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SUMMARY

Drug repurposing is a promising approach to find new therapeutic indications for approved drugs. Many
computational approaches have been proposed to prioritize candidate anticancer drugs by gene or
pathway level. However, these methods neglect the changes in gene interactions at the edge level. To
address the limitation, we develop a computational drug repurposing method (iEdgePathDDA) based
on edge information and pathway topology. First, we identify drug-induced and disease-related edges
(the changes in gene interactions) within pathways by using the Pearson correlation coefficient. Next,
we calculate the inhibition score between drug-induced edges and disease-related edges. Finally, we pri-
oritize drug candidates according to the inhibition score on all disease-related edges. Case studies show
that our approach successfully identifies newdrug-disease pairs based on CTDdatabase. Compared to the
state-of-the-art approaches, the results demonstrate our method has the superior performance in terms
of five metrics across colorectal, breast, and lung cancer datasets.

INTRODUCTION

Drug repurposing, the exploration of existing drugs for new therapeutic indications, has emerged as a promising strategy to accelerate drug

development and reduce costs.1 Traditional drug discovery processes are time-consuming and resource-intensive,2 and often taking a

decade to bring a newdrug tomarket.3,4While the safety and known pharmacokinetics of approveddrugs are extensively documented, these

characteristics can substantially mitigate the costs associated with clinical trials.5 Compared with the design and discovery of new drugs, drug

repurposing presents notable advantages in safety, cost, and rapid results, signifying its substantial pharmaceutical significance.6 Researchers

often utilize experimental or computational methods to identify suitable drug candidates, which constitutes a key aspect of drug

repurposing.7–17

Studies on drug repurposing have achieved significant milestones, which many researches apply computational methods to address this

challenge.18 These methods be broadly categorized into signature-based and pathway-based approaches.

Signature-based methods are predominantly devised for prioritizing drug-disease relationships by analyzing gene expression patterns.

The Connectivity Map (CMAP) database, which contains gene expression profiles induced by 1309 compounds across five cancer cell lines,

is a widely used resource.19 Several computational methods have been proposed to uncover previously unknown drug-disease pairs by

examining the inverse correlation of gene expression patterns between drugs and disease by using CMAP.20–26 For example, Dudley

et al.20 systematically identified potential drugs by comparing the disease-related gene expression characteristics with drug-induced

gene expression characteristics based on CMAP. Kosaka et al.21 found an antiviral drug for prostate cancer by using drug-induced

gene expression data from CMAP database. Noort et al.22 predicted novel drugs for colorectal cancer by utilizing drug-induced gene

expression profiles that invert disease profiles. Cheng et al. Pacini et al.23 developed a framework to discover potential drugs by

comparing drug-induced and disease-related gene expression profiles. Napolitano et al.24 integrated drug targets, chemical structures,

and drug-induced gene expression to facilitate drug repositioning. Chen et al.25 proposed a drug repurposing method by leveraging tis-

sue or species-specific transcriptome data in conjunction with drug-induced gene expression from CMAP database. Papikinos et al.26 em-

ployed CMAP to pinpoint potential drugs for amyotrophic lateral sclerosis. Ahmed et al.17 employed gene expression signatures of the

psoriasis and compared them with perturbagen available in the CMAP to predict potentially effective drugs. However, from a system
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Figure 1. The flowchart of iEdgePathDDA

(A) Drug-disease inhibition score (IS).

(B) Ranking drugs based on IS.
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biology perspective, drugs typically achieve their therapeutic effects on diseases by modulating biological pathways, and the signature-

based approaches mainly focus on gene level.

Pathway-based methods modulate disease-associated pathways to discover drug-disease associations. By integrating comprehensive

pathway data with drug-induced gene expression profiles, we aim to systematically identify drugs that perturb specific pathways implicated

in diseases of interest. Recent studies have introduced that pathway-based approaches aim at identifying potential drugs for cancer treat-

ment.27–33 For instance, Han et al.27 identified abnormal subpathways induced by diseases and drugs, respectively, and then evaluated the

reverse correlation between drugs and diseases at the subpathway level for drug repurposing. Wu et al.28 found candidate drugs for cancer

by considering drug-induced subpathways and their crosstalk effect. Li et al.29 introduced a drug repurposing methodology that seamlessly in-

tegrates gene expression profiles with gene regulatory networks. Lwata et al.30 utilizedmolecular pathways as the therapeutic targets and prior-

