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Abstract
This study examined whether pupil size and response time would distinguish directed exploration from random exploration 
and exploitation. Eighty-nine participants performed the two-choice probabilistic learning task while their pupil size and 
response time were continuously recorded. Using LMM analysis, we estimated differences in the pupil size and response time 
between the advantageous and disadvantageous choices as a function of learning success, i.e., whether or not a participant 
has learned the probabilistic contingency between choices and their outcomes. We proposed that before a true value of each 
choice became known to a decision-maker, both advantageous and disadvantageous choices represented a random explora-
tion of the two options with an equally uncertain outcome, whereas the same choices after learning manifested exploitation 
and direct exploration strategies, respectively. We found that disadvantageous choices were associated with increases both 
in response time and pupil size, but only after the participants had learned the choice-reward contingencies. For the pupil 
size, this effect was strongly amplified for those disadvantageous choices that immediately followed gains as compared to 
losses in the preceding choice. Pupil size modulations were evident during the behavioral choice rather than during the 
pretrial baseline. These findings suggest that occasional disadvantageous choices, which violate the acquired internal utility 
model, represent directed exploration. This exploratory strategy shifts choice priorities in favor of information seeking and 
its autonomic and behavioral concomitants are mainly driven by the conflict between the behavioral plan of the intended 
exploratory choice and its strong alternative, which has already proven to be more rewarding.
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“A bird in the hand is worth two in the bush” – will you fol-
low this common wisdom, or will you ever abandon some-
thing good you already have and venture into the unknown 
in the vague hope of a bigger win? In a probabilistic envi-
ronment, people usually tend to imagine hidden regulari-
ties in the outcomes of their actions, even when no such 
regularities actually exist (Ellerby & Tunney, 2017; Unturbe 
& Corominas, 2007). Attempting to test their surmises and 
catch a lucky break, people explore apparently disadvanta-
geous options instead of just sticking to familiar profitable 
ones (Shanks et al., 2002). In fact, by doing so in probabilis-
tic experimental tasks involving truly random and mutually 

independent choice outcomes, they actually fail to maximize 
their profits (Guttel & Harel, 2005; Unturbe & Corominas, 
2007; Vulkan, 2000).

In contrast to typical artificial experimental conditions, 
outcomes of one’s actions in real life may be nonrandom 
and interdependent, e.g., the outcome of the next trial may 
be a consequence of the outcome of the previous trial. In 
this respect, exploring uncertain options instead of continu-
ously exploiting a more rewarding alternative might bring 
new information about possible rewards, and thus might 
increase payoffs in the long run (Cogliati Dezza et  al., 
2017; Sayfulina et al., 2020). From this perspective, the 
occasional switches from the prepotent value-driven advan-
tageous response tendency to a disadvantageous choice in 
the probabilistic task may be considered as directed explo-
ration—exploratory behavior that occurs when our desire 
for information overrides our need for reward. This crucial 
distinction between two qualitatively different types of 
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exploration—directed and random exploration—has recently 
gained growing attention in the literature (Payzan-LeNestour 
& Bossaerts, 2012; Schulz & Gershman, 2019; Schwarten-
beck et al., 2019; Wilson et al., 2014; Zajkowski et al., 
2017). Directed exploration is intentional and specifically 
related to information-seeking targeted at the most uncertain 
option. On the contrary, random exploration is essentially 
a noisy response-generation process, leading to choices 
made by chance. Importantly, such type of exploration may 
be observed during early stages of reinforcement learning 
(Averbeck, 2015; Cogliati Dezza et al., 2017; Schulz & Ger-
shman, 2019; Sutton & Barto, 1999), when all options are 
uncertain for the subject, or in conditions when the value 
of the most valuable option has decreased (Schwartenbeck 
et al., 2019)—thus also creating a need for learning the new 
rule of choice-reward contingency.

Random and directed forms of exploration are supposed 
to differ in underlying brain mechanisms (Warren et al., 
2017; Zajkowski et al., 2017). Yet, the distinction between 
the two forms of exploration has not been accounted for in 
many previous physiological studies of exploration–exploi-
tation dilemma.

For more than a decade, the adaptive gain theory (Aston-
Jones & Cohen, 2005) has been an important theoretical 
background that guided many neurocognitive studies of the 
balance between exploitation and exploration. According to 
this theory, the locus coeruleus-noradrenergic (LC-NA) neu-
romodulatory system plays an essential role in regulating the 
balance between the two strategies (Aston-Jones & Cohen, 
2005; Usher et al., 1999). Specifically, this theory proposes 
that the tonic mode of the LC-NA neuromodulatory system 
promotes disengagement from the task and processing of 
task-irrelevant stimuli, thus creating a proper control state 
for exploring the new options. The increased neuromodula-
tory activity occurring over rather long timescale is accom-
panied by tonic pupil dilation, which is measured during 
pre-trial baseline, and it is believed to be a reliable proxy 
of LC-NA activation in the brain (Joshi & Gold, 2020). The 
tonic pupil dilation has been widely used to investigate the 
physiological basis of exploratory behavior (Gilzenrat et al., 
2010; Jepma & Nieuwenhuis, 2011; Jepma et al., 2010).

In line with the concept of task disengagement central 
to the adaptive gain theory, many previous pupil studies of 
exploration–exploitation trade-off used behavioral tasks that 
explicitly forced participants to commit exploratory choices: 
typically that was achieved by decreasing the reward associ-
ated with the preferred choice (Daw et al., 2006; Jepma & 
Nieuwenhuis, 2011; Payzan-LeNestour & Bossaerts, 2012). 
Such exploration related to task disengagement has impor-
tant hallmarks of random exploration (Wilson et al., 2021), 
e.g., as operationalized in Schwartenbeck et al. (2019). 
Yet little is known about the neurocognitive mechanisms 
associated with self-generated directed exploration targeted 

at information seeking (Zajkowski et al., 2017). In sharp 
contrast with random exploration, decision making during 
directed exploration focuses on active processing of choice-
related information, thus emphasizing the deliberative pro-
cess that requires the subject’s attention. Pupil size, as a 
component of phasic arousal, changes rapidly in response 
to cognitive operations underlying such attentional deci-
sion making (Poe et al., 2020). Specifically, recent research 
has shown that neural encoding of uncertainty or conflict 
can trigger fast task-evoked pupil dilation within the same 
trial in probabilistic reinforcement learning tasks (Van 
Slooten et al., 2018), as well as in a target discrimination 
task (Gilzenrat et al., 2010). This suggests that the deci-
sion to deliberately choose an option with a more uncertain 
outcome is associated with phasic rather than tonic pupil-
related arousal.

In the current study, we investigated the observable physi-
ological (pupil size) and behavioral (response time) concom-
itants of self-generated directed exploratory choices initiated 
by a participant on his or her own, i.e., in the absence of 
any external triggers and within a uniform series of trials 
under unchanging reward probabilities. As far as we know, 
the pupil-related arousal during directed exploration has 
never been addressed in the literature related to the explora-
tion–exploitation dilemma.

We used a two-alternative repetitive choice task: with one 
option bringing more gains than losses, and the other one 
bringing more losses than gains. Participants were learn-
ing the task rules by trial and error. We primarily aimed 
to explore the distinction between the low-payoff (LP) and 
high-payoff (HP) choices, which were committed after a par-
ticipant had learnt the choice-reward contingency. At this 
stage, participants had already acquired statistics of reward 
values associated with choice option, i.e., they possessed 
an internal utility model that guided them to prefer the HP 
option to the LP one. We reasoned that when choosing the 
option yielding a lesser (mathematical) expectation of the 
reward, people were engaged in an active effort to gather the 
information they are interested in (directed exploration), and 
they deliberately violated the acquired utility model.

To check this assumption, we contrasted LP choices made 
after successful learning to LP choices committed during the 
experimental blocks, in which participants failed to acquire 
a preference for the advantageous option, and thus did not 
possess any internal utility model relevant to the task rules.

Our basic predictions were related to the conflict/uncer-
tainty that specifically characterizes the suboptimal LP 
choices violating the internal utility model. Indeed, there is 
a substantial evidence that to explore and gather informa-
tion on a less certain, risky, and potentially nonrewarding 
option, participants have to inhibit the tendency to choose a 
highly rewarded safe alternative (Cogliati Dezza et al., 2017; 
Daw et al., 2006). Assuming that the drive to commit the 
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exploratory choice of a disadvantageous low-payoff (LP) 
option can be induced internally as a matter of actively 
probing the environment, we can predict that the decision 
to commit a directed exploration would be accompanied by a 
conflict between seeking information concerning the uncer-
tain options and seeking greater immediate profit associated 
with the other options as predicted by the internal utility 
model of the task.

On the basis of our hypothesis and previous pupil and 
response time (RT) studies of decision making (Cavanagh 
et al., 2014; Egner, 2007; Gilzenrat et al., 2010; Hershman 
& Henik, 2019; Laeng et al., 2011; Lin et al., 2018; Sat-
terthwaite et al., 2007; Urai et al., 2017; Van Slooten et al., 
2018), we anticipated that conflict/uncertainty pertaining 
to self-generated exploratory choices would lead to greater 
phasic pupil-related arousal and RT slowing during the LP 
compared with “safe” HP choices, but only when the deci-
sion-maker has learnt the choice-reward contingencies. We 
also expected that greater pupil dilation and decision costs 
would differentiate the LP choices made in the context of 
directed exploration from “random” LP choices committed 
under “no learning” condition. Since tonic LC-NA activation 
measured via pretrial pupil dilation has been implicated in 
exploratory behaviour (Gilzenrat et al., 2010; Jepma & Nieu-
wenhuis, 2011), we also investigated whether similar effects 
exist during self-generated directed exploratory behavior.

