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Abstract: In order to reduce random errors of the lidar signal inversion, a low-pass 

parabolic fast Fourier transform filter (PFFTF) was introduced for noise elimination. A 

compact airborne Raman lidar system was studied, which applied PFFTF to process lidar 

signals. Mathematics and simulations of PFFTF along with low pass filters, sliding mean 

filter (SMF), median filter (MF), empirical mode decomposition (EMD) and wavelet 

transform (WT) were studied, and the practical engineering value of PFFTF for lidar signal 

processing has been verified. The method has been tested on real lidar signal from 

Wyoming Cloud Lidar (WCL). Results show that PFFTF has advantages over the other 

methods. It keeps the high frequency components well and reduces much of the random 

noise simultaneously for lidar signal processing. 
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1. Introduction 

Lidar is an active remote sensing instrument, which measures the backscattering signals by emitting 

laser pulses towards atmosphere or targets. It is widely used in atmospheric remote sensing, such as 
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detection of atmospheric aerosols, clouds, atmospheric boundary layer, temperature, visibility, and  

wind [1–4]. All of these measurements are based on the raw signal data processing. To improve the 

signal to noise ratio (SNR), except for the efforts on hardware, the signal processing is also crucial. 

The lidar return signal contains not only the backscattered signal produced by the atmosphere or 

targets, but also noises and interferences, such as stochastic and atmospheric turbulences, dark current, 

background and electronics readout noise [2–5]. The signal SNR falls rapidly with the increase of the 

detection distance, which results in that signals are often overwhelmed by noise. To reduce random 

noises, long-time averaging is an effective method for ground-based lidar systems. However, this is not 

an option for airborne and space borne systems due to the requirement of higher horizontal resolution. 

In this case, to enhance the distance and accuracy of the lidar detection, signal processing plays an 

indispensable role.  

Other than traditional signal data smoothing, manifold signal processing algorithms and denoising 

methodologies were studied to process signals in various applications. Huang et al. put forward empirical 

mode decomposition (EMD) which is used to deal with the non-linear and non-stationary data [6]. It was 

reported that EMD method could also be applied to reduce noise in return lidar signals. Wu et al. proved its 

applicability, efficiency and superiority to the band-pass filter and the averaging method [2]. Tian et al. 

suggested an automatic EMD denoising method and proved the performance of the method [4]. Wavelet 

transform (WT) is another modern method studied by many researchers in processing signals. Fang et al. 

proposed discrete wavelet transform and improved the SNR and effective range of lidar [7]. Kedzierski and 

Fryskowska applied a wavelet-based method to process and integrate the return signal to generate the 3D 

model in lidar system [8]. EMD and WT might beat down noise in return lidar signal to some extent, while 

both of them are hardware resource-costing and time-consuming. Therefore, a method which is efficient 

and easily to be realized in engineering applications is also required, especially for real-time detection 

systems. In this paper, a low-pass parabolic fast Fourier transform filter (PFFTF) was introduced, which 

can be operated well for lidar signal denoising in real-time monitoring.  

Theory and the procedure of PFFTF is illustrated in Section 2, and processing of a simulated lidar 

signal by PFFTF was presented and compared with traditional low pass filter (TLPF), triangular filter, 

Gaussian filter, sliding mean filter (SMF), median filter (MF), empirical mode decomposition (EMD) 

and wavelet transform (WT). The system design and setup of a compact airborne Raman lidar are 

introduced in Section 3. The performance of PFFTF for processing real lidar signals was tested and 

verified in Section 4. Finally, Section 5 concludes this paper. 

2. Theory and Simulations 

2.1. Theory and Procedure of PFFTF 

For lidar signals, random noise is a high frequency component [4,6,9]. However, signals scattered 

by aerosol layers or clouds also have high frequency components [10–12]. For processing the signals, 

it is a challenge to reduce the random noise of the signal while keeping as many of the real high 

frequency signal details as possible. Fast Fourier transform (FFT) filter is a powerful tool to deal with 

the signal in the frequency domain. The frequency of the input signal is analyzed by FFT and then the 

required frequency components are selected. As shown in Figure 1a, traditional low-pass FFT filter 
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blocks high frequency components completely. Different from it, the cut-off frequency of PFFTF is 

not ONE value, but a parabolic curve. Benefited from this change, the PFFTF retains partial high 

frequency components which are caused by clouds or aerosols.  

