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Ticks and tick-borne diseases are significant public health concerns. Bioactive molecules
in tick saliva facilitate prolonged blood-feeding and transmission of tick-borne pathogens
to the vertebrate host. Alpha-gal syndrome (AGS), a newly reported food allergy, is
believed to be induced by saliva proteins decorated with a sugar molecule, the
oligosaccharide galactose-⍺-1,3-galactose (a-gal). This syndrome is characterized by
an IgE antibody-directed hypersensitivity against a-gal. The a-gal antigen was discovered
in the salivary glands and saliva of various tick species including, the Lone Star tick
(Amblyomma americanum). The underlying immune mechanisms linking tick bites with
a-gal-specific IgE production are poorly understood and are crucial to identify and establish
novel treatments for this disease. This article reviews the current understanding of AGS and
its involvement with tick species.
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INTRODUCTION

Ticks are obligate ectoparasites of vertebrates and depend on hematophagy for nutrition at each
stage of their life history. Because of their hematophagous behavior ticks serve as competent vectors
of viruses, bacteria, and protozoan pathogens, and are thus important organisms from a global
health perspective (Parola and Raoult, 2001). Hematophagy and host specificity of Ixodid ticks
contribute to their ability to acquire, maintain, and transmit multiple pathogens and cause tick-bite-
associated diseases, such as alpha-gal syndrome (AGS) and tick paralysis (Rochlin and Toledo,
2020). During blood feeding on their host, ticks secrete and introduce a plethora of salivary
secretions that modulate the host immune responses and inoculate tick-borne pathogens (Jongejan
and Uilenberg, 2004). Several of these pathogens are believed to be responsible for tick-borne
infections such as, viral diseases (e.g., Tick-borne encephalitis, Powassan encephalitis, Colorado tick
fever, and Omsk hemorrhagic fever), protozoan disease (e.g., babesiosis and theileriosis), and
bacterial diseases (e.g., Lyme disease, Rocky Mountain spotted fever, Anaplasmosis, Rickettsiosis,
Ehrlichiosis, and Tularemia) (Schwan and Piesman, 2002; Socolovschi et al., 2009; Brites-Neto et al.,
2015; Chmelar ̌ et al., 2016; Rochlin and Toledo, 2020). In the United States alone, a surveillance
study conducted by the Centers for Disease Control and Prevention (CDC) in the period of 2004–
2016 reported that, 77% of vector-borne disease cases are caused by ticks (Rosenberg et al., 2018). Of
the several diseases vectored by ticks, Lyme disease is the most prevalent across the northern
hemisphere. The CDC estimates that approximately 476,000 people are diagnosed with the Lyme
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disease each year in the United States (Schwartz et al., 2021). The
economic burden caused by tick-borne diseases is increasing
each year, and the annual cost of Lyme disease to the United
States health care system ranges between $712 and $1.3 billion,
or approximately $3,000 per patient (Adrion et al., 2015). In
recent years, several tick species are moving and expanding their
geographic range. Hence, studies have predicted an increase in
tick-borne diseases, including AGS (Commins et al., 2009;
Monzón et al., 2016; Raghavan et al., 2019).

Food allergies affect ~32 million Americans, including
5.6 million children under 18 years of age (Facts and Statistics,
2019). More than 170 types of food can cause allergies, including
milk, eggs, peanuts, tree nuts, wheat, soy, red meat, fish, and
crustacean shellfish (Commins, 2015; Iweala et al., 2017; Iweala
et al., 2018; Yu et al., 2016). Food allergies are responsible for
many severe allergic reactions in the United States, and AGS is
already common in several regions of the world. In the US alone,
the number of confirmed cases of AGS has risen from only 12 in
2009 to 34,000 in 2019 (Wilson and Platts-Mill, 2019;
Alphagalinformation.org, 2020; Commins, 2020; Plats-Mill
et al., 2020; Binder et al., 2021). Commins (2020) predicted
that the percentage of individuals living in endemic tick areas
that have been sensitized to a-gal ranges from 15–30%.
Furthermore, this syndrome is the leading cause of the onset of
allergy and anaphylaxis in adults in the United States and is
prevalent in the southeastern United States (Pattanaik et al.,
2018; Binder et al., 2021; Alpha-Gal Syndrome Subcommittee
Report to the TBDWG, 2020). Clinical manifestations of AGS
vary among patients, and the onset of AGS may not show clinical
signs in sensitized patients. However, a-gal sensitization has
been reported as a significant risk factor for coronary heart
disease, even in people lacking clinical symptoms (Wilson et al.,
2019). This review focuses on our current understanding of ticks,
including their sialomes, intrinsic factors, and associations with
the onset of AGS.
ALPHA-GAL SYNDROME: A PARADIGM-
SHIFTING ALLERGY

