome of the host. In the case of three
photosynthetic genes that now reside in the nucleus,
biochemical evidence indicates that their products are
synthesized in the amoeba cytoplasm and delivered to the
chromatophores, where they form complexes with
chromatophore-encoded subunits [11]. This highlights
P. chromatophora as an exceptional model for the study of
early events in the generation of an organelle, and suggests
that protein import into bacterial endosymbionts might
be more widespread than is currently assumed [11].

What is the basis for the longevity of kleptoplasts?
Kleptoplasts are a special case of transient internal photo-
synthetic symbionts in otherwise non-photosynthetic
eukaryotes. In contrast to some lineages, in which the
cells of photosynthetic symbionts are retained in their
entirety (“photosymbionts”), other eukaryotes collect
and retain only the chloroplasts of photosynthetic
species, generating structures termed “kleptoplasts”
(reviewed in [12]). The most dramatic kleptoplast
association known to date occurs in the sacoglossan
sea slug Elysia chlorotica, which can maintain photo-
synthetically active kleptoplasts derived from ingested
xanthophyte algae for up to 10 months [13]. This gives
these animals their distinctive green colour, which is why
they are also called “leaves that crawl”, “solar-powered
slugs” or “photosynthetic slugs”. It is widely assumed
that the slugs survive starvation by means of kleptoplast
photosynthesis, yet direct evidence for this is lacking.
Moreover, the inference that kleptoplasts require many
proteins in order to support a photosynthetic lifestyle
implies that essential genes for photosynthesis have been
transferred by lateral gene transfer (LGT) from the alga to
the slug, and in fact one instance of a tentative transfer
has been reported so far [14]. However, no evidence for
massive LGT has been obtained, and genome- and
transcriptome-wide approaches actually argue against it
[15,16]. Recently, doubts have been raised as to whether
these molluscs are actually dependent upon photosynth-
esis, and the role of light in the survival of the sea slugs
was reinvestigated [17]. Surprisingly, photosynthesis was
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found not to be essential for the slugs to survive months
of starvation, which explains the lack of LGT from alga to
animal in these species. A possible explanation for the
longevity of the sacoglossan kleptoplast was suggested
previously: plastids that remain photosynthetically active
within slugs for periods of months share the property of
encoding FtsH, a D1 quality-control protease that is
essential for photosystem II repair [18]. A replenishable
supply of chloroplast-encoded FtsH could, in principle,
rescue kleptoplasts from D1 photodamage, thereby
influencing plastid longevity in sacoglossan slugs.

Chloroplast structure
Nucleoids
A single mesophyll chloroplast can contain up to
300 chromosomes, which are organized into complex
structures called “nucleoids”, each consisting of 10-20
copies of the plastid genome, together with RNA and
various proteins (for a recent review see [19]). Owing to
their endosymbiotic origin and the fact that photosyn-
thetic metabolism goes on all around them, nucleoids
have a unique composition and organization, and display
features typical of prokaryotic nucleoids, as well as
attributes of eukaryotic chromatin. Nucleoids contain all
the enzymes necessary for transcription, replication and
segregation of the plastid genome (reviewed in [20]). In
addition, mRNA processing and editing, as well as
ribosome assembly, take place in association with
the nucleoid, suggesting that these processes occur co-
transcriptionally. However, few nucleoid proteins have
been characterized in detail [19,21].

Proteomic analysis of nucleoid preparations has identified
new DNA-binding proteins, some of which were not
inherited from the prokaryotic ancestors [22,23]. One
group of proteins in particular have been described,
which contain a so-called SWIB domain that has
previously been shown to be part of chromatin
remodelling complexes in yeast. This domain is present
in 20 proteins in Arabidopsis, and at least four of these
are located in the chloroplast [23]. The SWIB-domain
proteins in chloroplasts are small proteins with a high
isoelectric point and a high lysine content and might
serve as functional replacements for the bacterial
histone-like, DNA-binding HU proteins known from
Escherichia coli [23]. Thus one of them, SWIB-4, has a
histone H1-like motif and binds to DNA, and recom-
binant SWIB-4 has been shown to induce compaction
and condensation of nucleoids, and functionally
complements an E. coli mutant that lacks the
histone-like nucleoid structuring protein H-NS [23].