Methods

Participants

Ninety-four volunteers recruited from the community par-
ticipated in the experiment (46 men and 48 women), aged 
25.9 ± 5.6 years (M ± SD). All participants reported no neu-
rological disorders or severe visual impairments; visual 
acuity was within ± 2.5 diopters, at least for a better-seeing 
eye. During the experiment, the participants did not use any 
vision correction devices (such as glasses or contact lenses).

The study was conducted following the ethical principles 
regarding human experimentation (Helsinki Declaration) 
and approved by the Ethics Committee of the Moscow State 
University of Psychology and Education. All participants 
signed the informed consent before the experiment.

Procedure

During the experiment, participants were comfortably 
seated in an armchair and placed their heads on the chin 
rest to minimize involuntary head movements. We used 
the modified probabilistic learning task (Frank et al., 2004; 
Kozunova et al., 2018), which was rendered as a computer 
game. On each trial, participants had to choose between 

two stimuli presented on the screen simultaneously. One 
stimulus was assigned as the advantageous (choosing this 
stimulus led to gains on 70% of trials and to losses on 30% 
of trials) and the other one as the disadvantageous (leading 
to gains on 30% of trials and to losses on 70% of trials). 
Probabilities were kept constant and did not change dur-
ing the experiment. Losses and gains were assigned by a 
computer in a quasi-random order. Before the experiment, 
the participants were informed that the two stimuli were 
not equal in terms of the number of gains they could bring; 
yet no further information was revealed to the participants. 
Thus, the instruction could not prompt any specific choice 
strategies, and the participants had to learn from their own 
experience in trial-and-error fashion.

Each pair of stimuli comprised two images of the same 
Hiragana hieroglyph rotated at two different angles and 
rendered in white-on-black background (Fig. 1). The size 
of the stimuli was 1.54 × 1.44°, which well fits into the 
fovea area. The stimuli were equalized in size, bright-
ness, perceptual complexity, and spatial position. The two 
stimuli were located symmetrically on the left and on the 
right of the screen at 1.5° to the left and to the right from 
the screen center. The location of stimuli was alternated 
pseudorandomly from trial to trial with equal probability.

Before the start of the experiment, participants com-
pleted a quick test for visual discrimination and recogni-
tion of figures similar to those used during the experiment. 
All participants passed the test well.

On each trial, before the stimulus onset, a white fixa-
tion cross on black background was presented for 150 ms 
(Fig. 1). Stimuli remained on the screen until a button 
was pressed by the participant; the instruction given to the 
participants did not require keeping gaze fixation during 
stimulus presentation, and the participants were allowed 
to freely view the stimuli. Aiming to avoid time pressure 
on participants and thus minimize the number of impul-
sive decisions, we did not impose any time limit on the 
response time.

During the experiments, participants continuously kept 
their index and middle fingers of the right hand on two but-
tons of the response pad (Current Designs, Philadelphia, 
Inc., PA). To choose one of the two stimuli, participants 
pressed one of the buttons according to the location of the 
chosen stimulus on the screen (i.e., they pressed the left but-
ton to choose the left stimulus and the right button to choose 
the right one).

Immediately after the button press, the screen was cleared 
and remained empty (black). After a delay of 1 s follow-
ing the button press, the visual feedback was presented 
for 500 ms. The feedback informed the participants about 
the number of points they received or lost on the current 
trial (Fig. 1). These points were accumulated throughout 
the experiment; at the end of each block, participants were 
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shown their total accumulated score. The screen was black 
during the intertrial interval.

We used an intertrial interval ranging from 700 to 
1,400 ms, which varied in a quasi-random order (flat distri-
bution). We used a rather short intertrial interval, thus keep-
ing the duration of the whole experiment to a minimum. This 
was done with the aim of preventing fatigue and boredom in 
participants and maintaining their interest and motivation. 
This intertrial interval was shorter than the duration of the 
pupillometric effects; we addressed this issue at the stage 
of preprocessing the pupillometric data (see below). The 
intertrial interval was varied in order to prevent rhythmi-
cal responding that could lead to impulsive or perseverative 
responses.

The experiment involved five similar blocks. Each 
block included 40 trials and lasted approximately 5 min. 
A short rest lasting approximately 1 min was introduced 
between blocks. The total duration of the experiment was 

approximately 30 min. A new stimulus pair was used in each 
block. Although the probabilities of gains and losses asso-
ciated with the advantageous and disadvantageous stimuli 
were kept constant throughout the whole experiment, blocks 
differed in the exact number of points assigned as gains and 
losses. We used five reinforcement schemes with the follow-
ing magnitudes of gains and losses, respectively: (I) + 20 & 
0, (II) 0 & − 20, (III) + 50 & + 20, (IV) − 20 & − 50, (V) + 20 
& − 20. Changing reinforcement scale between blocks was 
needed to make the blocks appear less similar and thus to 
make the participants learn during each block anew.

The order of reinforcement schemes within the blocks 
was counterbalanced across participants by means of using 
three different sequences: I–II–III–IV–V, V–III–II–IV–I, and 
V–III–II–I–IV. The sequences were assigned to participants 
randomly. We did not use other possible combinatory vari-
ants of sequences to keep the accumulated score in all partic-
ipants above zero throughout the whole experiment duration. 

Fig. 1  Probabilistic value-based decision-making task. Each stimu-
lus pair (a Hiragana hieroglyph rotated at two different angles) was 
presented repeatedly, and the left–right position of the stimulus on 
the screen was counterbalanced throughout an experimental block. 
Stimulus pairs and the expected value of each choice in a pair varied 
between the five blocks. Participants learned to select the more prof-

itable of the two options (the advantageous one) solely from proba-
bilistic feedback. After each trial, the number of points earned was 
displayed after a 1,000-ms delay after a participant made a choice of 
one of the options by pressing the left or right button (for the left and 
right choices respectively). See text for details
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Maintaining a positive balance was needed to prevent partic-
ipants from experiencing frustration and losing motivation. 
The accumulated score was converted from points to rubles 
at 1:1 ratio, and the money was paid to participants after the 
experiment. On average, participants were paid 420 ± 250 
rubles (M ± SD). The experiment was implemented using 
the Presentation 14.4 software (Neurobehavioral systems, 
Inc., Albany, CA).

Pupillometric recording

Pupil size was recorded continuously from the participants' 
dominant eye using an EyeLink 1000 Plus infrared eye 
tracker (SR Research Ltd., Canada) at the sampling rate of 
1,000 Hz. Pupil size was measured as pupil area in camera 
pixels using the default eye tracker settings. Before each 
block, participants completed the EyeLink 1000 9-point 
calibration procedure.

Data preprocessing

Response time (RT) was measured as an interval from 
stimulus onset to a button press. Trials with extreme RT 
values (< 300 ms and > 4,000 ms) were excluded from 
the analysis; such trials comprised 4.7% of the experi-
mental data. After that, RT data from all valid trials in 
all blocks jointly were z-transformed within each subject 
to reduce intersubject variability in RT and make the 
distribution closer to normal.

Preprocessing of pupillometric data was performed with 
custom-made scripts in R Studio (Version 3.6.3; R Core 
Team, 2020) using the “eyelinker” package (Barthelme, 
2019). Artifacts related to short interruptions or malfunc-
tioning of pupillometric recording due to blinks or other 
causes were detected using the following criteria: pupillo-
metric data were missing or the absolute value of the deriva-
tive of the pupillometric data exceeded 10 pixels between 
two adjacent measurements (which were recorded at 1-ms 
steps). For relatively short artifacts up to 350 ms, which were 
caused by ordinary eyeblinks, data were replaced by linear 
data interpolation. If the artifact duration exceeded 350 ms, 
the respective 5-s epochs (− 2,000 to 3,000 ms relative to 
the button press) were excluded from the analysis of the 
pupillometric data.

Next, we downsampled pupillometric data to 20 time 
points per second by averaging the data into consecutive 
50-ms intervals. After that, in order to reduce intersubject 
variability in pupil size and to make the distribution closer 
to normal, pupil data were z-transformed within each sub-
ject. For this purpose, we used continuous pupillometric data 
from all five experimental blocks jointly. The baseline for 
pupillometric measurements was calculated as an average 

throughout all trials of the experiment (in each participant 
separately), one and the same for all conditions and time-
points. Then, we converted pupil size at each time point 
within each epoch into z-scores, i.e., a number of standard 
deviations from this common reference value. Z-scores com-
puted in this way are similar to a baseline-free approach—
yet they provide adjustment for the large interindividual dif-
ferences in pupil size and make distribution closer to normal 
(Attard-Johnson et al., 2019).

A common measurement scale for all conditions allowed 
us to make direct comparisons between conditions and time-
points, with a higher z-score value always reflecting greater 
pupil size. We used this normalization procedure because the 
intertrial intervals in the current experiment were rather short 
compared with the duration of “cognitive” pupillometric 
responses, which can last up to several seconds (de Gee et al., 
2014; Koenig et al., 2018; Lavin et al., 2014; Preuschoff 
et al., 2011). Pupil dilation caused by an arousing event may 
thereby change the pretrial baseline for the next trial (the so-
called carryover effect). As a result, a conventional baseline 
correction by means of subtracting the “pretrial baseline” 
could lead to erroneous estimation of phasic pupil responses 
(see Attard-Johnson et al., 2019 for a thorough discussion on 
this matter). Although our normalization procedure did not 
eliminate the carryover effect, it allowed us to determine the 
contribution of the carryover effect to the pupil dynamics in 
adjacent trials. Given that real effects on pupil size emerge 
slowly, they cannot be expected within the first 220 ms after 
the stimulus presentation at the trial onset (Mathôt et al., 
2018). Thus, carryover effects can be distinguished from 
effects of the current decision choice by their timing. A rela-
tive pupil dilation measured near the time of the stimulus 
onset (≥ 1,000 ms before the behavioral response), most 
probably, represents the carryover effect from the previous 
trial, whereas the relative pupil dilation emerging in close 
proximity to the response initiation is likely to be a true effect 
related to the decision making in the current trial.