itizedpotential drugs by regulating disease-related pathways. Napolitano et al.31 proposed a drug repositioningmethodby incorporating drug-

induced gene expression and therapeutic target genes within specific pathways. Di et al.32 constructed a drug functional similarity network to

prioritize agents by pathway activities and drug activities. Wang et al.33 developed a drug-pathway prediction method that inferred pathway

responsive to specific drugs. However, thesemethods primarily focusedon identifying candidate drugs at the pathway level, without considering

the changes of gene interactions. Gene interactions (activation or inhibition) in the pathway play a crucial role in occurrence and progression of

disease. Therefore, it is imperative to develop new methods that can accurately identify cancer-related drugs based on edge level.

In this paper, we develop a drug repurposingmethod, which utilizes the changes of gene interactions within pathway between drug-induced

state and disease-related state to identify potential candidate drugs for cancer treatment. In our framework, as shown in Figure 1, calculating

inhibition score between drug and disease based on the change of gene interactions. Case studies demonstrate that our approach successfully

identified new drug-disease pairs. Our findings indicate that the top-rank drug candidates have been already validated by CTD database. To

evaluate the performance of iEdgePathDDA, we compare iEdgePathDDA with other existing approaches in three cancer datasets (colorectal,

lung, and breast cancer). The results show that iEdgePathDDA achieves best performance in terms of AUPR, AUROC, Recall, ACC, and F1.
2 iScience 27, 110025, July 19, 2024



Table 1. The gene expression datasets of three cancers

Dataset GEO Case/control Reference

Colorectal Cancer GSE23878 19/19 Uddin et al.34

Breast Cancer GSE31448 29/4 Sabatier et al.35

GSE29044 73/36 Colak et al.36

Lung Cancer GSE18842 46/45 Sanchez-Palencia et al.37

GSE19188 91/65 Hou et al.38

GSE19804 60/60 Lu et al.39
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RESULTS

The effect of the threshold a

In this section, our focus is on scrutinizing the impact of the parameter a on themodel’s performance. The objective is to reveal the underlying

factor a influencing its effectiveness. We use six datasets from GEO dataset. The details are outlined in Table 1.

A pivotal factor contributing to the enhancement of our model’s performance is the parameter a. Therefore, the selection of an appro-

priate threshold a is important. Figure 2 shows the trends of five metrics (AUPR, AUROC, Recall, ACC, F1) and their corresponding average

values across a range of the threshold a from 0 to 0.8 on six datasets. The general observation is that the overall trend of five metrics and the

average decreaseswith the increment of the thresholda. As the threshold of a increases, the acquired edge information related to the disease

become limited, leading to constraining the model’s performance. Remarkably, the model attains its optimal overall performance on the six

datasets when the threshold of a is set to 0.
Case study: Colorectal cancer

To substantiate the reliability and effectiveness of our method, we apply it to predict potential drugs for colorectal cancer. The top 5 potential

anti-colorectal cancer drugs are listed in Table 2. Moreover, our method reveals some potential candidate drugs with evidence suggesting

their capacity to inhibit the development of colorectal cancer. For example, dexamethasone, a glucocorticoid administered in various forms,

is employed for the treating diverse inflammatory conditions, such as bronchial asthma, as well as endocrine and rheumatic disorders. Kim

et al.40 demonstrated that the inhibitory effects of dexamethasone on cell migration and invasion by suppressing epithelial-mesenchymal

transition (EMT) in colon cancer cell lines under hypoxic condition.

Indomethacin, a nonsteroidal anti-inflammatory (NSAID), is employed for managing chronicmusculoskeletal pain conditions and inducing

closure of a hemodynamically significant patent ductus arteriosus in premature infants. Ikawa et al.41 reported that indomethacin exhibited a

potential antagonizing effect on human EP(2) receptors in LS174T human colon cancer cells.

Pentamidine, an antifungal agent, is used in the treatment of pneumocystis pneumonia in HIV-infected patients. Seguella et al.42 intro-

duced that pneumocystis blocked S100B activity, thereby rescuing wild-type p53 expression and determining pro-apoptotic control in colon

cancer.

Colchicine is an alkaloid used to treat gout and familial Mediterranean fever as well as prevent major cardiovascular events. Kumar et al.43

suggested that colchicine triggered apoptosis and autophagy in HCT-116 colon cancer cells.