The two suppressor of variegation 4 (SVR4) proteins
(SVR4 and SVR4-like),  originally  identified  in

Arabidopsis [24], both have orthologues in all dicot
and monocot plants sequenced so far, whereas the moss
Physcomitrella patens and spikemoss Selaginella moellen-
dorffii contain only one gene copy, indicating that a gene
duplication took place in the progenitor of vascular
plants [25]. Inactivation of either SVR4 or SVR4-like in
Arabidopsis results in seedling lethality [24,26]. Both
proteins are localized in the chloroplast, expressed
during early stages of chloroplast development, and
contain 20% negatively charged amino acid residues
[26]. Given the inherent risk of random aggregation of
the negatively charged nucleic acids and basic proteins,
such as histones and ribosomal subunits [27-29], SVR4
and SVR4-like could function as negatively charged
molecular chaperones that mimic nucleic acids or serve
as decoys [28,30] to allow for the establishment of
productive DNA/RNA-protein interaction in developing
chloroplasts, where dramatic rearrangements in nucleoid
organization take place [26].

Thylakoid architecture
A structural hallmark of thylakoid membranes in plants
are the so-called “grana” (reviewed in [31]). Grana
cylinders are made up of stacks of flat grana membrane
discs with a diameter of about 300-600 nm, which are
enwrapped in (and interconnected by) the unstacked
stroma lamellae. Tightly curved margins form the
periphery of each discoid sac. For a typical granum
from Arabidopsis thaliana the membrane bilayers are on
average 4.0 nm thick, lumen thickness is 4.7 nm and
discs are separated by a 3.6 nm gap [32].

The exact three-dimensional architecture of grana is still
under debate, and two quite different types of models
have been proposed: the “helical” model and several
“fork/bifurcation” models. In the helical model, thyla-
koids comprise a fretwork of stroma lamellae, which
wind around grana stacks as a right-handed helix,
connecting individual grana disks via narrow mem-
brane protrusions (Figure 1). The grana are connected
to each other solely by the stroma lamella helices,
which are tilted at an angle ranging from 10 to 25°,
with respect to the grana stacks [33-35], and make
multiple contacts with successive layers in the grana
through slits located in the rims of the stacked
discs. The fork/bifurcation models, on the other
hand, postulate that the grana themselves are
formed by bifurcations of stroma lamellae. Thus,
Arvidsson and Sundby (1999) suggested that a
granum contains piles of repeat units, each
containing three grana discs, which are formed by
symmetrical invaginations of a thylakoid pair caused
by the bifurcation of the thylakoid membrane [36]
(Figure 1). Shimoni et al. (2005) presented another
model in which grana discs are paired units formed by
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simple bifurcation of stroma thylakoids [37] (Figure 1).
Here, the granum-stroma assembly is formed by
bifurcations of the stroma lamellar membranes into
multiple parallel discs. The stromal membranes form
wide lamellar sheets that intersect the granum body
roughly perpendicular to the long axis of the granum
cylinder [37,38]. In this model, adjacent granum layers
are joined not only through the stroma lamellae, but
via the bifurcations and through direct membrane
bridges. This model can also be used to explain the
rearrangements seen in thylakoids during state trans-
itions [39]. The mutual incompatibility of the helical
and bifurcation models has led to a great deal
of debate [33,35,38,40,41], but recent tomographic
data clearly support the helical model [33,40].

Lateral heterogeneity of thylakoids
The term “lateral heterogeneity” refers to the observation
that grana and stroma lamellae differ in their protein
composition. Photosystem II and light-harvesting com-
plex (LHC)II are concentrated in the grana, while
photosystem I with its LHCI and the chloroplast ATP
synthase are localized in the unstacked thylakoid regions,
that is the stroma lamellae and grana endmembranes. The
cytochrome b6f complex (Cyt b6f) can be found in both

appressed and non-appressed regions of thylakoids
(reviewed in [41,42]). The NDH complex and the
PGRL1-PGR5 heterodimer – the two thylakoid complexes
specifically involved in cyclic electron flow – are less
abundant than the aforementioned four major thylakoid
complexes and are located in the stroma lamellae [43–45],
where they can functionally interact with photosystem I as
an electron donor. While the bulkiness of the NDH
complex precludes its location in grana, PGRL1 homo-
dimers have been detected in grana [43].