After that, we excluded from the analysis those epochs 
during which z-transformed pupil size deviated from zero 
by more than 3 standard deviations; such trials comprised 
0.56% of the experimental data. All pupillometric measure-
ments are reported below as z-scores.

Note, that the trial-related z-scores might be small 
or negative because the highest positive z-scores were 
always obtained during the pre-trial baseline character-
ized by pupil dilation in the absence of any visual stimu-
lation on the screen. Additionally, in order to evaluate 
slow non-phasic effects, we analyzed the pretrial pupil 
size (see below). We also supplemented this report by 
repeating the main analyses using the pupil size data that 
were baseline-corrected by means of subtracting the pre-
trial pupil size (see below).
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Trial selection criteria and the factors of interest

We assumed that when participants exhibited a stable prefer-
ence for the advantageous stimulus, they guided their behav-
ior using the utility model that they had acquired through 
trial-and-error learning during the initial trials of a given 
block. Therefore, after learning, disadvantageous choices 
were likely committed against the internal utility model, 
and thus they could represent intentional directed explora-
tion. Within each block independently, we first identified all 
trials belonging to such “after learning” periods using the 
following criteria:

1. Such periods should be preceded by four advantageous 
choices made in an interrupted succession. The prob-
ability of three advantageous choices immediately fol-
lowing one by chance is (½)3 = 1/8 = 12.5%, which is 
quite a liberal threshold.

2. The percentage of advantageous choices thereafter until 
the end of the block should be no less than 65%. One-
tailed one-sample binomial test shows that in a sequence 
of 30 trials (~ number of trials taken into consideration 
within an experimental block following the first step), 
the difference between 65 and 50% (random choices) is 
at a margin of significance at p = 0.05.

We used a combination of two rather liberal criteria to 
distinguish the blocks for which a participant most likely 
acquired the internal utility model from the blocks where 
his/her attempts to recognize the advantageous stimulus 
choice led to failure. We will refer hereafter to such blocks 
as “after learning” and “no learning” condition, respectively.

Then, we identified trials during which the participants 
made objectively advantageous choices and disadvantageous 
choices (i.e., when they selected the stimuli associated with 
70% and 30% gain probability, respectively).

Potentially, the disadvantageous choices could be caused 
solely by negative outcomes of a preceding advantageous 
choice, which could prompt the participants to immedi-
ately change their preference (Gaffan & Davies, 1981; Ivan 

et al., 2018), i.e., to follow a Win-Stay Lose-Shift strategy 
(Ellerby & Tunney, 2017). To check whether the disadvan-
tageous choices were mainly caused by a previous loss, we 
investigated probabilities of transitions leading from the 
advantageous to the disadvantageous choice. We took the 
number of all transitions from advantageous stimuli to dis-
advantageous ones as 100% and calculated the percentage of 
transitions made after losses. Then, we used a t-test to com-
pare this percentage to 100% (as if all transitions to explora-
tion were made strictly as a response to losses) and to 30% 
(as if transitions to exploration were strictly independent of 
the preceding feedback).

Next, to investigate the dynamics of behavioral and pupil-
lometric indices over transitions between types of choices 
made by participants, we used a more detailed trial clas-
sification procedure. For this purpose, we took into account 
not only the choice made during each given trial but also 
the choices made on the previous one and on the following 
one. Not all possible combinations could be encountered 
often enough: only four combinations had a sufficient num-
ber of trials during “after learning” condition (> 6 trials for 
each condition per subject on average), while other possible 
combinations were rather rare (< 2 trials for each condition 
per subject on average). Thus, for further analyses, we used 
the following four levels of “Choice Type” factor (Table 1):

• the “low-payoff” choice (LP) —the disadvantageous 
choice preceded and followed by advantageous choices;

• the “high-payoff” choice (HP)—the advantageous choice 
preceded and followed by advantageous choices, thus 
representing a stable preference for advantageous stimuli;

• the trial preceding the “low-payoff” choice (pre-LP)—the 
advantageous choice that preceded the disadvantageous 
and followed the advantageous one;

• the trial following the “low-payoff” choice (post-LP) —
the advantageous choice that followed the disadvanta-
geous and preceded the advantageous one.

As mentioned earlier, one could expect that the disadvan-
tageous choices could be provoked by negative outcomes 

Table 1  Choice types and overall behavioral statistics

*  A – advantageous choice, DA – disadvantageous choice

Choice Type Previous 
Trial →  
Current Trial
 → Next 
Trial*

No. trials per subject
(M ± SD)

% of Trials per subject
(M ± SD)

Total no. trials RT (ms)

After learn-
ing

No learning After learn-
ing

No learning After learn-
ing

No learning After learn-
ing

No learning

HP A → A → A 55.8 ± 43.3 8.4 ± 7.0 60.1 ± 23.8 15 ± 9.7 4965 412 1171 ± 403 1577 ± 717
pre-LP A → A → DA 7.7 ± 6.0 8.5 ± 6.2 11.8 ± 11.7 14.3 ± 6.2 686 416 1393 ± 606 1467 ± 597
LP A → DA → A 6.6 ± 5.3 6.7 ± 5.8 9.7 ± 8 11.1 ± 7.0 587 330 1609 ± 597 1631 ± 703
post-LP DA → A → A 7.2 ± 5.9 8.3 ± 5.6 9.8 ± 6.6 14.9 ± 5.7 639 406 1467 ± 610 1666 ± 669
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of the preceding advantageous choices, thus obscuring the 
supposedly exploratory nature of disadvantageous choices. 
In order to check whether this potentially retroactive mecha-
nism did not influence the results substantially, we supple-
mented this report by repeating the basic analyses related 
to “Choice Type” factor (see below and supplementary 
materials) on a smaller subset of trials with two additional 
restrictions:

1. The outcome of the pre-LP trial within such a sequence 
of trials should be a gain rather than a loss, and

2. Pre-LP, LP and post-LP trials should constitute uninter-
rupted sequences of trials in direct succession.

Most importantly for testing the validity of the “directed 
exploration” hypothesis, we contrasted the same types of 
choices performed during “after learning” condition vs. 
choices made in “no learning” condition (Learning factor). 
In the latter case, the respective trials were selected from 
blocks during which the participants failed to reach the 
learning criteria. We suggested that during such blocks, par-
ticipants did not acquire a proper internal utility model, and 
any choices made by a participant, regardless its objective 
advantageousness, represented random rather than directed 
exploration.

Statistical analysis of RT and pupil size using 
the linear mixed effects model

We used linear mixed effects models (LMM) at single-trial 
level rather than repeated measures ANOVA at the grand-
average level because LMM method is robust to imbalanced 
designs across individual cases. Thus, missing data need not 
result in listwise deletion of cases, and differing numbers of 
trials per condition are less problematic than in traditional 
ANOVA (Kliegl et al., 2011). LMM can handle large num-
bers of repeated measurements per participant, thus making 
it possible to analyze data from individual trials: this allows 
accounting for intertrial variability, which would be lost 
under standard averaging approaches (Tibon & Levy, 2015; 
Vossen et al., 2011).

Statistical LMM analyses were performed using R soft-
ware v 4.1.0 (R Core Team, 2021).

We used the following basic procedure, unless specified 
otherwise. We fitted LMMs on RT and pupillometric data 
using lme4 package (Bates et al., 2015). We started with the 
full model, which included relevant fixed effects and their 
interactions. In the current report, we used the following 
fixed effects and their interactions: “Choice Type” (4 levels: 
HP, pre-LP, LP, and post-LP) as described above; “Previous 
Feedback” (2 levels: gain, and loss—the outcome of the trial 
that immediately preceded the current one); “Current Feed-
back” (2 levels: gain, and loss—the outcome of the choice 

made during the current trial); and “Learning” (2 levels: 
after learning, and no learning as described above).

All models used for data analysis in the current study 
included the following random effects intercepts: “Subject” 
(89 levels), “Block number” (5 levels: one to five—posi-
tion of a particular block in the sequence of experimental 
blocks), and “Reinforcement Scheme” (5 levels, the mon-
etary value of gains and losses within a particular experi-
mental block, see above).