Estradiol, an estrogenic steroid employed in treating vasomotor symptoms of vulvar and vaginal atrophy inmenopause, hypoestrogenism,

prevention of postmenopausal osteoporosis, treatment of breast cancer, and advanced androgen-dependent carcinoma of the prostate. Za-

mani et al.44 demonstrated that estradiol could alter the migration, juxtacrine, and paracrine activities of colorectal cancer stem cells. Hsu

et al.45 found that estradiol inhibited colorectal cancer cell proliferation and migration by targeting p53.

This implies that these drugs may intervene with the disease process by modulating gene interactions (edges) and can emerge as mean-

ingful treatment options.
Case study: Breast cancer

We then use two breast cancer datasets (GSE31448 and GSE29044) to illustrate the effectiveness of iEdgePathDDA in prioritizing candidate

drugs for cancer. iEdgePathDDA identifies the top 5 potential anti-breast cancer drugs based on average rank of two breast cancer datasets

(Table 3). Some candidate drugs with positive evidence have also been identified. For instance, deferoxamine is a chelating agent used to

treat iron or aluminum toxicity and some blood transfusion dependent anemias. Chen et al.46 demonstrated that deferoxamine could upre-

gulate expression of TfR1 and DMT1, enhancing iron uptake through the activation of the IL-6/PI3K/AKT signaling pathway in aggressive tri-

ple-negative breast cancers (TNBCs).

Mesalazine is an aminosalicylate drug used to treat mild tomoderate active ulcerative colitis and also tomaintain remission once achieved.

It was also used in the chemoprophylaxis of colorectal cancer associated with these conditions.50 So far, there are no literatures reported that

mesalazine can treat breast cancer. Our approach predicts that mesalazine may be effective treatment for breast cancer.
iScience 27, 110025, July 19, 2024 3



Figure 2. The performance of iEdgePathDDA of five metrics (AUPR, AUROC, Recall, ACC, F1) and the average values using six datasets with different

hyperparameters

(A) AUPR, (B) AUROC, (C) Recall, (D) ACC, (E) F1, (F) Average. Average: the average of the five metrics.
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Sulfasalazine is a salicylate used to treat Crohn’s disease, ulcerative colitis, and rheumatoid arthritis. Wei et al.47 found that sulfasalazine

and vitamin E succinate (VES) had synergistic or antagonistic cytotoxic effects depending on VES concentration against triple-negative breast

cancer cells.

Verapamil is a non-dihydropyridine calcium channel blocker used in the treatment of angina, arrhythmia, and hypertension. Li et al.48 re-

ported that the combination of paclitaxel and verapamil could inhibit cell proliferation by arresting the progression of the cell cycle and pro-

moting cell apoptosis in breast cancer cells.

Diclofenac is a nonsteroidal anti-inflammatory (NSAID) used to treat the signs and symptoms of osteoarthritis and rheumatoid arthritis.

Yang et al.49 suggested that diclofenac inhibited cell glycolysis and suppressed TNBC cell growth by decreasing GLUT1 protein expression

and HK activity through the c-Myc pathway.
Case study: Lung cancer

We employ three lung cancer datasets (GSE19844, GSE18842, and GSE19804) to demonstrate the efficacy of iEdgePathDDA in prioritizing

candidate drugs associated with lung cancer. iEdgePathDDA identifies the top 5 potential anti-lung cancer drugs based on the average rank
4 iScience 27, 110025, July 19, 2024



Table 2. Top 5 candidate drugs for colorectal cancer identified by iEdgePathDDA

DrugBank Drug name MI MOA Evidence

DB01234 Dexamethasone Bronchial asthma, endocrine

and rheumatic disorders.

Inhibit neutrophil apoptosis

and demargination

Kim et al.40

DB00328 Indomethacin Rheumatoid arthritis, osteoarthritis Inhibitor of the cyclo-oxygenase

enzyme or prostaglandin

G/H synthase

Ikawa et al.41

DB00738 Pentamidine Pneumocystis pneumonia in

patients infected with HIV

Inhibit the synthesis of DNA, RNA,

phospholipids, and proteins.

Seguella et al.42

DB01394 Colchicine Prophylaxis and gout flares Inhibitor of tubulin beta chain Kumar et al.43

DB00783 Estradiol Osteoporosis, breast cancer,

and prostate cancer

Inhibitor of ATP synthase subunit a Zamani et al.44

MI, Main Indication; MOA, Mechanism of Action.
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across three datasets (Table 4). Several candidate drugs with positive evidence have also been discerned. For example, Verapamil is a non-

dihydropyridine calcium channel blocker used in the treatment of angina, arrhythmia, and hypertension. Huang et al.51 found that the com-

bination of verapamil and chemotherapeutic drugs could enhance the clinical outcomes in advanced lung cancer patients and increase the

efficacy of chemotherapeutic agents.