Galactose-a-1,3-galactose (a-gal) is a disaccharide sugar found
in mammalian glycolipids and glycoproteins, except in Old
World monkeys, apes, and humans (Galili and Avila, 1999;
Galili, 2001; Galili, 2005; Galili, 2013a; Apostolovic et al., 2014;
Hilger et al., 2016; Iweala et al., 2017; Iweala et al., 2020). Alpha-
gal has also been reported in bacteria, protozoa, fungi, and red
algae (Galili and Avila, 1999; Hodzic et al., 2016; Khoury et al.,
2018). In addition, many human pathogens and viruses attach a-
gal to glycoproteins (Galili and Avila, 1999; Galili, 2013a; Galili,
2020). Generally, non-mammalian vertebrates lack expression of
a-gal, but with a few exceptions, such as cobra venom, teleost
fish eggs, and amphibian skin (Galili and Avila, 1999; Galili,
2001; Gowda et al., 2001). Unlike protein antigens, a-gal is a
unique antigen that is not denatured by high cooking
temperatures, and it is one of the two carbohydrates associated
with life-threatening allergic reactions (Apostolovic et al., 2014;
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
Soh et al., 2015). Hilger et al. (2016) reported that proteins
responsible for red meat allergic reactions are glycosylated with
a-gal. Takahashi et al. (2014) also analyzed a-gal antigens in beef
and identified new transmembrane proteins, which were
aminopeptidase N (AP-N) and angiotensin-converting enzyme
1 (ACE-1). Furthermore, several other heat-stable antigens
present in red meat i.e., a and b enolase, amino transferase,
and creatinine kinase, are also reported to be cross-reacting with
red meat allergy patient serum as well as with anti-a-gal
antibodies (Apostolovic et al., 2014).

AGS, also known as mammalian meat allergy, red meat
allergy, or idiopathic allergy, is a unique type of allergy that
involves an IgE antibody response to a-gal in humans (Commins
et al., 2009). Since its discovery in 2007, several efforts have been
made to understand this novel form of food allergy (Commins
et al., 2011). Typically, food allergies are classified into 1) IgE-
mediated or 2) cell-mediated (also known as non-IgE-mediated).
The IgE-mediated allergic pathway demonstrates the rapid onset
of clinical symptoms in less than 30 min after antigen exposure
(Savage et al., 2016; Waserman et al., 2018). As a clinical
hallmark, AGS a-gal reactions are often severe and sometimes
fatal (Fischer et al., 2016). Moreover, depending on the antigen’s
route, source, and nature, the onset of clinical symptoms of AGS
can be immediate or delayed for 2–10 h (Commins et al., 2009;
Commins et al., 2016; Steinke et al., 2015). Rapid onset of
anaphylactic reactions was reported with cetuximab, a
monoclonal antibody, in AGS patients (Chung et al., 2008).

However, as an idiosyncratic clinical feature (Supplementary
Figure 2) of AGS, delayed reactions are reported in patients after
red meat consumption (Platts-Mills et al., 2015a; Wilson et al.,
2017). The mechanism of delayed reaction against red meat in
AGS patients is poorly understood; however, it is correlated with
several factors involved in meat digestion, absorption, transport,
and subsequent presentation to the host immune system (Steinke
et al., 2015; Platts-Mills et al., 2015b). An alteration of lipid
metabolism is also the main contributor to the delayed response
due to the delayed appearance of a-gal-associated glycolipids
(Steinke et al., 2016; Iweala et al., 2017). Age and atopy are also
reported as the cause of AGS development (Gonzalez-Quintela
et al., 2014; Villalta et al., 2016; Fischer et al., 2017). In general,
AGS occurs in people of all ages with no known genetic
predisposition (Commins et al., 2012; Wilson and Platis-Mills,
2019). AGS patients exhibit various clinical symptoms, including
urticaria, angioedema, pruritus, and systematic anaphylaxis.
Some patients have reported specific symptoms, such as
nausea, indigestion, diarrhea, and abdominal discomfort,
before AGS onset. However, even after exposure to a-gal,
other patients reported no appearance of the symptoms listed
above, which further highlights the unusual nature of AGS
(Platts-Mills et al., 2015b; Wilson et al., 2017). The reported
diverse clinical manifestations in AGS patients might be related
to the nature of the allergen and dose as well as the presence of
other cofactors, such as metabolic variations (Morisset et al.,
2012; Wölbbing et al., 2013; Fischer et al., 2016). Variations of
lipid or fatty acid metabolism in the host delays the appearance
of a-gal in the bloodstream and AGS symptom development
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(Steinke et al., 2016). Similarly, the allergen dose and associated
host cofactors play a critical role in the progression and severity
of AGS (Morisset et al., 2012; Fischer et al., 2016; Wilson et al.,
2018; Wilson et al., 2019). An elegant study compared the
frequency of delayed anaphylactic reactions against a-gal in
AGS patients subjected to beef, pork, lamb, and deer meat.
Interestingly, the frequency of delayed anaphylactic responses
was 53, 47, 9.1, and 7.3%, respectively (Fischer et al., 2016). One
reason for such variation in delayed anaphylactic reactions
against red meats in AGS patients might be the presence of
variable quantities of the a-gal epitope and adjuvant factors, such
as lipids (Hendricks et al., 1990; Fischer et al., 2016). The
biochemical composition of red meat, its processing, ingestion,
and absorption are all equally important in the onset of
anaphylactic reactions in AGS patients (Commins et al., 2016).
Wölbing et al. (2013) used an oral challenge approach to study
the role of cofactors associated with red meat. Including this
study, few other studies identified various exogenous and
endogenous factors, such as alcohol, physical exercise, non-
steroid analgesic drugs, and menstruation, to be vital in
proliferation or increasing severity of the reaction against the
red meat (Wölbing et al., 2013; Fischer et al., 2014; Versluis et al.,
2016). In addition to red meat, several other food products and
medicines containing the a-gal antigen, such as gelatin, collagen,
and cetuximab, can also cause AGS (Commins et al., 2016;
Commins, 2020). Therefore, the use of drugs derived from
mammalian products also poses a risk to AGS patients and
exacerbates allergic reactions (Commins et al., 2016).
Additionally, a high titer of IgE antibodies to a-gal in AGS
patients adds several complications for cardiovascular disease
patients (Wilson et al., 2018). The development of AGS has been
a complex mystery. Indeed, some studies have reported an
association between tick bites and AGS, the mechanistic details
of how a tick bite can lead to the priming of immune cells during
hematophagy are still unclear (Commins et al., 2009; Commins
et al., 2016; van Nunen, 2018).
A SINGLE SUGAR MAKES ALL THE
DIFFERENCE: THE SIGNIFICANCE
OF a-GAL