The LMMs for the main analyses included the follow-
ing fixed factors: Choice Type, Previous Feedback, and 
Learning:

and

Additionally, for illustrative purposes, we aimed to look 
into the Choice Type x Previous Feedback interaction, 
within “no learning” and “after learning” conditions ana-
lyzed separately. For this purpose, we used the following 
LMMs for RT and pupil size:

and

In the same vein, when Learning factor did not interact 
with the Choice Type and Current Feedback, we illustrated 
the Choice Type x Current Feedback interaction, within no 
learning and after learning conditions analyzed separately. 
For this purpose, we used the following LMM for the analy-
sis of the pupil size when focusing on the time interval after 
the feedback onset:

For all models, we did a step-down model selection 
procedure using “step” function implemented in lmerTest 
package (Kuznetsova, Brockhoff, & Christensen, 2017). This 
procedure performs backward elimination of nonsignificant 
effects. At the first stage, nonsignificant random effects are 
eliminated based on the likelihood ratio test (Stuart, Ord, & 
Arnold, 1999). Then, significance of fixed factors is assessed 
by using the Kenward-Roger approximation for denominator 
degrees of freedom (Halekoh & Højsgaard, 2014; Kuznet-
sova et al., 2017). At each step, the nonsignificant factor 

(1)
Response time ∼ Choice Type ∗ Previous Feedback ∗ Learning

+(1|Subject) + (1|Block number) + (1|Reinforcement Scheme)

(2)

Pupil size ∼ Choice Type ∗ Previous Feedback ∗ Learning

+ (1|Subject) + (1|Block number) + (1|Reinforcement Scheme)

(3)
Response time ∼ Choice Type ∗ Previous Feedback + (1|Subject)

+(1|Block number) + (1|Reinforcement Scheme)

(4)
Pupil size ∼ Choice Type ∗ Previous Feedback + (1|Subject)

+(1|Block number) + (1|Reinforcement Scheme)

(5)
Pupil size ∼ Choice Type ∗ Previous Feedback ∗ Current Feedback

+(1|Subject) + (1|Block number) + (1|Reinforcement Scheme)
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with the highest p-value is eliminated, and this procedure is 
repeated until only significant factors remain in the model. 
Next, we used the simplified model produced by the “step” 
function. For those factors that remained in the model, we 
estimated significance using the Satterthwaite approximation 
for denominator degrees of freedom and obtained type III 
ANOVA table (package lmerTest, function anova) (Kuznet-
sova et al., 2017).

Next, to investigate particular contrasts, we performed 
planned comparisons using the Tukey HSD post-hoc tests 
(Tukey, 1977) implemented in emmeans package (Lenth, 
2021). We did that in two ways. First, we evaluated pair-
wise differences within the levels of Choice Type factor. 
Second, to investigate the interference between Choice Type 
and other factors of interest (Previous Feedback, Current 
Feedback, or Learning), we evaluated pairwise differences 
within the levels of the factor of interest split by the levels 
of Choice Type factor.

Defining the time interval of interest for testing 
the effects of learning and previous feedback 
on pupil size

First, we wanted to check whether the pupil size differen-
tiated between advantageous and disadvantageous choices 
during after learning condition and, if it did, to determine 
the time span of these choice-specific pupillary responses. 
The average pupil size measured across the time interval 
selected this way would allow for testing the role of learn-
ing and/or previous feedback in the choice-driven pupil size 
modulations.

First, we analyzed independently each time point within 
the epoch ranging from − 1,000 to 2,500 ms relative to time 
of the response. We ran the following LMM on single-trial 
data with Choice Type factor (4 levels: HP, pre-LP, LP, post-
LP) taken as the fixed effect:

Next, we performed planned comparisons using the 
Tukey HSD post-hoc test within Choice Type factor (4 lev-
els: HP, pre-LP, LP, post-LP), thus obtaining the statistical 
significance of pairwise differences between Choice Type 
factor levels and applied correction for multiple comparisons 
using the false discovery rate (FDR) method for 70 time 
intervals at q = 0.05.

As a result, we obtained the time spans of significant 
differences in pupil size between choice types. Because 
we were interested in comparing the disadvantageous 
choices and neighboring trials vs. advantageous trials, we 
restricted this analysis to three contrasts: pre-LP choices 
vs. HP choices, LP choices vs. HP choices, and post-LP 

(6)
Pupil size ∼ Choice Type + (1|Subject)

+ (1|Block number) + (1|Reinforcement Scheme),

choices vs. HP choices. For the use in further analyses, we 
chose the overlap of significant time intervals within these 
three contrasts. This procedure produced a rather long time 
interval from − 400 ms to 2,200 ms relative to the behav-
ioral response. Thus, for further analyses, pupil size was 
averaged within this interval, in each trial separately.

Apparently, this rather long interval was functionally 
heterogeneous. Thus, additionally, we divided this time 
interval into three functionally different subintervals, and 
analyzed them separately (see supplementary materials):

• Decision making and action initiation (− 400 to 0 ms 
relative to the response),

• Internal outcome evaluation and feedback anticipation 
(0–1,000 ms relative to the response),

• Matching expected and actual feedback (1,000–
2,200 ms relative to the response).

Follow‑on analyses of pretrial pupil size 
and baseline‑corrected pupil size using pretrial 
pupil size

To evaluate slow non-phasic changes in pupil size, that 
might partly reflect tonic effects, we also analyzed pretrial 
pupil size, averaged over − 300 to 0 ms relative to the fixa-
tion cross onset.

We also repeated the main analyses using the con-
ventionally baseline-corrected data (using the prestimu-
lus baseline) on a trial-to-trial basis; this correction was 
applied to z-transformed data by means of subtracting 
pretrial pupil size.

Correlational analysis

In order to test whether commission of disadvantageous 
choices decreases the profit gained by participants, we cal-
culated Pearson's correlation between the percentage of LP 
choices and the number of gains, both measures evaluated 
within “after learning” condition. The percentage of dis-
advantageous choices was calculated for each participant 
using the following formula:

where N_DA is the number of all disadvantageous 
choices, and N_A is the number of advantageous choices 
for each participant within after learning condition.

In addition, we investigated whether the effects related 
to disadvantageous choices under after learning condi-
tion would be dependent upon how often the participants 
ventured into such disadvantageous choices. For this pur-
pose, we investigated the relation between the percentage 

(7)P_DA = N_DA∕(N_DA + N_A),
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of disadvantageous choices and LP-choice-related changes 
in both RT and pupil size using Pearson’s correlation. LP-
choice-related RT slowing was calculated for every subject 
as the difference between mean RT during LP choices and 
mean RT during HP choices during after learning condition. 
LP-choice-related pupil dilation was calculated for every 
subject as the difference between mean pupil size during 
LP choices and mean pupil size during HP choices within 
a post-feedback time interval (1,000–2,200 ms relative to 
the behavioral response) during after learning condition. 
In order to reduce statistical noise, we included onto this 
analysis only those 80 participants who had more than one 
LP choice.

Since false-positive correlation may result from data 
unreliability (e.g., outliers are present in the data), we 
assessed Pearson's correlation significance by way of using 
permutation tests. This method guarantees a robust and reli-
able assessment of correlation significance (Higgins, 2004). 
This algorithm is implemented in perm.cor.test function 
implemented in package jmuOutlier (Garren, 2019). Briefly, 
the algorithm of permutation statistics reshuffles the data 
many times and calculates statistical distribution on simu-
lated data; p-values are assessed as the probability to obtain 
stronger effects on simulated data compared with real data. 
We estimated two-sided p-values using 20,000 simulations 
for each analysis.

We plotted scatterplots and respective linear regressions 
to illustrate the results of the correlational analyses. All sta-
tistical analyses were performed using R software v 4.1.0 (R 
Core Team, 2021).

Results

General behavioral statistics

Before the start of the experiment, participants successfully 
completed the test for discrimination within pairs of stimuli 
similar to those used in the experiment. This excludes the 
possibility that participants could have had any substantial 
difficulty in perceptual discrimination between the stimuli 
during the experiment. The overall behavioral statistics is 
shown in Table 1.

Over the entire period of the experiment (5 blocks), 
the participants made disadvantageous LP choices on 
27.1% ± 14.2% of trials (M ± SD). Eighty-nine of 94 par-
ticipants fulfilled the learning criteria (4 advantageous HP 
choices committed consecutively and no less than 65% of 
advantageous HP choices thereafter until the end of the 
block) in at least one or greater number of experimental 
blocks. Because 5 of 94 participants (5.3%) completely 
failed to learn in any of the experimental blocks, they 
were excluded from all further analyses. The remaining 89 

participants reached learning criteria on 3.7 ± 1.4 blocks 
(M ± SD) out of 5. Learning criteria were reached by them 
after 12.4 ± 6.8 trials (M ± SD) out of 40 trials comprising 
each block.

Participants made disadvantageous choices on 
17.0% ± 9.5% of trials within after learning condition, and 
significantly more often (24.3% ± 22.2%) within no learning 
condition (t(88) = 3.00, p = 0.004).

When the stimulus-reward contingency was learned, 
42.2% ± 25.3% of all transitions from advantageous to dis-
advantageous choices were committed after losses. This 
value is significantly smaller than 100%—the percent-
age that would have been observed if disadvantageous LP 
choices were triggered exclusively by losses (t(86) =  − 21.28, 
p < 0.001), and significantly greater than 30%—the percent-
age of negative outcomes of advantageous choices in the 
experimental procedure (t(86) = 4.50, p < 0.001). This means 
that a previous loss, even if it violated the acquired utility 
model, did not fully account for the following choice of the 
disadvantageous option.

Within no learning condition, a very similar pattern was 
observed: 39.2% ± 19.9% of all transitions from advanta-
geous to disadvantageous choices were committed after 
losses. The pattern of results was quite similar to that 
observed after learning: the percentage of transitions after 
losses was significantly smaller than 100% (t(52) =  − 22.2, 
p < 0.001) and significantly greater than 30% (t(52) = 3.29, 
p = 0.002).

The total number of gains negatively correlated with 
the percentage of LP choices (r(74) =  − 0.57, 95% CI 
[− 0.71, − 0.4], p < 0.001), thus demonstrating that com-
mission of disadvantageous choices indeed prevented par-
ticipants from maximizing their cumulative profit, while the 
optimal strategy for them would be to avoid disadvantageous 
choices as much as possible (Fig. 2a).