Sulfasalazine, a salicylate prescribed for Crohn’s disease, ulcerative colitis, and rheumatoid arthritis, demonstrated significant potential in

enhancing chemotherapy efficacy for lung cancer according to findings by Lay et al.55 Moreover, Bagherpoor et al.52 reported that the com-

binations of sulfasalazine and disulfiram-copper displayed inhibitory effects on lung adenocarcinoma in both cell line models and mice.

Bucladesine, recognized for its role as a cell-permeable cAMP analog, holds versatile applications in research due to its ability to mimics

cAMP and can induce normal physiological responses under experimental conditions. Zhang et al.53 highlighted the inhibitory effects of di-

butyryl cAMP (bucladesine) on the growth and differentiation of metastatic human lung cancer cells.

Chlorpromazine, a phenothiazine antipsychotic with applications ranging from treating nausea and preoperative anxiety to managing se-

vere behavioral problems, schizophrenia and bipolar disorder, is proposed by Fujiwara et al.54 as holding therapeutic potential for non-small

cell lung cancer (NSCLC) withmutated EGFR. Importantly, this potential is attributed to a novelmechanismdistinct from conventional tyrosine

kinase inhibitors (TKLs) either alone or in combination with other agents.
iScience 27, 110025, July 19, 2024 5



Table 3. Top 5 candidate drugs for breast cancer identified by iEdgePathDDA

DrugBank Drug name MI MOA Evidence

DB00746 Deferoxamine Acute iron or aluminum toxicity Binding trivalent iron Chen et al.46

DB00244 Mesalazine ulcerative colitis Inhibitor of nuclear factor

kappa-B kinase subunit beta

–

DB00795 Sulfasalazine Crohn’s disease, ulcerative

colitis, and rheumatoid arthritis

Inhibitor of prostaglandin

G/H synthase 1/2

Wei et al.47

DB00661 Verapamil

0

angina, arrhythmia,

and hypertension

Inhibit L-type calcium channels Li et al.48

DB00586 Diclofenac

1

Osteoarthritis and

rheumatoid arthritis

Inhibitor of prostaglandin

G/H synthase 1/2

Yang et al.49

MI, Main Indication; MOA, Mechanism of Action.

ll
OPEN ACCESS

iScience
Article
Alpha-estradiol, recognized as both an estrogen and 5 alpha-reductase inhibitor primarily employed in topical drug treatment of hair

loss,56 lacks existing literature supporting its role in lung cancer treatment. Nevertheless, our approach predicts a potential therapeutic effect

of alpha-estradiol for lung cancer.

These findings underscore the capability of iEdgePathDDA to present precise and diverse treatment options for patients, potentially expe-

diting drug discovery. The results open new avenues for research and clinical applications, offering new prospects and opportunities for

further investigation.
Compare with other drug repurposing methods

To assess the efficacy of our method, we conduct a comprehensive comparison with four existing approaches using five metrics (AUPR,

AURPC, Recall, ACC, and F1). As depicted in Table 5, iEdgePathDDA outperforms other drug repurposing methods across all five metrics

on six datasets. Notably, it achieves exceptional performance, achieving an AUPR, AUROC, Recall, ACC and F1 score of 0.799, 0.631,

0.722, 0.645 and 0.743, respectively. Furthermore, a comparison with suboptimal methods reveals substantial improvements in
6 iScience 27, 110025, July 19, 2024



Table 4. Top 5 candidate drugs for lung cancer identified by iEdgePathDDA

DrugBank Drug name MI MOA Evidence

DB00661 Verapamil

2

angina, arrhythmia,

and hypertension

Inhibit L-type calcium channels Huang et al.51

DB00795 Sulfasalazine

3

Crohn’s disease,

ulcerative colitis, and

rheumatoid arthritis

Inhibitor of prostaglandin

G/H synthase 1/2

Lay et al.52

DB13242 Bucladesine – Plasminogen activator

inhibitor 1

Zhang et al.53

DB00477 Chlorpromazine Schizophrenia, nausea,

vomiting, preoperative

anxiety

Antagonist on dopamine

D1/D2 receptor

Fujiwara et al.54

– Alpha-estradiol Hair loss – –

MI, Main Indication; MOA, Mechanism of Action.
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iEdgePathDDA, with increases of 14.4% in AUPR, 9.3% in AUROC, 8.5% in Recall, 5.4% in ACC, and 18.3% in F1. These enhancements under-