All mammals have an a-1,3-galactosyltransferase (a1,3GT)
enzyme encoded by the GGTA1 gene; however, during the
evolution of Old-World monkeys, apes, and humans, this gene
was inactivated due to a frameshift mutation (Galili, 2015). The
a1,3GT enzyme is responsible for generating a-gal by
transferring a galactose residue with an a-1,3 linkage to the
terminal lactosaminide (Gal-b-1,4-GlcNAc-R) on glycolipids
and glycoproteins (Galili, 2001; Macher and Galili, 2008).
Interestingly, the GGTA1 gene appears to have become
nonfunctional during mammalian evolution; while it
is still active in marsupials (Lantéri et al., 2002). Since this
gene is in the form of a pseudogene in humans, it does not
express a-gal epitopes. Therefore, humans develop antibodies
against a-gal, which gives them an advantage in fighting against
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
a-gal expressing pathogens (Welsh et al., 1998; Galili, 2013b).
Several studies have discussed the benefit of anti-a-gal antibody
development in humans, including immunogenic stimulation
against parasites expressing a-gal epitopes, such as Trypanosoma
and Leishmania species (Avila et al., 1989). A study conducted in
the a-1,3GT-knockout (GGTA1-Ko or a1,3GTKO) mouse model
by raising anti-a-gal antibodies demonstrated that they induce
anti-a-gal IgG and IgM antibodies upon inoculation with the
human pathogen E. coli O86:B7 (Posekany et al., 2002; Yilmaz
et al., 2014). Another study demonstrated a decrease in malarial
parasite transmission due to the high titer of anti-a-gal IgM
antibodies (Yilmaz et al., 2014). These discoveries sparked an
interest in a-gal pan-vaccines; that is, vaccinating against
pathogens or vectors expressing a-gal to prevent infections
(Soares and Yilmaz, 2016). Two independent studies using this
approach successfully reduced Leishmania infections in a a-
1,3GTKO mouse model (Iniguez et al., 2017; Moura et al., 2017).
IgG antibodies against a-gal are highly abundant and are
estimated to be present in the 30–100-mg/ml range in human
serum (Galili et al., 1984; Galili et al., 1993). Anti-a-gal IgG
antibodies persist in newborns at a low level for up to 6 months
and gradually increase over 2–4 years until they reach their
highest level, which is equivalent to the levels in adults (Galili
et al., 1993). The definitive cause, source, and nature of the
antigens involved in rising a-gal antibody levels at early ages are
yet to be determined. Alpha-gal is expressed by various microbes,
including Escherichia, Klebsiella, and Salmonella and many of
these bacteria belong to human gut microbiome hence
production of anti-a-gal antibody may be one way to
withstand microbial proliferation or confer protection from
detrimental effects of pathogen colonization in human body
(Galili et al., 1988; Galili, 2013b; Shreiner et al., 2015).
ALPHA-GAL SYNDROME: AN EMERGING
WORLDWIDE PHENOMENON