Response time: effects of learning and previous 
feedback

The LMM for the RT analysis included the following fixed 
effects: Choice Type (HP, LP, pre-LP, and post-LP), Pre-
vious Feedback (gains and losses), Learning (no learning 
and after learning), and their interactions. The follow-
ing effects and interactions were statistically significant: 
Choice Type (F(3,8187) = 26.2, p < 0.001), Previous Feed-
back (F(1,8106) = 6.6, p = 0.01), Learning × Choice Type 
(F(3,8266) = 15.5, p < 0.001), Choice Type × Previous Feed-
back (F(3,8340) = 5.99, p < 0.001).

Learning effect Planned comparison revealed that Learn-
ing × Choice Type interaction was due to the fact that learn-
ing affected the RT for the LP and HP choices in oppo-
site directions (Fig. 3a, left panel); it slowed RT during 
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LP choices (after learning vs. no learning: Tukey HSD, 
p < 0.001) and accelerated RT during HP choices (after 
learning vs. no learning: Tukey HSD, p < 0.001). Thus, 
learning of stimulus-reward contingency produced slowing 
of disadvantageous risky responses and speeding of advanta-
geous HP responses that were committed during periods of 
stable preference for advantageous stimuli.

Next, we used planned comparisons within the same 
model to analyze no learning and after learning conditions 
separately. There were no significant differences in the RT 
between the LP and HP choice types in no learning condition 
(Fig. 3a, middle panel). On the other hand, after learning RT 
became significantly longer for the LP choices compared 
with all the other choice types, and significantly shorter for 
HP choices than RT for all the other choice types (Tukey 
HSD: p < 0.001 for pairwise contrasts between LP and HP, 
and for contrasts between HP/LP with pre-LP, and post-LP 
choices) (Fig. 3a, right panel). Thus, in after learning con-
dition, but not in no learning condition, decision making 
regarding disadvantageous choice took more time than that 
for all types of advantageous choices. Additionally, a mod-
erate yet highly significant response slowing was observed 
on adjacent trials immediately preceding and immediately 
following a disadvantageous choice (pre-LP and post-LP 
choices).

To check whether the effect of RT slowing during disad-
vantageous LP choices was not a consequence of negative 
outcomes of a preceding advantageous choice, we repeated 
the same analysis using a smaller restricted subset of data 
within uninterrupted sequences of pre-LP → LP → post-LP 

trials involving only gains on pre-LP trials. The patterns 
of results concerning the effects of Learning and Choice 
Type were perfectly preserved in this reduced dataset (sup-
plementary materials, Figure S1). Thus, the effects observed 
in relation to LP choices, did not result from losses on the 
preceding trial.

In summary, after learning, which led to formation of the 
internal utility model, two major changes occurred. First, RT 
decreased for stable preference for advantageous stimulus, 
revealing response speeding under a relatively safe strategy. 
Second, RT slowing was observed for a riskier strategy of 
disadvantageous choices.

Effect of previous feedback When we considered no learn-
ing and after learning conditions together, we observed that 
losses and gains in the preceding trial differently affected RT 
for advantageous and disadvantageous choices (Fig. 3b, left 
panel). RT was significantly slower after losses than after 
gains, but only in the case of advantageous HP and pre-LP 
choices (Tukey HSD: p’s < 0.001 for loss vs. gain contrasts 
for both choice types). Thus, we observed post-loss slowing 
in situations, when both the previous choice and the current 
choice were advantageous; otherwise, there was no differ-
ence in RT between losses and gains.

Because the triple interaction Choice Type × Previous 
Feedback × Learning was not significant, we could not per-
form post hoc tests on the data split by all these factors. 
Instead, for illustrative purposes, we ran a similar LMM 
on no learning and after learning data subsets separately 
(Fig. 3b, middle and right panels). Choice Type × Previous 

Fig. 2  Scatterplots depicting the relationship under the after learning 
condition (a) between the percentage of LP choices and the number 
of gains obtained by participants; (b) between the percentage of LP 
choices and RT slowing during LP choices (difference in z-scores 
between LP and HP choices); (c)  between the percentage of LP 

choices and relative pupil dilation during LP choices (difference in 
z-scores between LP and HP choices, averaged over 1,000–2,200-ms 
relative to response). Each dot on the scatterplots represents averaged 
data for one participant. Lines on scatterplots represent respective lin-
ear regressions, with shaded areas depicting 95% confidence intervals
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Feedback interaction was significant only within after learn-
ing condition (F(3,6846) = 5.77, p < 0.001). RT was signifi-
cantly increased after losses compared with gains within HP 
choices and pre-LP choices (Tukey HSD: p’s < 0.001 for 
both comparisons). No significant differences were found 
within no learning condition. Thus, the Choice Type × Previ-
ous Feedback interaction found in the full dataset was well 
pronounced mainly under after learning condition, despite 
a similar trend under no learning one.

Pupil size

Choice‑driven modulations of the pupil size timecourses

We were primarily interested to find out whether the type 
of choice made by participants affected the pupil size. 
First, we needed to determine the time interval of interest 
for further analyses, and for this purpose, we ran the fol-
lowing analysis. At the first step, we analyzed each time 

Fig. 3  Response time (z-scored) represented as a function of choice 
type. (a)  RT for different choice types under after learning (green) 
and no learning (slate blue) conditions. Left panel – RT differences 
between learning conditions within each choice type; middle and 
right panels – RT differences between choice types within no learn-
ing and after learning, respectively. (b) RT differences between pre-

vious outcomes within each choice type: losses (salmon) vs. gains 
(turquoise). Left panel – both learning conditions pooled together; 
middle and right panels – no learning and after learning conditions, 
respectively. Points and error bars on graphs represent M ± SEM 
across single trials in all subjects. # p < 0.1; * p < 0.05; ** p < 0.01; 
*** p < 0.001
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point independently. We ran the LMMs on single-trial 
data with Choice Type factor as a fixed effect. Next, we 
performed planned comparisons using the Tukey HSD 
post-hoc test for Choice Type factor (4 levels: HP, pre-
LP, LP, post-LP). Since at the first step we analyzed each 
time point independently, at the second step we applied 
correction for multiple comparisons using the false dis-
covery rate (FDR) method (Benjamini & Yekutieli, 2001) 
for 70 time points at q = 0.05.

The impact of factor Choice Type on pupil size time 
courses under after learning condition are represented 
in Fig. 4. As contrasted with HP choices, the pupil was 
significantly larger during pre-LP choices (all qs < 0.05 
(FDR corrected Tukey HSD) for the time interval 
from − 400 ms to 2,200 ms relative to the button press; 
Fig. 4, left panel), LP choices (all qs < 0.05 for the time 
interval from − 400 ms to 2,200 ms; Fig. 4, middle panel) 
and post-LP choices (all qs < 0.05 for the time interval 
from − 1,000 ms to 2,200 ms; Fig. 4, right panel). Thus, 
for the use in further analyses, we took the pupil size 
averaged over the overlap of significant time intervals 
for all contrasts shown above, i.e., from − 400  ms to 
2,200 ms relative to the choice response.

It is important to note that for pre-LP and LP choices the 
effects started around 400 ms before the button-press, while 
they were absent at earlier times (Fig. 4, left and middle 
panels). Thus, these pupil dilations apparently were not just 
carryover effects inherited from the previous trials (Mathôt 
et al., 2018).

Effects of learning and previous feedback

The model for this analysis included the following 
fixed effects: Choice Type, Previous Feedback, Learn-
ing, and interactions between them. Factors Choice 
Type (F(3,8385) = 7.91, p < 0.001) and Previous Feedback 
(F(1,8422) = 16.27, p < 0.001) were significant (note that sig-
nificance for Choice Type factor was partially related to 
the method that we used to define the time interval for the 
analysis). More importantly, there were statistically signifi-
cant interactions: Learning × Choice Type (F(3,8379) = 11.4, 
p < 0.001) and Choice Type × Previous Feedback interaction 
(F(3,8403) = 5.31, p = 0.001).

Learning Effect Planned comparison using the Tukey HSD 
post-hoc test within Learning factor split by Choice Type 
revealed that pupil size was significantly increased for LP 
choices in after learning condition compared with no learn-
ing condition (Tukey HSD, p = 0.04) (Fig. 5a, left panel). On 
the contrary, pupil size was significantly decreased for HP 
choices in after learning condition (Tukey HSD, p < 0.001). 
Thus, for pupil size we observed the same pattern of the 
learning effects as that for RT.

Then we probed how Choice Type influenced pupil size 
within no learning and after learning conditions analyzed 
separately. In contrast to after learning, in the no learning 
condition, there were no significant differences between 
choice types (Fig. 5a, middle panel). Thus, in the absence 

Fig. 4  Time courses of pupil size (z-scored) during choice and after 
feedback in the after learning condition. From left to right: The pre-
LP (violet), LP (red), and post-LP (marine blue) choices in compari-
son with the HP choice (green). The dashed curve in each graph cor-
responds to the time course of the difference in the pupil size between 
the respective choice type and the HP choice. Solid and dashed verti-

cal lines correspond to button press (zero point) and feedback onset 
respectively. Curves and shaded areas represent M ± SEM across sin-
gle trials in all subjects. Dark red lines at the bottom of each graph 
indicate significant differences between the respective choice type 
and HP choice (p < 0.05, FDR corrected)
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of the internal utility model, pupil size did not depend upon 
the type of choice made by participants.