 

Figure 1. Window form of filters. (a) TLPF; (b) PFFTF. 

The window function of PFFTF is expressed as Equation (1) [10], where fC1 is the pass frequency 

and fC2 is the stop frequency:  
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The effect of PFFTF is determined by both the pass frequency and the stop frequency. 

Consequently, how to find out the optimal values for fC1 and fC2 is particularly significant. So far, no 

one has ever done research about how to select the pass and stop frequency of PFFTF. To evaluate the 

effect of different pass and stop frequencies when using PFFTF to process the return lidar signal, we 

choose mean square error (MSE) as a criterion, which is expressed in Equation (2). MSE reflects the 

deviation of processed signal from original signal. The MSE variations with fC1 and fC2 are shown in 

Figure 2, where the sampling frequency (fS) is 200 MHz: 
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Figure 2. Variation of the MSE with fC1 and fC2. 
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It can be seen that MSE is affected slightly by fC1, while it changes considerably with fC2. The 

optimal stop frequency can be computed when MSE is lowest. For lidar signals, the sampling 

frequency is usually between 1 MHz to 1 GHz. We compute the optimal values of stop frequency 

when the sampling frequency varies from 1 MHz to 1 GHz, as shown in Figure 3.  

 

Figure 3. Relationship between fS and fC1. 

Experienced formulas for optimal stop frequency under different sampling frequency were obtained 

by exponential fitting, as shown in Equation (3): 
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PFFTF is a kind of low pass filter, the essence of which is based on FFT and inverse fast Fourier 

transform (IFFT). The procedure of PFFTF is shown as Figure 4: 

 

Figure 4. Procedure of PFFTF. 

2.2. Simulations  

To check the effects of the PFFTF, we did calculations for simulated lidar signals which were 

generated by lidar equations [1,13,14]. To make the simulation more real, we added Gaussian white 

noise and two fluctuation signals to the smooth ideal lidar signal. The simulated lidar signal is 

processed by TLPF, SMF, MF, triangular filter, Gaussian filter, WT, EMD and PFFTF.  
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SMF is based on the average method, which is commonly used for lidar signal processing. It 

smoothed both noise and signal, and lost some of the details. The application of SMF is defined by 

Equation (4): 

1
( ) ( )

m

j m

y i x i j
N =−

= +  (4)

where 2 1N m= +  and 1, 2,...,i m m n m= + + − . 

MF is a method to process nonlinear signals, which uses the median instead of the average for the 

series. MF retains some of the fluctuation signals, but its effect for noise filtering is not satisfactory. 

The definition of MF is expressed by Equation (5) 

1 1 1 1
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where 1,2,3,p = and 1, 2,p 3,i p p= + + + .  

The Gaussian filter and triangular filter are time domain filters, which mathematically modify the 

input signal by convolution with an impulse response. They provide a smoother form of a signal, 

removing the short-term fluctuations, and leaving the longer-term trend. EMD is a method to 

decompose a signal into intrinsic mode functions (IMF) along with a trend and then remove proper 

IMF to get a processed signal [2,4,6]. WT is a transform that can decompose a signal into a set of basic 

functions and is applied to analyze signals [7,8]. The result of different methods is shown in Figure 5. 

