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The powerful Quantitative real-time PCR (RT-qPCR) was widely used to assess gene

expression levels, which requires the optimal reference genes used for normalization.

Oenococcus oeni (O. oeni), as the one of most important microorganisms in wine industry

and the most resistant lactic acid bacteria (LAB) species to ethanol, has not been

investigated regarding the selection of stable reference genes for RT-qPCR normalization

under ethanol stress conditions. In this study, nine candidate reference genes (proC,

dnaG, rpoA, ldhD, ddlA, rrs, gyrA, gyrB, and dpoIII) were analyzed to determine the

most stable reference genes for RT-qPCR in O. oeni SD-2a under different ethanol

stress conditions (8, 12, and 16% (v/v) ethanol). The transcript stabilities of these genes

were evaluated using the algorithms geNorm, NormFinder, and BestKeeper. The results

showed that dnaG and dpoIII were selected as the best reference genes across all

experimental ethanol conditions. Considering single stress experimental modes, dpoIII

and dnaG would be suitable to normalize expression level for 8% ethanol shock

treatment, while the combination of gyrA, gyrB, and rrswould be suitable for 12% ethanol

shock treatment. proC and gyrB revealed the most stable expression in 16% ethanol

shock treatment. This study selected and validated for the first time the reference genes

for RT-qPCR normalization in O. oeni SD-2a under ethanol stress conditions.

Keywords: Oenococcus oeni, reference gene, RT-qPCR, ethanol stress, normalization

INTRODUCTION

Oenococcus oeni (O. oeni) is well known as the main starter of malolactic fermentation (MLF).
Through the MLF process, O. oeni reduces the acidity naturally and improves the quality and
stability of wine (Guzzo et al., 2000; Maicas et al., 2000; Mohedano Mde et al., 2014). However,
the harsh environmental conditions of wine such as high ethanol concentration, low pH, and SO2,
can often delay the growth of O. oeni and MLF process (G-Alegría et al., 2004; Olguín et al., 2015;
Betteridge et al., 2017). Ethanol stress is generally considered as one of themain inhibitors ofO. oeni
growth in wine (Mendoza et al., 2017; Contreras et al., 2018). The strain O. oeni SD-2a is able to
survive and grow in high ethanol conditions and shows strong MLF ability (Liu, 2002), however its
ethanol stress response mechanism was still obscure.
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Quantitative real-time PCR (RT-qPCR), one of the most
common technologies for quantifying gene expression level, was
often used to analyze the stress response to abiotic and biotic
stresses in O. oeni (Beltramo et al., 2006; Olguín et al., 2010). It is
characterized by high sensitivity, specificity, good reproducibility
and low cost, and always used to confirm results obtained by
microarrays or RNA-seq (Allison et al., 2006; Fang and Cui,
2011). The methods of presenting quantitative gene expression
include the absolute quantification method and relative
quantification method. When using relative quantification in
RT-qPCR, the optimal reference genes are indispensable in order
to normalize RT-qPCR data of target gene. The MIQE guidelines
(Bustin et al., 2009) emphasized the fact that the discovery of
one or multiple stably expressed reference genes were crucial for
obtaining accurate gene expression data. Therefore, the selection
and validation of reliable reference genes for each particular
condition are essential to quantitative accuracy.

Several stress-related genes such as hsp18, citE, ctsR, clpP, ftsH,
have been studied using RT-qPCR analysis in O. oeni under
different stress conditions, however only one common reference
gene, ldhD, was used for normalization (Bourdineaud et al.,
2003; Beltramo et al., 2006; Olguín et al., 2009, 2010; Capozzi
et al., 2010). Recently, some studies attempted to elucidate the
mechanisms of the adaptation and tolerance of O. oeni under
stress conditions through transcriptomic and proteomic analysis,
in which RT-qPCR was applied to confirm transcriptomic
analysis results using the multiple common reference genes for
normalization (Olguín et al., 2015; Margalef-Català et al., 2016;
Liu et al., 2017). However, in these studies, the evaluation of
reference genes was not performed in advance. As so far, few
studies for evaluation of reference genes have been reported in
O. oeni (Supplementary Table 1). However, the selection and
validation of reference genes for RT-qPCR normalization in
O. oeni under ethanol conditions have not yet been reported.