This emerging tick bite induced food allergy has been reported
to occur in seventeen nations worldwide (Table 1 and
Supplementary Figure 1). The discovery of AGS worldwide
has opened a new avenue for making a connection between AGS
patients and tick bites. It has provided insight into how bites
from different tick species can induce IgE sensitization in
humans. In a few countries, AGS onset was linked to tick bites,
however, a direct link between previous tick bites and AGS has
not been established (Chinuki et al., 2016). Tick bites were first
implicated in AGS in Australia, although a-gal was not presented
as the cause (Steinke et al., 2015; van Nunen, 2015). Loh and
Tang, (2018) reported that Australia is among the countries with
the highest AGS and anaphylaxis rates in the world. Similarly, an
earlier report estimated that the prevalence of AGS in tick
endemic regions is one in every 550 people and is predicted to
surge (van Nunen, 2015). In Australia, including the south coast
of New South Wales and Sydney coast, AGS cases coinciding
with the endemic area inhabited by the Ixodes holocyclus tick
have been reported (van Nunen, 2014; Steinke et al., 2015;
July 2021 | Volume 11 | Article 680264
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van Nunen, 2015; van Nunen, 2018). There is an interesting story
related to discovering the association between tick bite and red
meat allergy in the United States. In 2008, in a clinical trial of the
monoclonal antibody cetuximab, cancer patients induced IgE
antibodies to a-gal (Chung et al., 2008). In the same year, an
increasing trend in a number of patients with delayed-type red
meat allergy were reported in the southeastern United States. A
surveillance study conducted by the CDC from 2012–2013
showed significantly higher a-gal-directed IgE levels in the
southeastern United States, an established A. americanum tick
population territory (Tick and Mammalian Meat allergy, 2021).
Furthermore, a link between the tick and a-gal-related
hypersensitivity became more evident when the same
surveillance study reported the overlapping of IgE prevalence
and the geographical distribution of A. americanum. Commins
et al. (2011) reported a direct link between tick bites and the
development of IgE antibodies to red meat, which further
supported the hypothesis that A. americanum tick bites are
associated with AGS onset. The incidence of AGS is increasing
in the southwest and eastern coastal regions of the United States,
which correlates with the expansion and distribution of the Lone
Star tick (Commins et al., 2009; Steinke et al., 2015; Raghavan
et al., 2019; Commins, 2020). In the United States, the first
reports of AGS in 2009 included only 24 officially reported cases,
but a recent study put the number at 34,000 confirmed cases
(Binder et al., 2021). Wilson et al. (2018) reported an 32%
increase of AGS cases in the southeastern United states, where
the Lone Star tick is prevalent. Public repositories show that up
to 3% of the population has AGS (Alpha-gal info, 2020), while
misdiagnosed or undiagnosed cases cannot be ruled out
(Commins, 2020). The reported AGS cases in Japan suggest
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
that a tick species is responsible for the allergy (Takahashi et al.,
2014). Based on the presence of a-gal in its salivary glands, the
Haemaphysalis longicornis tick has been suggested to be causing
AGS (Chinuki et al., 2016). AGS cases in Korea are also believed
to be associated with H. longicornis tick bites (Chinuki et al.,
2016). Similarly, Hamsten et al. (2013) identified traces of a-gal
in the mid-gut of the Ixodes ricinus tick, which led to the belief
that it was involved in causing red meat allergy in Sweden. In this
study, researchers compared a-gal epitopes from A. americanum
and I. ricinus ticks and reported that they share certain
characteristics, although there were specific variations.
Additionally, other countries with reported AGS cases include
Spain, Germany, Turkey, and Switzerland (van Nunen, 2015).
Interestingly, numerous African countries that conducted
seroprevalence studies found that individuals have IgE
antibodies specific to a-gal. However, there was no indication
of any allergic reactions after red meat consumption (Commins
and Platts-Mills, 2013a). This observation has led to questions
regarding the actual cause of a-gal-specific IgE production in
those individuals, and it was hypothesized that the cause could
include cestodes, ticks, and other ectoparasites (Commins and
Platts-Mills, 2013b). A small number of AGS cases in a rural
farming community in South Africa suggested a need to conduct
more in-depth studies (van Nunen, 2015). The patients with
AGS recalled having a tick bite before the onset of AGS
symptoms, although the tick species has yet to be determined.
Information about AGS cases across Central America is not
available. However, Araujo et al. (2016) reported that injected
saliva or bites from the tick species belonging to Amblyomma
cajennese complex. Amblyomma sculptum induced specific IgE
antibodies in an a-1,3-GTKO mouse. Similarly, the tick species
TABLE 1 | List of tick species reported to be associated with alpha-gal syndrome worldwide.

Associated Ticks# Country Reference

Amblyomma americanum USA Crispell et al. (2019); Platts-Mill and Commins, (2013); Khoury et al. (2018)
Ixodes holocyclus Australia Hamsten et al. (2013); Apostolovic et al. (2014)
Ixodes australiensis
Ixodes ricinus Sweden Hamsten et al. (2013); Gray et al. (2016); Bircher et al. (2017); Schmidle et al. (2019); van Nunen (2018); Mullins et al. (2012);

Caponetto et al. (2013); Jappe (2014); Calamari et al. (2015); Uasuf et al. (2018); Lied (2017)Switzerland
Italy
Germany
Norway

Rhipicephalus bursa Spain Mateos-Hernández et al. (2017)
Haemaphysalis
longicornis

Korea van Nunen (2018); Lee et al. (2013); Sim et al. (2017)
Japan

Amblyomma cajennese
species complex.?

Costa Rica van Nunen (2015); van Nunen (2018)
Panama

Not identified Zimbabwe van Nunen (2015)
Amblyomma
testudinarium

Japan van Nunen (2018); Sekiya et al. (2012); Chinuki et al. (2016); Hashizume et al. (2018)

Amblyomma sculptum Brazil van Nunen (2018); Kaloga et al. (2016)
Amblyomma cajennese
species complex.s.s?

Ivory Coast

Amblyomma variegatum
Amblyomma herbraeum South

Africa
van Nunen (2015); Gray et al. (2016)

Not identified France Jacquenet et al. (2009); Morisset et al. (2012); van Nunen (2015); Guillier et al. (2015); Keleş & Gündüz (2019); Berends and
Elberink (2017)Turkey

Netherlands
# Association between tick species and AGS is not experimentally established in the listed reports.?: Exact species variant is not specified in reports.
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belonging to A. cajennese complex, prevalent in Costa Rica and
neighboring countries, are thought to be involved in causing
AGS (Wickner and Commins, 2014). Several other tick species
found in various South and Central American regions belonging
to the Amblyomma and Ixodes genera are known for biting
humans, although a link to AGS has not yet been established
(van Nunen, 2015).
THE ORIGIN OF a-GAL IN TICK SALIVA

In recent years, studies were primarily focused on identification
and profiling of a-gal antigens in tick saliva and tissues to
decipher the connection of a tick bite and AGS.