Detection of several of the major thylakoid multiprotein
complexes in margin-enriched fractions of thylakoids by
biochemical methods has been reported in some
experiments. However, the marked curvature of thyla-
koid membranes at the grana margins is essentially
incompatible with the presence of the larger multi-
protein complexes at these sites. Therefore, grana
margins have been thought to be essentially protein-
free (reviewed in [42]). However, following the recent
demonstration, by immunogold labelling, that CURT1
proteins— small polypeptides with two transmembrane
regions and a putative N-terminal amphipathic helix —

are localized to grana margins [46], this view must be
revised. Interestingly, the CURT1 proteins appear to

Figure 1. The helical model of thylakoid architecture

A fretwork of stroma lamellae, which wind around the ascending grana stacks as a right-handed helix connects to individual grana discs via narrow membrane
protrusions (indicated by dotted circles in the side view). Adapted with permission [31] 2014. Journal of Experimental Botany doi:10.1093/jxb/eru090.
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control the level of grana stacking, which points to an
unsuspected role of grana margins in regulating the
fraction of thylakoid membranes incorporated into the
appressed regions that make up grana.

Chloroplast functions
Chloroplast proteins: mutants and proteomes
Estimates for the size of the chloroplast proteome in
Arabidopsis range from 2000 [47] to 4400 (http://www.
plastid.msu.edu/) different proteins. In the course of the
Chloroplast 2010 Project (http://www.plastid.msu.edu/),
homozygous mutants for several thousand nuclear
genes with chloroplast functions were identified and
phenotypically characterized. Despite extensive screen-
ing, for several hundred genes no homozygous mutant
alleles were discovered, suggesting that these might
represent genes with essential functions. More recently,
lines that had failed to yield any homozygotes when
grown in soil were tested for homozygous lethality
owing to defects either in seed or seedling development
[48,49]. Mutants arrested at various stages of seed
development (and with defects in seedling development
that responded to supplementation with sucrose, amino
acids or to CO2 enrichment) were indeed uncovered.
This resulted in an annotation of more than 200
publically available Arabidopsis mutants, including
36 and 33 genes with one and two, respectively,
independent seed- or seedling-development-defective
mutant alleles. The study also resulted in the submission
of 521 homozygous mutants and 128 seed stocks
segregating for lethal alleles to the Arabidopsis Biological
Resource Center (ABRC; http://www.arabidopsis.org    .).

Proteomics usefully complement the reverse genetics
approach to chloroplast function outlined above. Driven
by recent advances in bioanalytical and computational
technologies, the strategy allows for identification, and
reasonably accurate quantification, of thousands of
proteins in complex mixtures, as well as the ability to
characterize post-translational modifications, such as
acetylation, glycosylation and phosphorylation
(reviewed in [50]). An attempt to obtain a high-quality
inventory of the plastid proteome has led to the
identification of 1564 and 1559 proteins for maize and
Arabidopsis, respectively [51]. These estimates were
based on both manual curation of published experi-
mental information, including more than 150 proteo-
mics studies devoted to different subcellular fractions,
and new quantitative proteomics experiments on plastid
subfractions. These figures correspond to an estimated
40% and 50% of all plastid proteins in maize and
Arabidopsis, respectively — the most comprehensive
inventory assembled so far. Recently, members of the
Arabidopsis proteomics community decided to develop

a summary aggregation portal that is capable of retrieving
proteomics data froma series of online resources on the fly
[52]. The web portal is known as the MASCP Gator and
can be accessed at the following address: http://gator.
masc-proteomics.org/.