In this study, nine genes, proC, rrs, dnaG, gyrA, ddlA, rpoA,
gyrB, ldhD, and dpoIII, were selected as candidate reference genes.
Besides the commonly used genes for transcript normalization in
O. oeni such as ldhD, ddlA, and gyrB, we selected others genes
based on literature review. The three most diffused algorithms
(geNorm, NormFinder, and BestKeeper) were used to calculate
the expression stability of the candidate genes and obtain the
most stable reference genes. In addition, the optimal reference
genes were tested to normalize the expression of one target gene
(hsp18) under ethanol stress conditions. This work is hoping to
provide a basis for future study on gene expression under ethanol
conditions in O. oeni SD-2a and other lactic acid bacteria (LAB)
species.

MATERIALS AND METHODS

Bacterial Strain
Oenococcus oeni SD-2a was obtained from our own collection
(College of Enology, Northwest A&F University, Yangling,
China). This strain was previously isolated from Shandong
province in China and was properly identified (Liu, 2002; Li et al.,
2006). The strain O. oeni SD-2a has obtained patent protection
(02123444.2) in China.

Growth Conditions
The O. oeni SD-2a was cultured at 28◦C and pH 4.8 in three
flasks with 100mL FMATB broth, which contains glucose 5
g/L, D, L-malate 5 g/L, yeast extract 5 g/L, peptone 10 g/L,
MgSO4 •7H2O 0.2 g/L, MnSO4 •4H2O 0.05 g/L, Cysteine/HCl
0.5 g/L, and tomato juice 250mL (Li et al., 2009; Liu et al.,
2017). The growth of cultures was monitored by measuring
OD value using a spectrophotometer (Cary 60 UV-Vis, Agilent
Technologies, USA).When cultures reached themid-exponential
phase (OD600nm≈1, 109 CFU/mL), they were completely mixed
and split into three sterile flasks. Then the flasks were performed
the shock treatment (ST) by adding with 8, 12 and 16% (v/v)
ethanol, respectively. Bacterial samples were collected at time
zero just before the addition of ethanol and then at one, 3 h after
ethanol was added (Olguín et al., 2015). All assays above were
performed in triplicate using independent cultures and incubated
at 28◦C and pH 4.8.

RNA Extraction and cDNA Synthesis
Cells were harvested by centrifugation at 10,000 × g for 5min at
4◦C, the supernatants were removed and the pellets were washed
with 10mM Tris-HCl prepared with diethylpyrocarbonate-
treated water (DEPC), which were then frozen in liquid nitrogen
and kept at −80◦C until RNA extraction (Margalef-Català
et al., 2016). Total RNA extractions were performed using
the E.Z.N.A.TM Bacterial RNA Kit (Omega Bio-tek, USA) that
includes a DNase treatment step. The quality of the RNA
samples was checked on a 1% (w/v) agarose gel (HydraGene,
USA). RNA purity was characterized with optical density
(OD) 260/280 and 260/230 ratios. All samples passed quality
control with the ratio OD260/280 between 1.9 and 2.2 and
ratio OD260/230<2.0. RNA concentration was determined by
BioDrop µLite Spectrophotometer (Tamar Laboratory Supplies
Ltd., Cambridge, England).

The cDNA was synthesized using the RevertAid First Strand
cDNA Synthesis kit (Thermo Scientific) as described by the
manufacturer. At the end of the reaction, each sample was diluted
1:100 with nuclease-free water prior to the RT-qPCR analysis.