In the after learning condition (Fig. 5a, right panel), 
pupil size was significantly greater during LP choices com-
pared with HP choices (Tukey HSD, p < 0.001) and pre-LP 
choices (Tukey HSD, p = 0.011). Additionally, pupil size 
was significantly greater during pre-LP and post-LP choices 
compared with HP choices (Tukey HSD, p < 0.001). Thus, 
in convergence with the RT data, pupil size after learn-
ing was increased during disadvantageous choices com-
pared to advantageous choices; it also was moderately yet 

significantly increased during advantageous choices on adja-
cent trials that immediately preceded and immediately fol-
lowed disadvantageous choices (pre-LP and post-LP).

At least some of the disadvantageous choices were com-
mitted after losses and could be immediately caused by 
them. In order to exclude the possibility that this poten-
tially retroactive mechanism could influence the results, we 
repeated the same analysis within the Choice Type factor 
using a smaller restricted subset of data with uninterrupted 
sequences of pre-LP → LP → post-LP trials involving only 
gains on pre-LP trials. Comparisons in this reduced dataset 

Fig. 5  Pupil size (z-scored) represented as a Function of Choice 
Type. (a)  Pupil size averaged within the interval − 400 to 2,200  ms 
relative to the response (button press) for different choice types under 
the after learning (green) and no learning (slate blue) conditions. Left 
panel – pupil size differences between learning conditions within 
each choice type; middle and right panels – pupil size differences 

between choice types within no learning and after learning, respec-
tively. (b)  Pupil size differences between previous outcomes within 
each choice type: losses (salmon) vs. gains (turquoise). Left panel – 
both learning conditions pooled together; middle and right panels – 
no learning and after learning conditions, respectively. All other des-
ignations as in Fig. 3
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closely reproduced the patterns of effects described above 
for a full dataset (supplementary materials, Figure S2). Thus, 
the effect of pupil dilation during disadvantageous choices 
was not caused by losses on trials preceding them.

In summary, we found that after learning, which led to 
formation of the utility model, two major changes occurred. 
First, pupil size became smaller for the repetitive HP 
choices, during which participants exhibited a stable pref-
erence for the advantageous stimulus, i.e., were keeping with 
a relatively safe strategy. Second, pupil size was increased 
for unsafe disadvantageous choices.

Effect of previous feedback As with RT, the sign of the previ-
ous feedback differently affected pupil size depending on the 
Choice Type, as reflected by significant interaction Choice 
Type × Previous Feedback, but the pattern was qualitatively 
different (Fig. 5b, left panel). In contrast to RT, pupil size 
was greater after gains than after losses, but only during LP 
and post-LP choices (Tukey HSD, p = 0.023 and p = 0.002, 
respectively); both choice types implied a switch from one 
strategy to another (from exploration to exploitation in post-
LP choice and from exploitation to exploration in LP choice). 
No significant differences in pupil size between gains and 
losses were observed for HP and pre-LP choices.

Again, to analyze Previous Feedback influence on pupil 
size within no learning and after learning conditions sepa-
rately, for illustrative purposes, we ran a similar LMM on no 
learning and after learning data subsets separately (Fig. 5b, 
middle and right panels). The analysis revealed Choice 
Type × Previous Feedback significant interaction within 
after learning only (F(3,6823) = 3.94, p = 0.008): pupil size was 
greater after gains compared with losses for LP and post-LP 
choices (Tukey HSD, p = 0.023 and p = 0.002, respectively), 
but not in HP and pre-LP choices.

Subintervals within the choice‑related time period

In the main analyses of the pupil size, we used a rather 
long choice-related time interval, which may be function-
ally heterogeneous. Therefore, we divided this time inter-
val into three successive functional subintervals: prior to 
a choice (decision making and action initiation), between 
a choice response and feedback signal (internal outcome 
evaluation in anticipation of the feedback), and after feed-
back (matching expected and actual outcome). Then, we 
analyzed each subinterval independently using the same 
statistical procedure as that used for the full choice-related 
time interval (supplementary materials, Figures S3 and S4). 
In all three subintervals, we observed the pattern of results 
highly compatible with that obtained in the main analy-
sis, with the latest subinterval (1,000–2,200 ms relative to 
the response) manifesting the most pronounced statistical 

effects. Importantly, in each of these subintervals, pupil size 
was greatest during disadvantageous trials, with a similar 
yet attenuated effect for advantageous choices on adjacent 
trials immediately preceding and immediately following dis-
advantageous trials compared with the stable preference for 
advantageous choices (supplementary materials, Figure S3). 
Interaction Choice Type x Previous Feedback was significant 
in the second and third subintervals. Again, the pattern of 
results on these subintervals was similar to that obtained on 
a full response-related time interval of interest (supplemen-
tary materials, Figure S4). This suggested that a relatively 
increased pupil size reflected a protracted common process 
that affected different stages of decision making in regard to 
LP choices made during the after learning condition.

Pretrial pupil size

To evaluate whether the learning-induced effects found for 
choice-related pupil modulations involved slow tonic compo-
nents and/or carryover effects from previous trials, we addi-
tionally analyzed the pretrial time interval (− 300 to 0 ms 
relative to fixation cross onset) using the same statistical 
procedure as that used for choice-related interval (Fig. 6a). 
The following effects were statistically significant: Choice 
Type (F(3,7539) = 10.98, p < 0.001), Learning (F(1,4504) = 9.64, 
p = 0.002), Learning × Choice Type (F(3,7535) = 6.84, 
p < 0.001). Planned comparisons of Learning × Choice Type 
interaction revealed that learning success mainly increased 
pre-trial pupil size for post-LP choice (after learning vs. no 
learning for the post-LP: Tukey HSD, p < 0.001) but not for 
the LP choice itself (Fig. 6a, left panel).

In the no learning condition, pre-trial pupil size did not 
discriminate between choice types (Fig. 6a, middle panel). 
In the after learning condition, the main choice-related dis-
tinction was a small “baseline” pupil size for HP choices 
compared with pre-LP, LP, and post-LP choices (Tukey 
HSD, p = 0.003, p < 0.001, and p < 0.001, respectively) 
(Fig. 6a, right panel). Yet, the greatest pre-trial pupil size was 
observed not before the LP choice itself but before post-LP 
choice (pre-LP vs. LP after learning: Tukey HSD, p < 0.001).

Thus, unlike pupil size during a choice, its modulations in 
the pre-trial period did not accentuate the impact of learning 
on pupil size during the disadvantageous choice. The dra-
matic increase in the “baseline” pupil size preceding post-LP 
choices is likely a carryover effect lasting from the choice-
related pupil dilation in the previous LP trial (compare Fig. 5a, 
right panel and Fig. 6a, right panel). Yet, the fact that during 
the after learning condition the pupil was greater before pre-
LP and LP trials compared with HP trials hints at some tonic 
effect, which contributed to disadvantageous choices.

Previous feedback did not affect pretrial pupil size in both 
learning conditions. Thus, the impact of previous feedback on 
the pupil size was mainly related to the choice response itself.
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Baseline‑corrected pupil size

As an additional step, to corroborate the phasic nature of 
the pupil effects described in the main analysis, we used 
the conventional baseline-corrected choice-related pupil-
lary response magnitude, and applied the same statistical 
model as in the main analysis. The following factors were 

significant: Choice Type (F(3,7529) = 16.87, p < 0.001), 
Previous Feedback (F(1,7525) = 8.69, p = 0.003), Learn-
ing × Choice Type interaction (F(3,7522) = 3.97, p = 0.008).

Baseline correction preserved the basic pattern of 
results for the learning effect on choice-related pupil 
modulations except for the post-LP choices (Fig. 6b). 
Learning × Choice Type interaction was partially due to 

Fig. 6  Baseline and phasic changes in pupil size (z-scored). (a) Pre-
trial pupil size averaged within the interval − 300–0  ms relative to 
the fixation cross onset for different choice types under after learning 
(green) and no learning (slate blue) conditions. (b) Phasic pupil  size† 
for different choice types under after learning (green) and no learning 
(slate blue) conditions. Left panel – pupil size differences between 
learning conditions within each choice type; middle and right panels 
– pupil size differences between choice types within no learning and 
after learning, respectively. All other designations as in Fig. 3. † Note: 

Phasic pupil was calculated as the difference between the z-scored 
pupil size averaged within the interval − 400–2,200 ms relative to the 
response onset and pretrial pupil size. Pupil size was z-scored within 
each participant using all time points across all trials and pretrial 
intervals. Consequently, subtraction between two values (pretrial and 
trial) produced negative z-scores for the phasic changes in the pupil 
size because of the pupillary light reflex evoked by luminance incre-
ment during the stimulus presentation
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the opposite direction of learning-induced pupil changes 
for the HP and LP choices, similar to that detected in the 
main analysis (Fig. 6b, left panel). In addition, under the 
after learning condition, the maximal baseline-corrected 
pupil size was observed for the LP choices compared 
with all other choice types, which also is in concord-
ance with the previous finding (compare Fig. 6b, right 
panel with Fig.  5a, right panel. Concurrently, base-
line—corrected pupil size became minimal for post-LP 
choices—although apparently, this is a technical result of 
baseline subtraction. Inspection of Fig. 6a, right panel, 
shows that the pretrial pupil size for post-LP choices 
was enormously high, most likely due to the long-lasting 
impact of disadvantageous LP choice on the pupil size 
that sustained through the whole intertrial period (com-
pare Fig. 6b, right panel with Fig. 6a, right panel). The 
occurrence of profound technical interactions with the 
pretrial baseline requires caution when using unsuper-
vised usage of baseline correction for studying a “phasic” 
pupil response, especially when the intertrial interval is 
relatively short.