It is still unclear how tick acquires and presents a-gal and
primes the host to develop immune response to develop anti-a-
gal IgE. There are several possibilities these a-gal antigens may
be residual or recycled mammalian glycoproteins or glycolipids
from previous blood meal or may be a-gal signatures contributed
by tick-acquired viruses, protozoans, or bacteria. However,
various evidence suggests that a-gal is possibly originating
from tick itself. Several studies reported presence of proteins in
tick salivary gland, midgut, and saliva cross-reacting with serum
from AGS patients and anti a-gal antibodies. Presence of a-gal
was first reported in the midgut of I. ricinus (Hamsten et al.,
2013). Araujo et al. (2016) also reported presence of a-gal
antigen in A. sculptum saliva as well further provided evidence
that injection of saliva derived a-gal antigen or feeding of ticks
on a-1,3 GTKO mice induce anti a-Gal IgE antibodies. Similarly,
another study reported a-gal epitope-containing tick proteins in
Rhipicephalus microplus BME/CTVM23 cells and in Hyalomma
marginatum salivary glands (Mateos-Hernández et al., 2017).
Furthermore, presence of several proteins from various groups
namely vitellogenins, serpin, actin, a-macroglobulin, chitinase
like lectin and transport or channel-forming proteins with a-gal
epitope were also identified in protein extracts of I. ricinus larvae
and adults (Apostolovic et al., 2020). Recently, the presence of a-
gal-associated antigens in A. americanum and I. scapularis ticks
was discovered via multiple approaches, which included, mass
spectrometry, immunoblotting, and immunolocalization
analysis of tick tissues (Crispell et al., 2019). This study also
demonstrated that expression of a-gal antigens is highest in
partially blood-fed A. americanum salivary glands and saliva.
Furthermore, this study also provided evidence that these a-gal
antigens are localized in salivary secretory vesicles (exosomes) of
partially engorged A. americanum and I. scapularis ticks
(Crispell et al., 2019). Furthermore, detection of a-gal in A.
americanum tick fed on human blood, which lacks a-gal, further
indicate that alternative recycling mechanism or mechanism
producing a-gal might exist in ticks. Immunoblot analysis of
A. americanum salivary extracts containing a-gal antigen
following treatment with PNGase F further demonstrated that a-
gal is bound with protein in N-linked glycosylated form (Crispell
et al., 2019). The role of tick b-1,4-galactosyltransferase (b-1,4-GT)
in a-gal expression was reported in I. scapularis via heterologous
gene expression and localization of a-gal in a-gal-negative cells
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
(Cabezas-Cruz et al., 2018). However, it is not clear whether
proteins glycosylated by b-1,4-GT can also sensitize host to
develop anti a-gal antibody and also cross-react with protein
containing Galactose-a-1,3-galactose epitope. Intriguingly, the
key enzyme, a1,3-GT, which synthesizes a-gal, remains
unidentified in tick genomes.

Few studies have reported that tick-borne bacteria such as
Anaplasma phagocytophilum and Borrelia burgdorferi sensu lato
express a-gal and increase a-gal signature in ticks, hence, the
role of tick microbiome as one possible source of a-gal cannot be
negated (Cabezas-Cruz et al., 2018; Vechtova et al., 2018; Hodzic
et al., 2019). Furthermore, several studies have reported that a
few bacteria from Enterboacteriaceae family such as Salmonella;
Pseudomonas, Staphylococcus as well as from Rizobiaceae and
Caulobacteriaceae family possess enzyme a1,3-GT enzyme
which can decorate protein with a-gal (Hamadeh et al., 1996;
Brown et al., 2013; Montassier et al., 2019; Vechtova et al., 2018).
Since bacteria from the same family and group are also
reported in tick salivary microbiome, it will be intresting to
investigate the impact of presence of bacteria in a tick and its
relation with a-gal signature of tick (Maldonado-Ruiz et al.,
2021). Role of tick’s microbiome in causing or increasing tick’s
ability to develop or present a-gal antigen is an emerging area
of research. In context of the role of tick microbiome in
sensitization of humans against a-gal during tick feeding, the
dual-allergen-exposure hypothesis seems plausible which states
that dual exposure of a-gal antigen along with addition of
tick microbiome in tick–host interaction interface can cause
sensitization of host against a-gal.
HOST AND TICK FACTORS
CONTRIBUTING TO AGS

Information regarding host factors, which contribute towards
development of AGS, is limited; however, there is a significant
progress in this area. Studies have reported that despite presence
of high titer of anti a-gal IgE, some people do not develop AGS
(Michel et al., 2014; Villalta et al., 2016). Based on existing
evidence few factors (Figure 1), which might contribute to such
variation to the host, can be listed as a) host genetic factors such
as blood group and atopy b) host microbiome and associated
factors such as diet, and medication. Few research studies report
variations in anti-a-gal response among people with different
blood groups. In a study conducted in Sweden, people with blood
type B negative were affected by the a-gal allergy more often than
other blood types (Hamsten et al., 2013). However, this trend
contradicts the hypothesis that a protective effect is produced by
blood type B (Posthumus et al., 2010). Intriguingly, this
relationship seems to be related to the similarities between a-
gal and blood type B antigen (Gal-a1,3 (Fuc-a1,2)-Gal)
structures (Posthumus et al., 2010; Bircher et al., 2017).
Hamsten et al. (2013) examined the allergy incidence rates,
whereas Posthumus et al. (2010) assessed IgE production in
affected individuals. These studies further suggest there is a need
for more in-depth research to elucidate the AGS onset
July 2021 | Volume 11 | Article 680264
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mechanisms. However, they introduced the concept of blood
type as a factor in acquiring red meat allergy. On the other side,
studies have reported genetic predisposition, or atopy, as a
critical factor in food allergies (Commins et al., 2009).
Individuals with atopy tend to exhibit heightened type I
hypersensitivity in immune responses, with excessive IgE
production against common allergens, such as mites, dander,
and foods (Justiz et al., 2021). The increase in anti-a-gal IgE
levels correlates with total IgE levels; thus, atopy was
hypothesized to be an associated factor in AGS development
(Fischer et al., 2017). One cross-sectional sero-prevalence study
described a correlation between anti-a-gal IgE levels following
tick bites and atopy (Gonzalez-Quintela et al., 2014). In contrast,
another study reported that there is no correlation between AGS
and atopy (Commins et al., 2012). Since, atopy is linked with
multiple genetic factors, age, ethnicity as well as environmental
factors hence it is difficult to reject correlation with AGS. A
broader study involving wider population considering all
possible factors could decipher possible correlation of AGS
and atopy.