Candidate Reference Genes Primers
Design
Primers of candidate reference genes and one target gene for RT-
qPCRwere designed using Primer Premier (version 5.0) and each
has a length of about 20–25 bases, a G/C content of over 50% and
a Tm of about 60◦C (Beltramo et al., 2006). The primers were
checked by gene-specific binding using the genome ofO. oeni SD-
2a (results not shown), which was also used to check exon-intron
borders by matching the primers to their location. The primer
sequences are listed in Table 1.

Quantitative Real-Time PCR
The RT-qPCR reactions were carried out on a Bio-Rad IQ5 Real-
time PCR system with ChamQ SYBR qPCRMaster Mix (Vazyme
Biotech, Nanjing). Each reaction was performed in triplicate
with a total reaction mixture of 20 µl final volume containing
2 µl diluted cDNA, 0.4 µl of each primer, 10 µl of ChamQ
SYBR qPCR Master Mix, and 7.2 µl of RNase-free water. PCR
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TABLE 1 | Gene descriptions and primer sequences used for RT-qPCR.

Gene Symbol Annotation LinRegPCR Efficiency Sequence (5′-3′) Tm(◦C) References

ldhD D-Lactate dehydrogenase 1.845 F-GCCGCAGTAAAGAACTTGATG 58.3 Margalef-Català et al., 2016

R-TGCCGACAACACCAACTGTTT

dnaG DNA primase 2.041 F-TGTGGACGGAGTGGCAATGT 62 Desroche et al., 2005

R-CGGTATTTTCTGTATATTTACTATCG

gyrA DNA Gyrase subunit A 1.930 F-CGCCCGACAAACCGCATAAA 62 Desroche et al., 2005

R-CAAGGACTCATAGATTGCCGAA

gyrB DNA Gyrase subunit B 1.875 F- GGTTGAGGCTGGTCGAGTGTAT 62.3 This study

R- GCATCCATCTCACCAAGTCCCT

rrs 16S ribosomal RNA 1.847 F-ATGGTCGTCGTCAGCTCGTG 60.3 This study

R- TGTGTTGCCCAGGTCATAAGG

ddlA D-Alanyl-alanine synthetase A 1.994 F- ATGGCAGTGGATGGTTTGACT 58.3 This study

R-TAGTGTATTAGGCTCGCTTAGGAA

rpoA RNA polymerase subunit α 2.066 F- TGCTGGGAAGAAAGAAATGATG 56.3 This study

R-AGTTAAACGAACGAACCGAAAG

proC Pyrroline-5-carboxylate reductase 1.876 F-CTGCTTGCTGATTGCGATTT 58 This study

R-CCGTTAGTTCTTTAAGGCTTGTTG

dpoIII DNA polymerase III, alpha subunit 1.804 F-GCAGTGAAGGGACGCTTAAACG 62.3 Costantini et al., 2011

R-ACCCAATCGCCTCGACATCATC

hsp18 Heat shock protein Lo18 1.925 F-TGTGGACGGAGTGGCAATGT 60.3 Beltramo et al., 2006

R-CGGTATTTTCTGTATATTTACTATCG

conditions were indicated as follows: 95◦C for 30 s, 40 cycles of
95◦C for 10 s, 60◦C for 30 s. To confirm product specificity, a
melting curve analysis was performed after each amplification
(Supplementary Figure 1). The threshold cycle (Ct) used in this
study was automatically calculated by the Bio-Rad IQ5 Optical
System software (version 2.1). The amplification efficiency was
calculated from the raw data using LinRegPCR software (Ruijter
et al., 2009; Tuomi et al., 2010).