Thus, as could be expected from the main analysis and the 
analysis of the pretrial pupil size, the prestimulus baseline-
correction preserved the basic effects of learning and choice 
type on pupil dilation for exploratory and preexploratory 
choices but eliminated the ones for postexploratory choices. 
In other words, “prestimulus baseline-free” and “prestimu-
lus baseline-correction” approaches yielded near-identical 
outcomes, leading to similar conclusions. These concordant 
results strongly suggest that pupil dilation during explora-
tory and preexploratory choices involves a strong phasic 
component. However, some systematic carryover effects 
were observed for postexploratory choices, whereby pupil 
dilation from an arousing exploratory choice still influenced 
pupil size on the next postexploratory trial.

To sum up, the additional analysis confirmed that the 
increased pupil size during disadvantageous choices made 
after learning involved a strong phasic component.

Correlational analysis

Within the after learning condition, there was a significant 
negative correlation between the percentage of LP choices 
and LP-choice-related RT slowing (r(73) =  − 0.29, 95% CI 
[− 0.49, − 0.07], p = 0.01) (Fig. 2b). In other words, the more 
often subjects made LP choices, the less RT slowed down in 
those choices compared with HP choices. Also, there was 
a similar correlation for pupil size (r(73) =  − 0.25, 95% CI 
[− 0.45, − 0.028], p = 0.03) within the 1,000–2,200-ms time 
interval after response onset (Fig. 2c); pupil dilation during 
LP choices was diminished in those participants who com-
mitted LP choices more often.

Discussion

When offered a choice between two alternatives in a 
standard probability learning task, people occasionally 
shift their preference toward the option yielding a lesser 
(mathematical) expectation of the reward. To explain 
this suboptimal behavior, it has been hypothesized that 
people intentionally seek patterns in the sequences of 
outcomes, even though none are present and the prob-
abilities of reward are held constant (Ellerby & Tunney, 
2017; Unturbe & Corominas, 2007). From this perspec-
tive, rare transitions from objectively advantageous to 
disadvantageous choices may represent a directed explo-
ration strategy that guides the choice toward an option 
with uncertain payoff (Wilson et al., 2021).

To test this hypothesis, we contrasted pupil size and 
response time for LP and HP choices before and after the 
participants became aware of response-reward contingen-
cies. We found that LP choices were linked to a profound 
RT slowing and greater pupil dilation but only if the internal 
utility model has already been acquired by a participant. For 
the pupil size, this effect was strongly amplified for the LP 
choice, which immediately followed the gain as compared 
with loss in the preceding choice. Critically for the hypoth-
esis tested, LP versus HP difference in pupil size involved a 
strong phasic component and was temporally related to the 
behavioral choice, but neither to the stimulus itself, nor to 
the feedback about the choice outcome.

Importantly, our analysis of probabilities of transitions 
from advantageous to disadvantageous choices proved that 
the disadvantageous choices themselves were not simply 
caused by negative outcomes of a preceding advantageous 
choice, i.e., most disadvantageous choices did not result 
from a simple Win-Stay Lose-Shift strategy (Ellerby & Tun-
ney, 2017; Gaffan & Davies, 1981; Ivan et al., 2018).

In the following discussion, we will argue that the pattern 
of results obtained suggests that the rare, objectively disad-
vantageous choices, that violate the acquired internal utility 
model, do represent self-generated exploratory behavior. 
This exploratory strategy causes shifts in choice priorities in 
favor of information seeking, while its autonomic and behav-
ioral concomitants are mainly driven by a conflict between 
the behavioral plan of the intended exploratory choice and 
its predominant alternative, which has already proven to be 
more rewarding during previous trials.

First, we wanted to ascertain that the observed RT and 
pupil size dynamics cannot be explained by general cog-
nitive processes, nonspecifically related to the value-based 
decision formation – sustained attention, internal error 
detection, outcome monitoring related to the external feed-
back, and reaction to a previous loss (for review see Zenon, 
2019).
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The simplest explanation of LP choices is the loss of 
attention to stimulus display during objectively disadvanta-
geous choice. Response slowing was previously observed 
during continuous attentional tasks on the trials during 
which, according to participants’ reports, his/her atten-
tion was disengaged from the current task either due to the 
involvement in the inner thoughts or simply due to the dec-
rement of alertness (Cohen & van Gaal, 2013; Dyson & 
Quinlan, 2003; O'Connell et al., 2009; Ratcliff & McKoon, 
2008). However, in sharp contrast to the LP choices in our 
experiment, response slowing during unfocused attentional 
states was associated with reduced (not increased as during 
LP choices) task-evoked phasic pupil dilation (Figs. 3a and 
5a) (Unsworth & Robison, 2016). Convergent, instead 
of divergent, changes in the phasic pupil dilation and the 
response time during LP choices refute the suggestion that 
they originated from attentional lapses.

Still, another possibility is that response slowing and 
pupil dilation during LP choices are driven by internal detec-
tion of accidentally committed erroneous response. In the 
experimental tasks requiring participants to learn arbitrary 
association between visual stimuli and specific response, 
RT slowing accompanied with phasic pupil dilation is com-
monly observed not only after error commission (post-error 
slowing) (Critchley et al., 2005; Wessel et al., 2011), but 
also during the erroneous response itself (error slowing); 
such effect was tentatively ascribed to an error-evoked ori-
enting response (Murphy et al., 2016). At first glance, “error-
evoked” explanation seems plausible here, because relatively 
greater pupil dilation in the LP vs. HP trials emerges as 
a result of a conscious appraisal of LP choices as disad-
vantageous (the effect was present exclusively in the after 
learning condition, Figs. 3 and 5), and hence “erroneous.” 
This “error-detection” explanation, however, is difficult to 
reconcile with our finding of highly significant pupil dilation 
and RT slowing in the prelude to an LP choice—a pre-LP 
trial (Figs. 3 and 5), when no erroneous response was com-
mitted, and a participant undertook a “correct” advantageous 
choice. Also, in contrast to our data, preerror speeding rather 
that slowing is commonly observed (Dudschig & Jentzsch, 
2009), while we observed slower responses on pre-LP trials 
compared with HP trials.

The third cognitive process putatively involved in the LP 
choices could be external outcome monitoring; it implies 
that phasic pupil dilation is caused by the negative feedback 
contingent with the objectively disadvantageous choice (Sat-
terthwaite et al., 2007). Refuting this possibility, pupillary 
response during such choices emerges and sustains through-
out almost the whole decision-making interval, long before 
the feedback was provided (Fig. 4).

Apart from the cognitive processes involved in the LP 
choices themselves, a participant’s reaction to the nega-
tive outcome of the previous “correct” choice also should 

be considered as a possibility. Post-loss slowing has been 
reported for some gambling tasks (Brevers et al., 2015; 
Goudriaan et al., 2005), although pupil measurements in 
these studies were lacking. In order to check whether the 
previous loss substantially influenced our data, we repeated 
the basic analysis on the RT and pupil size data using unin-
terrupted sequences of trials, in which the LP choices were 
committed exclusively after wins, i.e., after those HP choices 
that were rewarded (supplementary materials, Figures S1 
and S2). In such a restricted dataset, the RT and pupil size 
effects remained highly significant, thus dismissing the pre-
dominant role of sensitivity to immediate previous loss in 
a subject’s decision to switch to the obviously disadvanta-
geous choice.

After refuting alternative explanations of our RT and pupil 
findings, we argue that a participant’s decision to seek new 
alternatives (directed exploration) seems to be the most plau-
sible explanation of behavioral and pupil changes evoked by 
spontaneous LP choices. This account is based on the find-
ings in the literature that relate a slow RT and choice-evoked 
pupillary response to information processing and updating 
the internal model in the brain (see Zenon, 2019 for review). 
A critical distinction between the current and previous pupil 
studies of exploration/exploitation dilemma is the nature of 
exploratory choice itself. The previous pupillometric stud-
ies investigated so-called random exploration (Wilson et al., 
2021); in these studies, exploratory choices were explicitly 
encouraged by a gradual decrease in the reward probability 
for a preferred choice in a restless multiarmed bandit task 
(Gilzenrat et al., 2010; Jepma & Nieuwenhuis, 2011). Our 
experimental design was fundamentally different, because 
it did not involve any systematic changes in the utility of a 
particular choice and the decider had known the probabil-
ity of likely outcomes from the previous experience. Thus, 
our findings provide the first evidence for pupillary response 
accompanying self-generated exploratory decisions such that 
participants intentionally choose a risky exploratory option 
against their behavioral bias toward value-driven choices.

Although the differentiation between random (purely 
uncertainty-driven) and self-generated or directed explo-
ration (intentional information seeking) is a long-standing 
problem in psychological literature (Berlyne, 1966; Wilson 
et al., 2021), physiological concomitants of the directed 
exploration are largely unknown (but see Zajkowski et al., 
2017). In this respect, our findings add an important new 
dimension to the existent knowledge about the relation of 
pupil dilation as a measure of LC-NA arousal to human 
exploratory behavior. Moreover, inclusion of the no learn-
ing and the after learning conditions in the present study 
allowed us to examine the change in choice-related pupillary 
response from random to self-generated exploration.

The question that we were seeking to answer was whether 
the concept of subjective uncertainty/surprise used to 
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explain pupil-related LC-NA arousal during exploratory 
choices (Van Slooten et al., 2018) also can be applied to 
self-generated exploration or whether different decision pro-
cesses are invoked depending on the source of uncertainty.