Chlorophyll biosynthesis
Biosynthesis of chlorophyll takes place in the plastid,
and the initial steps in the pathway leading to proto-
porphyrin IX are common to the biosynthesis of other
tetrapyrroles, such as heme. Important discoveries in
chlorophyll biosynthesis include the demonstration that
plastid glutamyl-transfer RNA is involved in the
formation of glutamate-1-semialdehyde [53], which is
subsequently converted into 5-aminolevulinic acid
— the universal precursor of tetrapyrrole biosynthes-
is in all organisms (reviewed in [54]), and the
finding that the enzyme Mg-chelatase (which catalyzes
the insertion of the Mg2+ ion into protoporphyrin
IX) contains three different protein subunits:
ChlH, ChlI, and ChlD [55,56]. Later, the
GENOME UNCOUPLER4 (GUN4) was found to bind
both the substrate and the product of the Mg-chelatase,
thereby dramatically enhancing the activity of the
enzyme [57]. GUN4 also reduces the threshold
Mg2+ concentration required for activity at low
porphyrin concentrations [58], and it was proposed to
have a protective function in tetrapyrrole trafficking [59]
and to control Mg-chelatase activity at physiologically
significant Mg2+ concentrations [58]. More recently, it
was shown that GUN4 interacts with the ChlH subunit
of the enzyme [60,61].

One of the least understood steps in chlorophyll
biosynthesis is the formation of the isocyclic “fifth”
ring (ring-E), which is catalyzed in plants by the aerobic
cyclase system (ACS). The overall cyclase reaction is a six-
electron oxidation proposed to occur in three sequential
steps: (a) hydroxylation of the methyl-esterified ring-C
propionate by incorporation of atmospheric oxygen;
(b) oxidation of the resulting alcohol to the corresponding
ketone; (c) reaction of the activated methylene group
with the g -mesocarbon of the porphyrin nucleus in an
oxidative reaction involving the removal of two protons
to yield the “fifth” ring [62]. At the biochemical level, the
ACS requires both soluble and membrane-bound
chloroplast fractions and, in barley, at least two mutants
exist (xantha-l and viridis-k) which are defective in the
membrane components [63]. Thus, the ACS may be
composed of three gene products: a soluble protein and
two membrane-bound components — one encoded in
barley by Xantha-l and the other by Viridis-k. So far, only
AcsF (which corresponds to Xantha-l in barley, CRD1 in
Chlamydomonas or CHL27 in Arabidopsis) has been
unambiguously identified [63–65]. As diiron enzymes
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are known to perform hydroxylation and cyclization of
keto intermediates, AcsF could be involved in one or
more of the proposed cyclase steps. Recent progress has
come from pull-down experiments using FLAG-tagged
versions of the two AcsF-like gene products in Synecho-
cystis in combination with protein mass spectrometry,
which have identified the soluble YCF54 protein as a
new putative subunit of ACS [66]. Inactivation of the
Synechocystis ycf54 gene resulted in significantly reduced
chlorophyll levels, marked accumulation of the substrate
of the cyclase, Mg-protoporphyrin IX methyl ester, and
only traces of its product, protochlorophyllide, indicat-
ing that YCF54 is essential for the activity and/or stability
of the oxidative cyclase. Future experiments must clarify
whether YCF54 is the long-sought soluble component of
the cyclase system, or whether it functions in AcsF
synthesis/maturation or in cyclase assembly. Low chlor-
ophyll accumulation A (LCAA), the tobacco homologue
of YCF54, might have an additional role in the feedback-
control of 5-aminolevulinic acid biosynthesis [67].
Because the structure of YCF54 is similar to that of the
photosystem II assembly factor Psb28 (see Table 1),
YCF54 might also be involved in coordinating chlor-
ophyll biosynthesis and photosystem biogenesis.

Photosynthesis: new proteins and new functions
It comes as a surprise to learn that some proteins that are
directly involved in the light reactions of photosynthesis
have remained unidentified until very recently. Thus,
although antimycin A-sensitive cyclic electron flow (AA-
sensitive CEF), which serves to recycle electrons from
ferredoxin to plastoquinone, was discovered by Arnon

and co-workers more than 50 years ago, it is only a few
years since the proteins responsible were identified. A
role in AA-sensitive CEF has been attributed to the two
thylakoid proteins PGR5 [68] and PGRL1 [69] ever since
their identification, but this assignment has remained
controversial. Indeed, current technical limitations still
preclude unequivocal clarification of their precise func-
tion in CEF in vivo, but recent biochemical experiments
have shown that PGRL1/PGR5 complexes possess
ferredoxin-plastoquinone reductase (FQR) activity in
vitro [43]. Consequently, PGRL1-PGR5 complexes in
flowering plants appear to shuttle between photosystem
I and the cytochrome (Cyt) b6f complex, whereas in the
green alga Chlamydomonas PGRL1 (but not PGR5) has
been detected in a photosystem I cytochrome b6f
supercomplex that has intrinsic CEF activity [70].