Statistical Analysis
The algorithms geNorm (Vandesompele et al., 2002),
NormFinder (Andersen et al., 2004), and BestKeeper (Pfaffl
et al., 2004) were used to evaluate the expression stability of
candidate reference genes under ethanol stress conditions. The
raw Ct values were directly applied for BestKeeper analysis,
however, for geNorm and NormFinder analysis, the raw data
should be transformed into relative quantities using the 2−1Ct

method: 1Ct = Ct sample − minimum Ct (Yan et al., 2014).
Finally, an overall ranking of candidate reference genes was
generated, by calculating the geometric mean of ranking orders
from the three algorithms. In order to confirm the three major
algorithms worked properly, the final overall ranking across
all samples was compared to that obtained by a new software,
named IdealRef (Palombella et al., 2017).

geNorm

geNorm(qbase+)is a statistical algorithm, which is based
on the principle that the expression ratio of two reference
genes should be constant in all samples, regardless of
the experimental condition, or sampling time (Hellemans
et al., 2007). The candidate reference genes were ranked by
geNorm based on the expression stability value M, which
is defined as the average pairwise variation with all other
tested candidate genes. Lower M-values indicate more stable
expression.

Using the geNorm algorithm, the normalization factor (NF)
was also calculated by stepwise inclusion of a less stable gene until
the (n+1)th gene has no significant contribution to the newly
calculated normalization factor NFn+1(Vandesompele et al.,
2002). Particularly, if the pairwise variation Vn/n+1 between the
two sequential normalization factors NFn and NFn+1 is lower
than the cut-off value of 0.15, it suggested that the NFn+1 is not
required.

NormFinder

NormFinder is a Visual Basic application tool for Microsoft Excel
used to calculate the stability values of each candidate reference
genes by combining intra- and inter-group variations of gene
expression (Andersen et al., 2004). The most stably expressed
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gene is the one with the lowest stability values and the lowest
variation values of intra- and inter-groups.

BestKeeper

Pfaffl et al. (2004) have established Excel-based spreadsheet
software named BestKeeper to determine the most stably
expressed genes based on the standard deviation (SD) and the
coefficient of variation (CV). The candidate reference genes can
be ranked from the most stable one with the lowest variation,
to the least stable one with the highest variation. Any candidate
reference gene with the SD higher than 1 will be considered as
inconsistent.

IdealRef

IdealRef is the algorithm recently developed by Palombella, based
on the principle published by Vandesompele et al. (2002). The
raw Ct values of candidate reference genes were required for this
algorithm to calculate the average Ct and then the expression of
one target gene was normalized with one reference gene at a time.
From these values, the algorithm produces a dimensionless value
(GS value), indicating the stability of the reference gene. Themost
stable gene is the one with the lowest GS value (Palombella et al.,
2017).

Validation of the Selection of Reference
Genes
In order to validate the selection of reference genes, the
expression profile analysis of one target gene (hsp18) was carried
out with the same cDNA samples used for the selection of
reference genes (Guzzo et al., 2000; Beltramo et al., 2006). The
RT-qPCR conditions were the same as previously described.
The relative expression levels of the target gene were calculated
according to the 2−11Ct method (Livak and Schmittgen, 2001).
Samples collected at 0 h (without stress) were considered as
control groups. Statistical significances between the two means
were determined by the t-test using IBM SPSS Statistics version
22.0 (SPSS Inc., USA).

Expression was normalized using the three reference gene
strategies in each treatment: (1) the optimal multiple reference
genes from all samples, (2) the optimal multiple reference genes
from each treatment, (3) the least stable reference gene from each
treatment.

RESULTS

Expression Profiling of Candidate
Reference Genes
In order to show transcriptional differences among nine
candidate genes, the average Ct value was calculated across all
experimental samples (Supplementary Table 2). The transcripts
of these genes showed different levels of abundance (Figure 1).
The mean Ct values for nine genes showed a range of variation
from 8.57 to 24.12. rrs showed the most abundant transcript level
with the lowest Ct value 8.57, while proC was the least abundant
with the highest Ct value 24.12. dnaG revealed the least gene
expression variation (coefficient of variation, CV, of 2.45%), while

FIGURE 1 | Expression levels of nine candidate reference genes across all

samples in O. oeni SD-2a. The mean Ct values of nine candidate reference

gene were described using a box and whiskers plot. The outer box is

determined from 25 to 75th percentiles, and the inner box represents the

mean value. The line across the box is the median. The whiskers represent

percentiles from 5 to 95th, and outliers are depicted by asterisks.

rrs and ldhDwith CV of 6.61 and 6.34%were regarded as themost
variable (Table 2).