Various studies have shown that equilibrium of microbiota in
epithelial barrier is vital for protection against allergic
sensitization and disease development (Iweala and Nagler,
2019; Ohshima, 2013). Studies have demonstrated that shifting
of a usual diet towards high fat, low fiber, highly processed food,
and indiscriminate use of antibiotics can cause microbiome
dysbiosis (Weissis and Hennet, 2017; Wypych and Marsland,
2018). Microbiome dysbiosis is linked to the rising number of
cases and prevalence of food allergies in humans (Iweala and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Nagler, 2019; Shreiner et al., 2008). Two central hypotheses could
explain such phenomena: the first states that imbalanced
microbiota and microbial stimulation can lead to a rise in food
allergies. The second states that the imbalance of mucosal-barrier
regulation could lead to oral tolerance loss. Current trend shows
that incidence of AGS is higher in countries with higher number
of allergic cases (Graham-Rowe, 2011; Loh and Tang, 2018;
Cabezas-Cruz et al., 2019; Binder et al., 2021). This trend is
explained by hygiene hypothesis (HH) which states that
exposure of allergen or microbiome in environment at early
stage in life reduce risk of development of allergies. Existing
literature suggests that HH is linked with food allergy especially
in children with atopy (Iweala and Nagler, 2019). Contrary to
that, AGS has been reported mostly in humans with no history of
atopy (Wilson and Platts-Mills, 2019; Binder et al., 2021).
Interestingly, AGS is reported in people living in rural and
urban setting across the globe (Cabezas-Cruz et al., 2019;
Binder et al., 2021). Based on existing data it is not possible to
reject or accept correlation of AGS with hygiene. There is not
enough scientific evidence to accept or reject HH and more
research is needed to decipher a link between AGS and HH.

Discovery of a-gal epitope in cat dander prompted
researchers to investigate its association with AGS. Though,
significant research efforts are made in this area, possible
association of cat ownership, a-gal sensitization and AGS has
not yet been fully rejected or established. There exist two
contrasting research reports, one study reports increased level
of anti-a-gal IgE, however, a study rejected this possibility
because anti-a-gal IgE positivity was not observed when
FIGURE 1 | Tick- and host-associated factors linked with alpha-gal syndrome.
July 2021 | Volume 11 | Article 680264

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Sharma and Karim Alpha-Gal Syndrome
association was investigated by skin prick test (Gonzalez-
Quintela et al., 2014; Bircher et al., 2017).

The jury is out on the question of why only a few tick species
can induce AGS. Based on several studies, tick associated factors
which can contribute towards AGS can be divided into two
categories a) intrinsic factors and b) extrinsic factors. Tick
intrinsic factors include the tick microbiome, tick glycosylation
machinery, as well as host-seeking and feeding behaviors. On the
other hand, tick extrinsic factors may include the geographical
distribution of ticks and tick–predator interactions, which limits
the tick population. Knowledge of distribution of ticks might be
beneficial to evaluate health risk such as AGS, driven by
expansion of tick populations. Since distribution of ticks is
very wide and driven by multiple ecological factors, inclusion
of such factors in ecological models to predict AGS risk
assessment, rate of actual exposure and tick bites in certain
areas must be considered. Role of tick’s intrinsic factors is vital in
the context of AGS development. A tick attaches to the host by
piercing the skin with its barbed mouthpart (the chelicerate).
When anchored into the host skin, it continuously secrets saliva
with a plethora of antigens (Francischetti et al., 2009). During
blood meal, tick mouthparts induce trauma to the host skin
through the breach of skin barrier integrity. This can lead to
disruption of the host skin microbiota and facilitate the
introduction of tick-borne microbiota (pathobionts) (Bonnet
et al., 2017). Tick microbiome can contribute to AGS
development possibly via sensitization process during tick bite
or by increasing a-gal signature in the tick. Key details regarding
role of tick microbiome are discussed in earlier section. There is a
gap in our knowledge of the tick microbiome and its link to AGS.
New cutting-edge tools to manipulate the tick’s microbiome are
needed to understand the emergence of this unique allergy. A
comparative analysis of the microbiome composition residing
within different tick species, microbial profiles at tick bite sites
may identify the microbial signature involved in AGS
development. An urgent question is why, in contrast to other
tick species, does one tick species decorates its saliva antigen with
the a-gal epitope? Presumably, a tick’s robust glycosylation
machinery is involved in the process of adding a-gal to saliva
antigens which is responsible for AGS development. Our
knowledge of the glycosylation machinery’s fitness in different
Ixodid tick species is in its early stages. Our earlier work showed
that there is a significant difference in the N-glycome profile of A.
americanum, a tick linked with AGS in comparison to another
hard tick, A. maculatum, which is not associated with AGS
(Crispell et al., 2019). Furthermore, in the same study, results
from the basophil activation test (BAT) demonstrated that tick’s
ability to elicit a-gal sensitization is variable between species
(Crispell et al., 2019). Indisputably, glycosylation is a conserved
machinery in several taxa of eukaryotes; however, divergence is
observed in the subsequent steps, which can generate
interspecies- and intraspecies-specific N-glycan profiles (De
Pourcq et al., 2010). Ginsberg et al., (2021) found a link
between Lyme disease and the tick’s host-seeking behavior.
The preferred host and latitudinal differences in tick host-
seeking behaviors are associated with a specific tick-borne
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
disease’s distribution in a particular geography. Since a tick’s
host-seeking behavior varies among tick species, it can directly
affect host encounter and incidence of certain diseases such as
AGS. The expansion of the Lone Star tick population from its
previously established territories into new geographic ranges has
also been suggested as the cause of the increased numbers of AGS
cases in new territories (Monzón et al., 2016; Raghavan et al.,
2019). This increase in population and expansion into new areas
may have been due to a surge in the deer population and the
tick’s intrinsic ability to succeed in a diverse or changing
environment by manipulating the expression of stress-
mitigating molecules (Monzón et al., 2016; Raghavan et al.,
2019; Bullard et al., 2019; Commins, 2020). Wilson et al.,
(2021) showed a negative correlation between AGS cases and
fire ant invasion in the established tick population territories.
Since fire ants are known tick predators, it is hypothesized that
tick–predator interactions also affect AGS incidence in Lone Star
tick endemic areas.
TICK BITE, HOST RESPONSE AND
DEVELOPMENT OF AGS