The second pathway mediating CEF involves the so-called
“NAD(P)H dehydrogenase complex” or “NDH complex”.
Although the plant NDH complex is related to the NADH
dehydrogenase complexes of bacteria and mitochondria,
its function and composition are enigmatic. Recently, the
Shikanai group has identified three novel subunits of plant
NDH (CRR-31, -J and –L) and their functional character-
ization clearly indicated that CRR-31 supplies a docking
site for ferredoxin [71,72]. Therefore it can be concluded
that the plant NDH complex accepts electrons from
ferredoxin rather than NAD(P)H. Consequently, the
authors of the first study proposed that the term “NDH”

be retained, but used tomean “NADHdehydrogenase-like
complex” rather than “NAD(P)H dehydrogenase com-
plex” [71]. In a strict sense, the NDH complex is also an

Table 1. Accessory factors involved in the assembly of thylakoid multiprotein complexes in plants and cyanobacteria

PSII PSI Cyt b6f cpATPase NDH

HCF136A[103]/
YCF48S[104]

YCF3C,T[85,86] CCS1C[105] ALB4A[106] AtCYP20-2A[107]

ALB3A,C[108,109]/
Slr1471S[110]

YCF4C,T[87,88] CCB1C,A[111,112] AtCGL160A[113] CRR1A[114]

YCF39S[115] YCF37S[116]/Pyg7[117] CCB2C,A[111,112] CRR6A[118]/Slr1097S[119]
LPA1A[120]/REP27C[121] PPD1T[122] CCB4C,A[111,112] CRR7A[123]
LPA2A[124] Y3IP1T,A[125] DACA[126] CRR41A[127]
LPA3A[128] PBF1T[129] CRR42A[127]
Slr2013S[130] HCF101A[131–133] NDF5A[134]
Psb27S[135–138]/
LPA19A[139]

RubAS[140,141] PAM68LA[75]

Psb28S[142]
Psb29/THF1S,A[143–145]
PratAS[146]
PittS[147]
AtCYP38A[148]
PAM68A,S[149]

Organism in which the assembly factor was functionally characterized: A, Arabidopsis, C, Chlamydomonas, S, Synechocystis or Synechococcus, T, tobacco.
Abbreviations: cpATPase, chloroplast ATP synthase; Cyt, cytochrome; PSI, photosystem I; PSII, photosystem II.
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FQR like the PGRL1/PGR5 complex (Figure 2). With
respect to its physical interaction with other thylakoid
complexes, the NDH complex has been shown, on the
basis of genetic and biochemical experiments [73], as well
as by electron microscopy analyses [74], to form super-
complexeswith photosystem I, such that two photosystem
I complexes bind to one NDH complex, with Lhca5 and 6
acting as linkers [73,74]. Interestingly, the association of
photosystem I with light-harvesting 1 proteins and the
NDH complex had evolved before the emergence of
vascular plants, as evidenced by analyses of photosystem I
in the moss P. patens [75,76].

The major thylakoid protein complexes require not only
structural proteins that serve as subunits but also accessory
proteins that mediate the correct assembly of the
complexes. Here, a plethora of factors has been
identified during the last few years and a picture emerged
in which such accessory factors constitute an integrative
network mediating the stepwise assembly of multiprotein
complex components (reviewed in [77-84]). Thus, it
appears that besides the set of actual subunits of the
photosystems, even more proteins are required for the
expression of the chloroplast-encoded subunits and their
assembly. In Table 1, we provide a list of the current

inventory of assembly factors identified in Arabidopsis,
Chlamydomonas, tobacco or cyanobacteria (Synechocys-
tis or Synechococcus) (Table 1). Interestingly, two
photosystem I assembly factors are encoded by chlor-
oplast genes: ycf3 and ycf4 [85-88]. An important function
in the chloroplast protein import machinery has been
recently assigned to another chloroplast open reading
frame, ycf1 [89]. However, such a tentative assignment of
an important function of the encoded Tic214 protein is
somehow at variance with the observation that chlor-
oplast genomes of Poaceae species lack the ycf1 gene.