Expression Stability Analyses
geNorm Analysis

Figure 2A showed the rank order of the candidate reference
genes according to their expression stability (M-value) across all
samples pooled together. When all 21 samples were analyzed
together, dpoIII, dnaG, and gyrA were defined as the most stable
genes with the M-value of 0.431, 0.448, and 0.482, respectively.
While rpoA and ddlA were defined as the least stable genes with
the M-value of 0.917 and 0.999, respectively. In 8% ethanol,
we also found that dpoIII, dnaG, and gyrA (M-value, 0.204,
0.225, and 0.251, respectively) were the most stable genes,
whereas proC and ddlA (0.863 and 1.022, respectively) were
the least stable genes (Figure 2B). However, in 12% ethanol,
the top-ranked genes were rrs, proC, and gyrA (M-value, 0.32,
0.334, and 0.411, respectively). ldhD and rpoA (M-value,0.882
and 0.975, respectively) showed the greatest variation, which
were ranked eighth and ninth, respectively (Figure 2C). In 16%
ethanol, proC, gyrB, and rrs (M-value, 0.216, 0.242, and 0.279,
respectively) were identified as the most stable genes, while
rpoA and ddlA (M-value, 0.727 and 0.876, respectively) as the
least stable genes (Figure 2D). In addition, the M-values for all
candidate reference genes were below the geNorm default limit
of 1.5, indicating relatively high stability for all measured genes.
The rank orders generated by geNorm analysis were shown in
Table 2.

NormFinder Analysis

NormFinder analysis result was slightly different from that
generated by geNorm (Table 2). According to NormFinder
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TABLE 2 | Gene expression stability ranked by geNorm, NormFinder, and BestKeeper in all samples and 8, 12, and 16% ethanol shock treatment.

Group Overall rank Gene geNorm M-value Normfinder Stability value Bestkeeper SD (± Ct) CV(% Ct)