How a tick bite leads to host sensitization and AGS development
is poorly understood. The tick–host interface is a complex
battleground. When the tick disrupts the epithelial barrier by
causing injury to the host skin by its barbed hypostome, a host
driven hemostatic response initiates (Glatz et al., 2017).
Hemostatis is the host’s innate defense mechanism which is
activated against the mechanical injury and includes blood
coagulation, platelet aggregation, and vasoconstriction
(Francischetti et al., 2009; Kotál et al., 2015). In addition to
that, during early stage of the tick’s attachment to the skin,
humoral and cellular parts of host innate immune system
respond with complement activation, inflammation and via
infiltration of leukocyte to the bite site (Francischetti et al.,
2009). Following the tick bite, activation of keratinocytes,
endothelial cells and skin resident leukocytes occurs when they
encounter tick saliva or hypostome (Wikel, 2018). Release of
antimicrobial peptides, pro-inflammatory chemokines and
cytokines including interleukin-8 (IL-8), interleukin-1b (IL-
1b), tumor necrosis factor (TNF) by various leukocytes recruits
various inflammatory cells including neutrophils (Wikel, 2018).
Afterwards, adaptive immune system also branches out in which,
activated T and B cells (in case of secondary infestation)
increases the inflammatory response to tick via release of
cytokines and production of antibodies targeted against tick to
further activate complement as well as sensitize mast and
basophil cells (Kotál et al., 2015; Wikel, 2018). To maintain
uninterrupted blood uptake by evading host immune response,
tick secretes complex mixture of molecules to reduce pain and
itch to the host during feeding. These molecules include saliva
vasodilators, inhibitors of platelet aggregation and molecules
capable of inhibiting blood coagulation cascades (Francischetti,
2010; Mans, 2011; Kazimirová and Stibrániová, 2013).
Furthermore, ticks also release various salivary molecules
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which are involved in lowering production of pro-inflammatory
cytokines such as TNF-a, interlukin-12 (IL-12) as well as
increasing production of anti-inflammatory mediators for
example interleukin-10 (IL-10) and transforming growth factor
beta (TGF-b) (Ferreira and Silva, 1999; Wikel, 2018). Following
tick bite, skewing of T helper 1 (TH1) response towards T helper
2 (TH2) is vital in the process of AGS development. After
distruption host skin epithelia by tick bite, in the process of
wound healing, M2 macrophages are involved in suppression of
inflammation by upregulating anti-inflammatory cytokines like
IL-10 or TGF-b to alleviate an exaggerated TH1 cell response
(Krzyszczyk et al., 2018). In addition, inhibitory action on pro-
inflammatory cytokines (such as IL-1) by salivary molecules
further promotes action of M2 polarized macrophages, which
leads to inhibition of TH1 immune response and shifts host
immune response towards TH2 (Wikel, 2018). Additionally,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
various other components of tick saliva such as prostaglandins,
sphingomyelinase, and a cysteine protease inhibitor are reported
to be vital in shaping the innate immune response by inducing
TH2 profile (Alarcon-Chaidez et al., 2009; Oliveira et al., 2011;
Carvalho-Costa et al., 2015; Lieskovská et al., 2015). Another
study also reports that shifting of host immune response towards
TH2 leads to stimulation of the humoral immune response and
promotes B cell proliferation and induction of antibody
production (Berger, 2000). Various studies report that repeated
infestation of mice with ticks increases the level of TGF-b and
leads to gradual increase in level of IL-10, IL-4 as well as
increased TH2 response (Alarcon-Chaidez et al., 2009, Ferreira
and Silva, 1999). During tick feeding, differential expression of
salivary molecules which are capable of reducing pro-
infmammatory cytokines such as IL-12, IL-1 b or TNF-a as
well as production of anti-infmammatory mediators i.e IL-10. All
FIGURE 2 | Proposed model of a-gal sensitization from tick bites. Skin is comprised of three layers: epidermis, dermis, and hypodermis. Antigen-presenting cells
(APCs), including Langerhans cells (LCs) and dermal Dendritic cells (DCs) residing in epidermis and dermis, respectively, respond to tick-secreted antigens, such as
glycoproteins, glycolipids, and tick cement-containing a-gal moieties. After antigen exposure, APCs process antigen, migrate to skin-draining lymph nodes, and
participate in allergen sensitization. During this process, naïve T cells are primed through presentation of tick a-gal antigens by LCs and dermal DCs within skin-
draining lymph nodes. Activated CD4+ T cells subsequently traffic to the skin through blood and lymphatic vessels. Cognate T cell help, provided by T follicular
helper (TFH) cells, to a-gal-specific B cells leads to germinal center responses, positive clonal selection of B cells via recognition of native antigens retained by
follicular dendritic cells (FDCs), and the development of memory B cells and plasma cells. After clonal selection, B cells migrate to the tick bite site on the skin to
manifest allergic responses by presenting antigens to T cells, secreting proinflammatory cytokines, and secreting a-gal-specific antibodies (anti-a-IgE) that ultimately
triggers activation of mast cells and basophils and allergic response.
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of these events mentioned earlier further contributes towards
maintenance of skewed TH2 immune response and contribute to
AGS development (Ferreira and Silva, 1999).