One possibility is that the effect of uncertainty played a 
similar role in producing transient pupillary responses during 
both random and self-generated exploratory choices. Hypo-
thetically, in the no learning condition, during which the 
reward structure remained largely unknown for participants, 
either choice was “random” and was characterized by an 
equal uncertainty in the prior belief regarding the outcome. 
This can explain why a pupillary response to either choice 
did not distinguish the LP and HP choices in the no learning 
condition (Fig. 5a, middle panel). As soon as the partici-
pants learned to prefer choices that had been probabilistically 
associated with positive outcomes (after learning condition), 
the uncertainty was greatly reduced for such advantageous 
choices, leading to a highly significant attenuation of both 
choice-related pupillary response and response time costs 
(Figs. 3a and 5a). Still, ambiguity remained whether other 
response strategies incorporating occasional risks—choices 
with a low payoff probability—might produce better total 
outcomes than the status quo. On the basis of the empiri-
cal consensus of association between pupillary response and 
subjective uncertainty (Richer & Beatty, 1987; Satterthwaite 
et al., 2007; Urai et al., 2017; Van Slooten et al., 2018), one 
might predict that the choice-related increase in pupil size, 
although attenuated for safe choices after learning, would be 
preserved for the risky explorative ones. This learning-related 
difference in pupillary responses between the safe and risky 
choices was exactly what we observed in our data (Fig. 5a).

Thus, at first glance, our findings match well with the 
principle derived from computational modelling (Jepma & 
Nieuwenhuis, 2011; Urai et al., 2017; Van Slooten et al., 
2018)—phasic pupil dilation is proportional to the sub-
jective estimate of uncertainty. On the other hand, in our 
experimental settings, the implicit conflict between “safe” 
and “risky” explorative options is an inevitable consequence 
of self-generated exploratory choice. The learned value of 
the objectively advantageous choice is known to create 
an unconscious value-driven bias (for review see Ander-
son, 2016) that can interfere with the effects of voluntary 
endogenous selection determined by the goal of a subject 
(Preciado et al., 2017). Implicit conflict with this uncon-
scious bias arises when a preferable “safe” action plan is 
overruled by a deliberate “risky” exploratory decision. Pre-
viously, the phasic increase in pupil size was found to be a 
robust measure of implicit conflict between task-appropriate 
and habitual automatic responses in a color-naming Stroop 
task (Laeng et al., 2011). In the context of a value-driven 
choice, pupil dilation was mainly studied under an explicit 
conflict, which was parametrically manipulated by changing 
the already learned differences in the likelihood of reward 

between two alternatives. Specifically, phasic pupil dilation 
was found to closely track a degree of explicit conflict, being 
inversely proportional to the difference in the reward prob-
ability for each of the alternative options (Van Slooten et al., 
2018). A similar effect was described for the intertemporal 
choice paradigm when the degree of conflict between the 
competing subjective preferences for immediate or delayed 
reward was also parametrically manipulated and formally 
modelled (Lin et al., 2018). Notably, strongest dependency 
of pupillary response and decision time cost on the degree 
of explicit conflict was found for appetitive conditions, i.e., 
a choice between two conflicting equally desirable win–win 
action plans (Cavanagh et al., 2014). Thus, when each alter-
native has significant advantages and disadvantages, people 
often experience conflict that makes the choice aversive and 
causes choice-related pupil dilation.

A strong influence of explicit conflict between the two 
action plans on pupillary response and RT supports our 
hypothesis that implicit conflict pertinent to self-generated 
exploratory choices has a similar effect on pupil dilation. In 
the latter case, conflict arises from competition for action 
selection between the unconsciously biasing effect of pre-
viously rewarded action and voluntary decision, which is 
shifting choice priorities in favor of information seeking.

We therefore tried to distinguish between “subjective 
uncertainty” and “conflict” effects by analyzing the pupil 
dilation in the “safe” choices that immediately preceded and 
followed the deliberate “risky” choice, as well as by consid-
ering the effects of the previous feedback sign on pupillary 
response. First, both behavioral and pupil results suggest 
a protracted decision formation such that an intentional 
exploratory decision was actually made during the preced-
ing trial, maintained, and then enacted during exploratory 
choice itself (Figs. 3a and 5a). This finding is fully com-
patible with the previous reports demonstrating that pupil-
lary response associated with the internal state of random 
exploration begin to develop on the trial preceding the 
exploratory choice itself (Gilzenrat et al., 2010; Jepma & 
Nieuwenhuis, 2011; Jepma et al., 2010). However, the pure 
uncertainty account is difficult to reconcile with our find-
ing that phasic pupil response and response time remained 
relatively high on the trial immediately following self-gen-
erated exploratory choice, when a participant returned to the 
“safe” choice strategy with a knowingly high payoff prob-
ability (Figs. 3a and 5a). Neither effect of uncertainty alone 
can explain why self-generated exploratory choice (during 
after learning condition) elicited greater pupil dilation and 
slower response time than a random exploratory choice 
with completely unpredictable choice outcome (during no 
learning condition) (Figs. 3a and 5a). This rather suggests a 
cumulative contribution of uncertainty regarding the desired 
outcome and a conflict with a value-driven bias in the self-
generated exploration.
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Further evidence for the contribution of conflict 
dimension to the self-generated exploratory choice 
is provided by the amplifying role of the previously 
obtained positive feedback on the increased pupillary 
response. The previous reward as compared to punish-
ment was associated with a greater pupil dilation in both 
“risky” explorative choices and “safe” post-explorative 
choices, while this effect was absent for the two other 
“safe” advantageous choice types (HP-choice and pre-LP 
choice) (Fig. 5b). Importantly, in both choice types sensi-
tive to the previous reward, the participants shifted to a 
response that was incongruent with the positive outcome 
of the previous choice. They changed their action plan 
toward exploration after being rewarded for the exploita-
tive action (LP-choice), or vice versa, returned to exploit-
ative strategy despite the successful outcome on the pre-
vious, explorative, action (post-LP choices). Because the 
other “safe” choices followed uninterrupted history of 
the previous frequently rewarded choices, they did not 
conflict with a previously rewarded action (supplemen-
tary materials, Figure S2). This finding indicates that the 
pupil dilation during self-initiated exploration is likely to 
reflect more than one process occurring concomitantly.

Notably, for RT measurements, the effect of the previ-
ous reward during explorative choices and postexplorative 
choices was not observed (Fig. 3b). This may be explained by 
the powerful effect of the preceding loss on response time—
i.e., post-loss slowing (Brevers et al., 2015; Goudriaan et al., 
2005)—but not on pupil size (Fig. 5b) that was seen in both 
the HP- and pre-LP choices. This generally adaptive ten-
dency, which serves to promote caution in decision making 
after losses, may counteract the opposite effect of previous 
reward on response speed in LP and post-LP trials.

To sum up, while subjective uncertainty is likely to play 
an important role in phasic pupil dilation caused by directed 
exploration, it is hardly the only factor determining strong 
enhancement of pupil size observed here in such choices. 
Pupil dilation is rather caused by the combined effect of 
subjective uncertainty regarding exploratory choice out-
come and the conflict signal broadcasting that the intended 
exploratory action violates the internal utility model, which 
favors the frequently rewarded alternative.

The self-generated decisional challenge whether to 
explore a set of alternative choices or stick to the oppor-
tunity to make a “default” choice suggests a comparison 
process taking place within the anterior cingulate cortex 
(ACC). Given that ACC in generally involved in the com-
parison between the outcome values of different choice 
options (Kolling et al., 2016), and specifically in conflict 
monitoring processes (Botvinick et al., 2004; Shenhav 
et al., 2013), the detection of conflict with the inner utility 

model in self-initiated exploratory choices may drive tran-
sient changes in LC-NA-mediated arousal, which, in turn, 
increases phasic pupil dilation observed here.

This speculation is consistent with the recent monkey 
study directly demonstrating that in some cases, pupil 
related modulations of spontaneous neuronal activity 
reflect signals occurring first in ACC and then being 
transmitted to the LC and other subcortical and cortical 
structures (Joshi et al., 2016). It also is in accord with 
the human findings showing that the phasic pupil dilation 
during explicit high-conflict appetitive choices correlates 
with increased mediofrontal activation (Cavanagh et al., 
2011, 2014). Therefore, phasic pupil dilation triggered 
by the implicit conflict in our experiment may reflect 
downstream signal of conflict processing in ACC.

Evidence from multiple psychological and physiologi-
cal research indicate that conflict is emotive and trig-
gers a negatively valenced affective state accompanied 
by changes in heart rate, skin conductance, body tem-
perature, pupil response, and muscle tone (for review see 
Saunders et al., 2017). One cannot exclude, therefore, 
that the negative emotion triggered by implicit conflict 
may contribute to pupil dilation that we observed for self-
generated exploratory choices. By changing the inner 
affective state, learning from the history of rewards and 
punishments may reach perception of knowing without 
conscious awareness (Bechara et al., 1997)—the process 
of nonconscious information processing that has been 
referred to as System 1 (Kahneman, 2003). Functionally, 
changes in the inner physiological state may serve as a 
subconscious warning signal informing a decision maker 
that his/her deliberate action plan violates the inner brain 
model for utility of the intended action.

Conclusions

The study demonstrates that response slowing and aug-
mented pupil-related phasic arousal characterize a par-
ticipant’s decision to take risk of information seeking by 
choosing an uncertain alternative over the rewarding one 
in a two-choice probabilistic learning task. The behavioral 
and pupillometric findings also suggest that such directed 
exploration is bound to a conflict between the deliberate 
explorative choice with uncertain outcome and the inner bias 
to select the option with the highest value. The close rela-
tionship between self-generated choices and pupil-related 
arousal makes a simple probabilistic learning task a com-
plementary instrument for studying neural underpinnings 
of directed exploration and the underlying pathophysiology 
of its abnormalities in mental disorders.
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