Total 1 dnaG 2 0.448 1 0.129 1 0.518 2.35

2 dopIII 1 0.431 6 0.260 2 0.623 2.703

3 gyrA 3 0.482 2 0.141 4 0.719 3.36

4 gyrB 4 0.673 3 0.157 5 0.900 3.73

5 proC 5 0.773 5 0.241 6 0.906 3.76

6 rrs 7 0.879 4 0.166 7 0.543 6.34

7 ddlA 9 0.999 9 0.547 3 0.699 3.14

8 ldhD 6 0.83 8 0.510 9 1.196 6.13

9 rpoA 8 0.917 7 0.365 8 1.151 5.87

8% ethanol ST 1 dpoIII 1 0.204 1 0.270 2 0.800 3.38

2 dnaG 2 0.225 2 0.272 3 0.800 3.54

3 gyrA 3 0.251 4 0.352 5 0.980 4.54

4 ddlA 9 1.022 9 1.036 1 0.710 3.14

5 rrs 7 0.802 3 0.349 4 0.310 3.78

6 gyrB 6 0.735 5 0.497 6 1.140 4.56

7 rpoA 4 0.863 6 0.527 8 1.180 5.92

8 ldhD 5 0.573 8 0.863 9 1.210 6.04

9 proC 8 0.632 7 0.747 7 1.390 5.57

12% ethanol ST 1 gyrB 4 0.503 3 0.296 1 0.270 1.15

2 gyrA 3 0.411 1 0.130 4 0.560 2.65

3 rrs 1 0.32 4 0.434 7 0.510 5.97

4 proC 2 0.334 6 0.479 3 0.590 2.5

5 dopIII 5 0.625 5 0.467 2 0.510 2.27

6 dnaG 6 0.673 2 0.150 6 0.660 3.05

7 ddlA 7 0.74 7 0.768 5 0.670 3.03

8 ldhD 8 0.882 9 0.880 8 1.230 6.3

9 rpoA 9 0.975 8 0.794 9 1.320 6.71

16% ethanol ST 1 proC 1 0.216 1 0.025 2 0.470 2

2 gyrB 2 0.242 1 0.025 3 0.520 2.15

3 dnaG 5 0.504 4 0.248 1 0.330 1.51

4 rrs 3 0.279 3 0.081 9 0.620 7.09

5 gyrA 4 0.391 5 0.250 5 0.620 2.88

6 dopIII 7 0.631 7 0.615 6 0.700 3.03

7 ddlA 9 0.881 9 1.038 4 0.610 2.77

8 rpoA 8 0.727 6 0.575 7 0.700 3.68

9 ldhD 6 0.572 8 0.907 8 0.760 4.02

SD (± Ct): standard deviation of the Ct; CV (%Ct), coefficient of variance expressed as a percentage of the Ct level; ST, shock treatment.

analysis, dnaG and gyrA were ranked in top positions across all
samples, but ranked second and third by geNorm, respectively. In
8% ethanol, dpoIII, dnaG, and rrswere ranked in top positions by
NormFinder analysis, while rrs was ranked seventh by geNorm.
In 12% ethanol, according to NormFinder, gyrA, dnaG, and
gyrB were considered as the most stable genes, while dnaG was
ranked sixth by geNorm. In 16% ethanol, gyrB and proC were
ranked in top position by NormFinder, which was identical
with the result by geNorm. Nevertheless, in all samples or each
treatment, the least stable genes identified by both methods were
consistent.

BestKeeper Analysis

As shown inTable 2, across all samples, the most stably expressed
gene identified by BestKeeper were dnaG and dpoIII, which
were also ranked in top position by geNorm, however dpoIII
was ranked sixth position by NormFinder. In 8% ethanol,
ddlA, dpoIII, and dnaG were regarded as the most stably
expressed genes by BestKeeper, while ddlA as the least stable by
both geNorm and NormFinder. Furthermore, in 12% ethanol,
we found that gyrB was the most stably expressed using
BestKeeper analysis, while ranked fourth and third by geNorm
and NormFinder, respectively. And the same lowest stably
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FIGURE 2 | Expression stability and ranking of nine candidate reference genes by geNorm. Average expression stability (M) was calculated following stepwise

exclusion of the least stable gene across all treatment groups. (A) All samples. (B) 8% ethanol shock treatment (ST). (C) 12% ethanol ST. (D) 16% ethanol ST.

FIGURE 3 | Venn diagram showing the overlap of the three most stable genes

in all samples (Total), 8% ethanol shock treatment (ST), 12% ethanol ST, and

16% ethanol ST. The three most stable genes were selected by the overall

ranking of three algorithms (geNorm, NormFinder, and BestKeeper).

expressed genes, rpoA and ldhD, were emerged by the three
algorithms. In 16% ethanol, dnaGwas emerged as the most stably
expressed by BestKeeper, followed by proC and gyrB, however
dnaG was ranked fifth and fourth by geNorm and NormFinder
analysis, respectively. Whereas the least stable gene identified by

BestKeeper was rrs, which was ranked third by both geNorm and
NormFinder.

Finally, by calculating the geometric mean of the rank orders
generated by the three algorithms, the overall rankings in all
samples and each treatment were obtained and shown in Table 2:
the three most stable reference genes were respectively dnaG,
dpoIII, and gyrA in all samples, dpoIII, dnaG, and gyrA in 8%
ethanol, gyrA, gyrB, and rrs in 12% ethanol, and proC, gyrB,
and dnaG in 16% ethanol. As shown in Figure 3, no universal
reference was found for all experimental conditions in this study.

IdealRef Analysis

In order to confirm the three major algorithms worked properly,
the raw Ct data of all samples were analyzed with hsp18 as target
gene using IdealRef software. The most stable reference genes
(dpoIII and gyrA) identified by IdealRef software were consistent
with those selected by the overall ranking across all samples
(Supplementary Table 3).