score a significant improvement in the model’s capacity to detect relevant associations while maintaining accuracy. The results affirm that the

improvements achieved by iEdgePathDDA are both comprehensive and substantial, indicating its practical significance in identifying drug-

disease associations. Therefore, the incorporation of gene interactions (edges) within pathways contributes to the enhanced predictive

performance of iEdgePathDDA, highlighting its practical importance in improving prediction accuracy and advancing the identification of

drug-disease associations.
Table 5. Performance comparison in different methods based on six datasets

Method AUPR AUROC Recall ACC F1

iEdgePathDDA 0.799 G 0.032 0.631 G 0.030 0.722 G 0.078 0.645 G 0.020 0.743 G 0.026

CMAP 0.443 G 0.043 0.428 G 0.040 0.315 G 0.081 0.591 G 0.031 0.436 G 0.090

NP 0.655 G 0.072 0.505 G 0.040 0.380 G 0.098 0.446 G 0.053 0.469 G 0.088

SubtypeDrug 0.579 G 0.131 0.538 G 0.034 0.602 G 0.092 0.481 G 0.021 0.560 G 0.049

DRviaSPCN 0.497 G 0.068 0.520 G 0.013 0.637 G 0.071 0.488 G 0.033 0.537 G 0.045

NP, Network proximity.

iScience 27, 110025, July 19, 2024 7



Figure 3. Performance of partially removing edges based on GSE19188 using our proposed method

(A) AUPR (0.767), (B)AUROC (0.643), (C) Recall (0.808), (D)ACC (0.67), (E) F1 (0.769), (F) Venn diagram shows the overlapped drugs among three datasets. Bracket

represents value of the original data in red line.
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Robustness analysis

To validate the stability and robustness of the iEdgePathDDA method, we perform the data removal tests using the GSE19188 dataset. We

remove 5%, 10%, 15%, and 20% of the edges and repeat the iEdgePathDDAmethod 10 times for each removal. For each removal, we derive

the candidate drugs by IS and then recalculate the AUPR, AUROC, Recall, ACC and F1 based on the CTD database.57 The results show that

the AUPR, AUROC, Recall, ACC and F1 decrease slowly compared to the original data, and the median AUPR, AUROC, Recall, ACC and F1

are still above 0.759, 0.592, 0.772, 0.62, and 0.731 even removing 20% of the edges, indicating that the iEdgePathDDA is robust to data

removal (Figures 3A–3E).

Furthermore, we test the reproducibility of our method using two additional gene expression datasets (GSE18842 and GSE19804). Em-

ploying the iEdgePathDDA approach on these datasets and comparing the top 30 drugs for each ranked drug list, we observe that 63.3%

(19/30) of drugs are consistently present in all three datasets (Figure 3F). This consistency across datasets underscores the remarkable robust-

ness and stability of our approach in diverse datasets.
Conclusion

With the escalating availability of high-throughput sequencing technologies and advancements in bioinformatics, computational methodol-

ogies for drug repurposing have gained prominence over traditional experimental techniques. This study presents a drug repurposing

method, which leverages the changes of drug-induced or disease-related gene interactions within pathway to identify potential candidate

drugs for cancer treatment. Through a comprehensive case study, we showcase the practical predictive capability of iEdgePathDDA,

revealing previously undiscovered drug-disease associations. To further underscore the predictive power of our approach, we compare it

with other drug repurposing approaches in six datasets. The results show that our approach could achieve excellent predictive performance

in six datasets. Ultimately, the results of the robustness analysis confirm the reliability and credibility of iEdgePathDDA and provide a solid

foundation for its application in future research.
Limitations of the study

While iEdgePathDDA exhibits superior performance, there are still some limitations. First, numerous diseases are multifactorial, involving

complex biological pathways, computational models may oversimplify these complexities. Second, the computational methods lack the

indispensable support of experimental validation for the identified drug candidates. Essential experimental studies, encompassing in vitro

or in vivo assays, are imperative to validate the efficacy of the predicted drug.
8 iScience 27, 110025, July 19, 2024
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Source code This study https://github.com/eshinesimida/iEdgePathDDA