In Figure 5, fS is 200 MHz, fC1 is 10 Hz, fC2 is 8.86 MHz; the cut-off frequency of TLPF, triangular 

and Gaussian filter is 8.86 MHz, filter order of the triangular and Gaussian filter is 16; m is 15 for 

SMF, p is 2 for MF; for EMD, the interpolation method is “spline”, threshold of stop is 0.05; for WT, 

the wavelet is “haar” and the level is 6. PFFTF reduces the noise effectively and keeps the fluctuation 

signal well. It turns out that the empirical formulas of fC1 and fC2 are reasonable. In order to evaluate 

the denoising effects of these methods, SNR and MSE for input signal and output signal by different 

methods were computed respectively, which are expressed in Equations (6)–(9). 
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Figure 5. Cont.  



Sensors 2015, 15 26090 

 

 

.

 

680 700 720 740 760 780 800
2

4

6

8

10

12

14

16

18

Range (m)

In
te

ns
ity

 o
f 

si
gn

al

(c)

 

 
Noised input signal
Ideal input signal
Signal processed by SMF
Signal processed by PFFTF

 

1000 1100 1200 1300 1400

0

2

4

6

8

10

12

14

Range (m)

In
te

ns
ity

 o
f 

si
gn

al

(d)

 

 
Noised input signal
Ideal input signal
Signal processed by MF
Signal processed by PFFTF

 
 

600 700 800 900 1000

2

4

6

8

10

12

14

16

18

Range (m)

In
te

ns
ity

 o
f 

si
gn

al

(e)

 

 
Noised input signal
Ideal input signal
Signal processed by Triangular filter
Signal processed by PFFTF

 

600 700 800 900 1000

2

4

6

8

10

12

14

16

18

Range (m)

In
te

ns
ity

 o
f 

si
gn

al

(f)

 

 
Noised input signal
Ideal input signal
Signal processed by Gaussian filter
Signal processed by PFFTF

 
 

600 650 700 750 800 850 900
0

2

4

6

8

10

12

14

16

18

Range (m)

In
te

ns
ity

 o
f 

si
gn

al

(g)

 

 
Noised input signal
Ideal input signal
Signal processed by WT
Signal processed by PFFTF

 

600 650 700 750 800 850 900
0

2

4

6

8

10

12

14

16

18

Range (m)

In
te

ns
ity

 o
f 

si
gn

al

(h)

 

 
Noised input signal
Ideal input signal
Signal processed by EMD
Signal processed by PFFTF

 

Figure 5. Comparison of different methods. (a) Comparison among ideal signal, noised input 

signal and signal processed by PFFTF; (b) Comparison between TLPF and PFFTF;  

(c) Comparison between SMF and PFFTF; (d) Comparison between MF and PFFTF;  

(e) Comparison between triangular filter and PFFTF; (f) Comparison between Gaussian filter 

and PFFTF; (g) Comparison between WT and PFFTF; (h) Comparison between EMD  

and PFFTF. 
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where K is the dimension of the data set, f(k), fn(k) and '( )f k  are the ideal input signal, noised input 

signal and processed signal respectively. Through different denoising methods, the SNR was improved 

and the MSE was decreased as shown in Table 1, which were calculated from 0.5 km to 1.5 km. The 

running time of every method was also summarized. 

Table 1. The SNR, MSE and running time of different methods. 

Method RSNR_input RSNR_output EMSE_input EMSE_input Running Time (ms) 
TLPF 

15.4686 

20.7557 

0.555 

0.1644 2.237 
Triangular 21.6521 0.1425 3.233 
Gaussian 23.5682 0.0985 3.512 

SMF 18.7609 0. 2530 2.587 
MF 20.9600 0.1569 2.106 
WT 24.0133 0.0658 200.526 

EMD 27.8862 0.0321 1612.534 
PFFTF 27.6606 0.0335 2.855 

From Figure 5 and Table 1, it can be seen that: (1) TLPF retained the fluctuation signal while it did 

not remove noise effectively; (2) SMF denoised the lidar signal, but removed the useful high frequency 

signal and lost some information; (3) MF, triangular filter and Gaussian filter retained the fluctuation 

signal information to some extent, however their denoising performance is not good enough;  

(4) running time of EMD and WT was far longer than that of the others, so EMD and WT are not 

reasonable methods; (5) among these methods, PFFTF removed noise better and additionally it 

retained the fluctuation signal better, therefore, we can conclude that PFFTF performs much better 

than other methods in lidar signal processing. 