Novel retrograde signals
The term “retrograde signalling” refers to the idea that
signals emanating from chloroplasts or mitochondria
can modulate nuclear gene expression. Proposed almost
30 years ago, the initial notion that a single plastid signal
might regulate the expression of nuclear genes involved
in plastid biogenesis has since expanded to accommo-
date the insight that multiple signals are produced by
plastids. While the ultimate effects of retrograde signal-
ling on nuclear gene expression have now been clearly
defined, many aspects of the initiation and transmission
of the signals, and their mode of action, remain
unresolved, speculative or controversial [90,91]. Rele-
vant signals are thought to be derived from various
sources, including (a) the pool of reactive oxygen species
(ROS), (b) the reduction/oxidation (redox) state of the
organelle, (c) organellar gene expression, and (d) the
tetrapyrrole pathway. More recently, “brand-new” retro-
grade signaling pathways have been described that
involve (e) metabolites — particularly 3’-phosphoade-
nosine 5’-phosphate (PAP) [92] and methylerythritol
cyclodiphosphate (MEcPP) [93] — and (f) a carotenoid
derivative (b-cyclocitral [b-CC]) [94].

Synthetic biology
Synthetic biology can broadly be defined as “the
deliberate (re)design and construction of novel biologi-
cal and biologically based systems to perform new
functions for useful purposes, that draws on principles
elucidated from biology and engineering” (http://www.
erasynbio.eu/index.php?index=32).

The plastome, at least in some species, such as tobacco,
tomato and Chlamydomonas, can be manipulated by
genetic transformation with large constructs made up of
foreign or synthetic DNA segments [95]. In fact, due to its
prokaryotic origin, the chloroplast genome offers many
advantages for genetic engineering because its genes are
organized in operons and many are co-expressed from a
single promoter as a polycistronic transcript that may
subsequently be processed further into monocistronic
mRNAs. Moreover, no position effects or epigenetic

Figure 2. Model for the different roles of PGRL1 in cyclic electron
flow in vascular plants and green algae

In the vascular plant Arabidopsis, cyclic electron flow (CEF) around
photosystem I (PSI) operates via two partially redundant pathways, an NDH-
dependent and the PGRL1/PGR5-dependent pathway. Only the latter is
inhibited by AA. Note that both the PGRL1/PGR5 and the NDH complex (via
Lhca5 and 6) can physically interact with PSI in Arabidopsis and accept electrons
only from ferredoxin (Fd) [43,71]. In the green alga Chlamydomonas, CEF can
be mediated by a PSI-Cyt b6f-PGRL1-ANR1-CAS supercomplex [70,150]. FNR,
ferredoxin NADP+ oxidoreductase; Pc, plastocyanin; PQ, plastoquinone; C,
D and E, stromal subunits of PSI. Adapted with permission 2013 Journal of
Experimental Botany doi:10.1093/jxb/eru090.
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gene-silencing mechanisms, like those observed with
nuclear transgenes, have been reported in chloroplasts
[96]. These features make the chloroplast compartment
especially amenable to the application of synthetic
biology to goals such as the sustainable synthesis of
chemicals and high-value products. Lu et al. [97] success-
fully demonstrated this by expressing the tocochromanol
pathway (which produces tocopherols and tocotrienols,
collectively called “vitamin E”) in the chloroplasts of
tobacco and tomato and achieving up to a tenfold increase
in total tocochromanol accumulation. This represents a
prime example of how overexpression of enzymes in the
chloroplast can redirect photosynthetically generated
carbon skeletons from the endogenous isoprenoid bio-
synthetic pathway into the production of higher levels of
tocopherols and tocotrienols.