Colorectal Cancer Uddin et al.34 GSE23878

Breast Cancer Sabatier et al.35 GSE31448

Breast Cancer Colak et al.36 GSE29044

Lung Cancer Sanchez-Palencia et al.37 GSE18842

Lung Cancer Hou et al.38 GSE19188

Lung Cancer Lu et al.39 GSE19804

KEGG pathway database Ogata et al.58 https://www.kegg.jp/

CMAP database Lamb et al.19 https://www.broadinstitute.org/connectivity-map-cmap

CTD database Davis et al.57 https://ctdbase.org/

Software and algorithms

R programming language

V4.1.2

R core https://www.r-project.org/

EnrichmentBrowser Geistlinger et al.59 https://bioconductor.org/packages/EnrichmentBrowser/

KEGGdzPathwaysGEO Tarca et al.60 http://bioconductor.org/packages/KEGGdzPathwaysGEO/

DrugDiseaseNet Peyvandipour et al.61 https://github.com/azampvd/DrugDiseaseNet

signatureSearchData Duan et al.62 https://bioconductor.org/packages/signatureSearchData/

iEdgePathDDA This study https://github.com/eshinesimida/iEdgePathDDA
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Xianbin Li (lixb88@gzhu.edu.cn).
Materials availability

This study did not generate new unique materials.
Data and code availability

� The data mentioned in this paper are publicly available, and are listed in key resources table with accessibility
� All the codes are available online at Github and is fully publicly available as of the date of publication.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Gene expression profiles

We download three cancer datasets from the Gene Expression Omnibus (GEO) database, covering colorectal, lung, and breast cancer. Each

set of gene expression data contains cancer and control samples. The expression values of each gene are standardized to a normal distribu-

tion using the quantile normalization method across all samples. The gene expression profiles are derived from the Affymetrix Human

Genome U133 Plus 2.0 array.
All pathways from KEGG database

We download 237 pathways from the KEGG database58 in the XML format. All pathways are converted into a gene-gene network, where no-

des represent genes and edges represent the signals transmitted between these genes. The gene-gene network contains all 5593 genes and

28371 edges present in the pathways extracted from the KEGG database.
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Drug-induced gene expression profiles

We download drug-induced gene expression profiles from the CMAP database,19 including 6,100 instances associated with 1,309 drugs.

These instances are measured across five human cancer cell lines, covering breast cancer epithelial cell lines (MCF7, ssMCF7), a prostate can-

cer epithelial cell line (PC3), a nonepithelial leukemia cell line (HL60), andmelanoma cell line (SKMEL5). However, due to the limited number of

instances available for ssMCF7 and SKMEL5, our subsequent analysis focuses on MCF7, PC3, and HL60 cell lines.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

For a given drug at a specific concentration, we obtain the edges within the pathways influenced by the drug.We then use the PCCmethod to

identify the edges modulated by the drug (Figure 1A). An edge with a significantly higher positive or negative impact score indicates a stron-

ger activation or inhibition (up or down-regulation) of that edge by the drug. These edges are subsequently employed in the drug identifi-

cation process. Pearson correlation coefficient (PCC) between two genes based on gene expression profiles. As we know, such a correlation

can be calculated for two genes with a group of samples as:

PCC
�
xi; xj

�
=

C
�
xi; xj

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðxiÞV

�
xj
�q (Equation 1)

Where, xi and xj represent two genes’ expression profiles, their covariance for a group of samples isCðxi;xjÞ = Eððxi � miÞðxj � mjÞÞ; and their

expression variance is VðxiÞ = Eððxi � miÞÞ. Here, EðxÞ is the operation of expectation for variable x over a group of samples.

To obtain the disease-related edges from KEGG pathways, we utilize the PCC method to calculate the changes of edges (gene interac-

tions) between normal and tumor samples.

r =

�
PCC1ðA;BÞ � PCC2ðA;BÞRa

PCC1ðA;BÞ � PCC2ðA;BÞ% � a
(Equation 2)

Where PCC1 represents the Pearson correlation coefficient between gene A and gene B in tumor samples. PCC2 represents the Pearson cor-

relation coefficient between geneA and gene B in normal samples. r represents the change of PCC fromnormal to tumor state between gene

A and gene B. And a represents the threshold, which screen important and critical edges from the pathway.