Review including key details related to tick bite development of
B cells in context AGS can be found elsewhere (Chandrasekhar et al.,
2020). Briefly, the initial encounter of allergenwithhost immune cells
happens at the skin epithelium during the tick bite. It is reported that
tick saliva contains high concentration of Prostaglandin E2 (PGE2),
which is found to be involved in reduction of inflammation and
recruitment of macrophages. Hence, these events help further to
create a suitable environment to drive immune response towards
TH2 profile (Williams, 1979; Poole et al., 2013). Additionally,
research has shown that PGE2 can directly induce class switching
of the specific B cells to produce IgE (Gao et al., 2016). The
development of B cell-producing antigen-specific IgE Abs is a
hallmark of allergic responses following antigen exposure. Cabezas-
Cruz and Valdes (2014) reported that tick saliva induces responses
like a venom antigen, which not only counteracts with the immune
system but also drives immune sensitization. Initial encounter
between tick-secreted saliva antigen and host immune cells happens
at the skin epithelium during a tick bite. Antigen presenting cells
(APCs) present in skin more specifically, Langerhans cells (LCs) and
dendritic cells (DCs) recognize, capture, and process salivary a-gal
antigens and migrate to skin-draining lymph nodes to participate
in sensitization of B cells (Figure 2) (Chandrasekhar et al., 2020).
After clonal selection, sensitized B cells migrate to the tick bite site in
the skin to manifest allergic responses by presenting the antigen to
T cells, secreting proinflammatory cytokines, and a-gal-specific
antibodies that eventually trigger mast and basophil cell activation
(Chandrasekhar et al., 2020).

During AGS development and allergic response various human
cells are involved. In early sensitization stage skin resident antigen
presenting cells are vital. Skin is compartmentalized into two layers
i.e., epidermis and dermis by basement membrane. In these layers
specialized antigen presenting cells (APCs) namely Langerhans
cells, a subpopulation of Dendritic cells (DC) are present. DCs play
central role in connecting both innate and adaptive immune
systems. Especially in context of tick bite and sensitization these
cells are involved in internalization and processing of a-gal bound
antigens injected by tick while feeding (Kashem et al., 2017). Since,
DCs do not produce cytokines required for TH2 cell differentiation
for the development of AGS, tick salivary component like PGE2 are
required to polarize DCs towards TH2 (Carvalho-Costa et al.,
2015). After completion of sensitization, mast cells play central
role inallergic response.Mast cells are localized in tissueandexpress
IgE binding receptors (FceRI). During activation stage cross linking
of FceRI bound IgE Abs occurs that leads to degranulation of mast
cells to release allergy specific mediators along with TH2 cytokines
(i.e., IL-3, IL-4) (Mcleod et al., 2015).

Basophils are important circulating granulocytes, which are
involved in chronic allergic responses as well as tick acquired
resistance in non-natural hosts (Sokol et al., 2009; Karasuyama
et al., 2020). Like mast cells basophil cells also express FceRI
receptors to bind IgE and release histamine and related
mediators after activation and degranulation (Sokol et al.,
2009). In addition, that study suggests basophils might be
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
involved in antigen presentation and initiation of TH2
immune response and cytokine production (Sokol et al., 2009).
CONCLUSIONS

AGS is a newly emerged food allergy reported in different parts of
the world and is associated with tick bites. The a-gal epitope
(galactose-a-1,3-galactose), an oligosaccharide, is the prime
culprit responsible for AGS. The exact mechanism of how a
tick bite causes human sensitization against a-gal and leads to
the development of AGS, is poorly understood. Identification
and functional characterization of tick-associated molecules are
vital for developing interventions to prevent and control this
disease. The presence of the a-gal epitope in tick species has been
confirmed. However, mechanism of synthesis, origin and delivery
of these molecules at the tick–host interface are subject of
investigation. Furthermore, there is a gap in our understanding of
how tick microbiome contributes towards AGS development.
Comparative analysis of the microbiomes maintained by the ticks
along with their genetic machinery using genomic and
transcriptomic approaches may reveal the genes contributing to
a-gal synthesis. Future research should be focused on 1) identifying
and characterizing key tick salivarymolecules decoratedwith thea-
gal epitope, 2) the molecular mechanism of a-gal synthesis, 3) the
mechanism of a-gal delivery in tick–host interaction interface, 4)
the process of sensitization against a-gal during tick hematophagy
and involved immune pathways, and 5) the role of various host-
associated and tick-associated factors contributing to the
development of AGS.
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