It is highly desirable that novel pathways introduced into
the chloroplast should be able to tap directly the
chemical energy derived from sunlight in the form of
ATP, NADPH or even photo-reduced ferredoxin. One
group of enzymes which could potentially be used for
this purpose are the cytochrome P450 mono-oxygenases
(P450s), which are represented in all biological king-
doms and constitute one of the largest superfamilies of
enzymes known [98]. Most P450s are located in the
endoplasmatic reticulum, where they act as key enzymes

in the biosynthesis of a large number of high-value
bioactive natural compounds. Many of these compounds
are normally made in very small quantities and are
difficult to produce by chemical synthesis due to their
often complex structures [99]. P450s generally obtain the
electrons needed for their catalytic reactions fromNADPH
or NADH, but bacterial and mitochondrial P450s are also
known to accept electrons from ferredoxin. Therefore, a
direct link between photoreduced ferredoxin and P450s is
possible if the evolutionary compartmentalization of the
photosystems in the chloroplasts and of the majority of
the P450 pathways in the endoplasmatic reticulum can be
broken down.

The potential value of combining P450-mediated mono-
oxygenation reactions with photosynthesis was first
demonstrated in vitro when spinach chloroplasts were
brought together with microsomes from yeast expressing
a fusion between a P450 from rat (CYP1A1) and a
reductase. This mixture supported the light-driven
conversion of the P450 substrate 7-ethoxycoumarin
into 7-hydroxycoumarin [100]. More recently, it was
shown in vitro that electrons supplied by photosystem I
purified from barley could be transferred with high
efficiency to a P450 (CYP79A1) from Sorghum bicolor
via ferredoxin, thus eliminating the need for an
NADPH recycling system and a reductase [101].
Subsequently, it was shown that the P450-catalysed
pathway for the biosynthesis of dhurrin (a
cyanogenic glycoside) can be transferred from the
cytosolic endoplasmatic reticulum of S. bicolor into
the tobacco chloroplast [102]. To this end, fusion
proteins between a chloroplast transit peptide and
the coding regions of two P450 enzymes and a
uridine 5’-diphosphate (UDP) glucosyltransferase,
which together constitute the route to dhurrin biosynth-
esis, were successfully expressed in the chloroplasts of
transiently transformed tobacco leaves. Interestingly, the
chloroplast was able to provide the heme cofactor for the
proper assembly of the P450s, the tyrosine and UDP-
glucose substrates. The electron-demanding
P450-catalysed synthesis of dhurrin was driven by
directly tapping into light-driven reduction of
ferredoxin by photosystem I (Figure 3). Thus, this
example demonstrates that P450s that normally reside
in the endoplasmic reticulum membranes can be
targeted to the chloroplast and inserted into the
thylakoids and can act as receptors for electrons from
the light reactions of photosynthesis for use in the
biosynthesis of dhurrin.

Abbreviations
AA-sensitive CEF, antimycin A-sensitive cyclic electron;
ACS, aerobic cyclase system; Cyt, cytochrome; FNR,
ferredoxin NADP+ oxidoreductase; GUN4, GENOME
UNCOUPLER4; FQR, ferredoxin plastoquinone reductase;

Figure 3. Schematic representation of a light-driven metabolon
introduced into the thylakoids

Photosystem I (PSI) receives electrons from photosystem II via plastocyanin
(PC) and directs them to ferredoxin (Fd), which give them either to the
ferredoxin NADP+ oxidoreductase (FNR) for NADPH production or
directly to the two P450 enzymes (P450s). The two membrane-bound
P450s hydroxylate the substrate in two consecutive steps, and this is
followed by glycosylation by a soluble glucosyltransferase (GT) to form the
final stable product. The novel aspect of this approach is that photosynthetic
reducing power, in the form of reduced ferredoxin, is used directly by a
novel biosynthetic pathway to produce the product without the need for
numerous energy consuming metabolic conversions.
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LHC, light-harvesting complex; MEcPP, methylerythritol
cyclodiphosphate; NDH, NAD(P)H dehydrogenase; PAP,
3’-phosphoadenosine 5’-phosphate; SVR4, suppressor of
variegation 4; UDP, uridine 5’-diphosphate..
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