To acquire the drug-induced edges. We use the PCC method to calculate the changes of gene interactions from untreated to treated

state.

r 0 =

�
PCC3ðA;BÞ � PCC4ðA;BÞRa

PCC3ðA;BÞ � PCC4ðA;BÞ% � a
(Equation 3)

Where PCC3 represents the Pearson correlation coefficient between gene A and gene B in drug-treated samples. PCC4 represents the Pear-

son correlation coefficient between gene A and gene B in untreated samples. r 0 represents the change of the PCC from untreated to treated

state between gene A and gene B.
Calculating inhibition score between drug-induced edges with disease-related edges

To verify the potential effectiveness of a drug in treating a disease, we introduce an inhibition score (IS) for identifying drug-disease interac-

tions. This score serves as a measure of the drug’s therapeutic effect at the edge level. Specifically, for a drug j, the edges are screened by

using PCCmethod (Figure 1A). For a given disease, we utilize the same approach to calculate the PCC in the context of disease gene expres-

sion profiles. Then, we respectively map the up- or down-regulated edges induced by the disease to the edges list induced by the drug to

calculate the IS. The inhibition score (IS) is defined as:

IS =
Xn

i = 1

� signðriÞ � sign
�
r 0i
�

(Equation 4)

Where n represents the number of disease-related edges based on all pathways. We use the PCC to calculate the status (up- or down-regu-

lated) of the drug-induced edges. signðriÞ represents the status (up- or down-regulated) of edge i by disease, signðr 0i Þ represents the status

(up- or down-regulated) of edge i by drug.
Identifying candidate anticancer drugs

Wemeasure the inhibition score on each drug-disease pair and derive an IS (Figure 1B). A negative score indicates that the expression pattern

of drug is similar to that of the disease, suggesting a potential antagonistic effect of the drug on the disease. Conversely, a positive score

indicates that the expression pattern of the drug contrasts with that of the disease, hinting at its potential as a treatment option for the dis-

ease. In our study, each drug is utilized in various instances involving different concentrations, cancer cell lines, or durations. Consequently, we

compute the IS for each drug. Subsequently, we construct an ascending ranked list of instances based on their respective IS values (Figure 1B).
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Performance evaluation

Drug-disease interactions are acquired from the Comparative Toxicogenomics Database (CTD,57), which offers meticulously curated data

covering cross-species chemical-gene/protein interactions and gene-disease associations. In our study, drug-disease associations docu-

mented in the CTD are regarded as positive samples, whereas associations not found in CTD are treated as negative samples.

To ensure a robust performance assessment, we establish CMAP, NP, SubtypeDrug, and DRviaSPCN as benchmarks. The effectiveness of

these methods is evaluated using five metrics, including AUPR, AUROC, Recall, ACC, and F1.

Recall =
TP

TP+FN
(Equation 5)
ACC =
TP+TN

TP+TN+FP+FN
(Equation 6)
F1 =
2TP

2TP+FP+FN
(Equation 7)

Where TP is the count of true positive associations, FP is false positive associations, TN is true negative associations, and FN is false negative

associations. AUROC is the area under the receiver operating characteristic curve, a graph of the true positive rate against the false positive

rate. AUPR is the area under the precision-recall curve, which is constructed by plotting precision against recall.
Baseline methods

To evaluate the performance of iEdgePathDDA, we compare it to other four methods, which contain signature-based method (CMAP) and

pathway-based methods (NP, SubtypeDrug and DRviaSPCN). The detailed approaches are as follows:

CMAP

Detect drugs capable of reversing disease-associated gene expression signatures through the utilization of the Kolmogorov-Smirnov (KS)

statistical method.63 This method involves assessing the statistical distribution differences between drug-induced genes and disease-related

genes.19

Network proximity (NP)

Cheng et al.64 introduced an approach for identifying potential drugs by computing the average shortest distance between genes perturbed

by the drug and those associated with the disease within the PPI network.

SubtypeDrug

Han et al.27 provided a framework (SubtypeDrug) to discover the subtype-specific drugs at the subpathway level.

DRviaSPCN

Wuet al.28 developed an R-based software package (DRviaSPCN) to prioritize candidate drugs for cancer via a subpathway crosstalk network.
QUANTIFICATION AND STATISTICAL ANALYSIS

Drug-disease associations documented in the CTD are regarded as positive samples, whereas associations not found in CTD are treated as

negative samples. We evaluate model performance by using five metrics, including AUPR, AUROC, Recall, ACC, and F1.
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