3. Lidar System 

A compact airborne Raman lidar system has been designed and assembled on a small aircraft. The 

design goal of the compact Raman lidar is to better study the planetary boundary layer aerosol and 

water vapor. The lidar needs to work during daytime. Under a strong daylight solar background, the 
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laser power and telescope aperture are quite limited for an airborne system. Furthermore, in order to 

provide higher horizontally resolved measurements from aircraft, the averaging time of each lidar 

profile should be as short as possible. That means system requires the lidar signal processing to be fast 

and effective. A simplified instrument schematic diagram and inner structure of the compact Roman 

lidar system are shown in Figure 6.  

(a) (b) 

Figure 6. (a) Schematic diagram; (b) Inner structure. 

In order to provide the essential stability, the transmitter, the telescope and the receiver optics are all 

mounted on the same optical bench to maintain the optical alignment in a vibration environment. A list 

of the main system parameters is given in Table 2. 

Table 2. System parameters of compact airborne Raman lidar. 

Transmitter 

Laser Nd:YAG laser (Bigsky CFR400 GRM) 
Wavelength 354.7 nm 
Pulse energy 50 mJ 
Pulse width 7 ns 

Pulse Repetition Frequency (PRF) 30 Hz 
Beam divergence 1.8 mrad 
Beam expander 5X 

Receiver 

Telescope aperture 12 inch 
Field of View 1 mard 

Receiving Channels 4 
Polarization Horizontal & Vertical 

Detector PMT (Hamamatsu H5873) 
Filter center wavelength 354.7 nm 386.7 nm 407.5 nm 

Filter Bandwidth (FWHM) 0.3 nm 0.3 nm 0.3 nm 
Data Acquisition System 12-bit A/D (GAGE) 

Sampling rate 200 MSPS 

4. Experiments 

The Compact Airborne Raman Lidar (CARL) was deployed on the Wyoming King Air during 

KAPEE project [10]. A single signal profile from the elastic channel of CARL was extracted for 
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PFFTF demonstration and result of different methods was shown in Figure 7. The fS is 100 MHz, fC1 is 

10 Hz, fC2 is 4.36 MHz, cut off frequency of TLPF, triangular and Gaussian filter is 4.36 MHz, p is 2 

for MF, m is 15 for SMF. 

 

 

 

 

Figure 7. Processing of real lidar signal. (a) A whole lidar signal profile from the CARL; 

(b) Comparison between TLPF and PFFTF; (c) Comparison among PFFTF, MF and SMF; 

(d) Comparison between triangular filter and PFFTF; (e) Comparison between Gaussian 

filter and PFFTF. 
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From Figure 7, it can be seen that there are several cloud layers in the lidar return profile. TLPF did 

not remove noise effectively between 1.4 km and 1.7 km. SMF distorted the cloud signals between  

1.5 km and 1.55 km. For MF, triangular filer and Gaussian filter, the cloud signals were kept to some 

extent, but data was not denoised enough. PFFTF decreased the noise effectively while keeping the 

cloud signals well enough.  

5. Conclusions 

A low-pass parabolic fast Fourier transform filter was reported for lidar signal processing. It is 

evolved from an ideal low pass Fourier transform filter. Following minimum MSE criterion, relations 

between pass frequency & stop frequency of PFFTF and sampling frequency were studied by simulative 

analysis. Empirical formulas for optimal parameters of PFFTF were given through data fitting and the 

reasonability of formulas was verified. Comparisons of denoising effects by application of PFFTF, 

TLPF, triangular filter, Gaussian filter, SMF and MF for both simulated and real lidar signals were 

presented. Simulated computations show that PFFTF improved SNR best and had the minimum mean 

square error. Results for real lidar signal processing also proved the obvious advantages of PFFTF. To 

summarize, PFFTF is a dependable and effective method for the lidar signal denoising. 
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