Determination of the Optimal Number of
Reference Genes for Normalization by
geNorm
In order to determine the optimal number of reference gene
used for accurate normalization, geNorm performed a stepwise
calculation of the pairwise variation (Vn/Vn+1) between two
sequential normalization factors (NFn and NFn+1). As shown
in Figure 4 and Supplementary Table 4, in 8 and 16% ethanol,
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FIGURE 4 | Determination of the optimal number of reference genes for

normalization. Pairwise variation (Vn/Vn+1) analysis between the normalization

factors (NFn and NFn+1) was performed by geNorm to determine the optimal

number of reference genes.

the V2/3 values were respectively 0.099 and 0.117, lower than
the cut-off value of 0.15, indicating that two genes would be
sufficient for normalization under these conditions. Therefore,
we could consider dpoIII and dnaG as the optimal multiple
reference genes in 8% ethanol, while proC and gyrB in 16%
ethanol. However, in 12% ethanol, three reference genes were
required for normalization with an acceptable V3/4 value of
0.137. Hence, gyrA, gyrB, and rrs would be used as the optimal
multiple reference genes for normalization in 12% ethanol.

Validation of the Selection of Reference
Genes
An expression profile analysis of the target gene (hsp18) was
carried out to validate the selection of candidate reference genes.
According to the reference gene strategies mentioned above,
besides the optimal multiple reference genes selected from each
treatment, we also used the least stable gene in each treatment:
proC in 8% ethanol, rpoA in 12% ethanol and ldhD in 16%
ethanol, and the optimal multiple reference genes selected from
all samples: dpoIII and gyrA in 8% ethanol, dnaG, dpoIII, and
gyrA in 12% ethanol and dnaG and dpoIII in 16% ethanol, to
normalizer the expression level of hsp18.

As shown in Figure 5 and Supplementary Table 5, the
expression level of hsp18 increased continuously at 1 and 3 h
in 8% ethanol, using dpoIII and dnaG as the optimal reference
genes. Similar expression pattern was also revealed in 12%
ethanol when normalization was carried out using dnaG, dpoIII,
and gyrA as the optimal reference genes. In contrast, when
normalizing using proC as reference gene, which was the least
stable reference gene in 8% ethanol, the expression exhibited
also continuously but sharply increasing. Meanwhile the relative
expression was obviously overestimated, much higher than when
normalizing using the optimal reference genes, dpoIII and dnaG,

at all time points. The same expression trend was observed in
12% ethanol when normalizing using the least stable reference
gene, rpoA. Normalizations with the optimal reference genes
selected from all samples were also respectively performed in
8 and 12% ethanol. The expression levels were consistent with
those obtained when normalization with the optimal reference
genes from each treatment. However, in 16% ethanol, when
normalization was performed using proC and gyrB as the optimal
reference genes, the relative expression increased sharply at 1 h
and unchanged at 3 h. The relative expression showed a different
trend compared to when normalized with the least stable gene,
ldhD, or with the optimal reference genes from all samples, dnaG
and dpoIII.

DISCUSSION

As the most resistant LAB species to ethanol, O. oeni has evolved
different mechanisms to cope with the ethanol stress condition
in wine (Guzzo et al., 2000; Beltramo et al., 2004; G-Alegría
et al., 2004; Li et al., 2009; Olguín et al., 2009, 2015). However,
the molecular mechanisms of ethanol tolerance were still not
well understood. RT-qPCR is a powerful tool to reveal the stress
tolerance mechanisms of O. oeni, but the accuracy of its result
was directly affected by the expression stability of reference genes
(Vandesompele et al., 2002; Bustin et al., 2009; Sumby et al.,
2012). Thus, the selection of the optimal reference genes is
essential for quantification of gene expression.

In our study, three popular statistical algorithms, geNorm,
NormFinder, and BestKeeper, were used for the evaluation of
the expression stability of nine candidate reference genes in
three different ethanol conditions. geNorm confirmed the most
stable gene with a low pairwise variation among reference
genes (Vandesompele et al., 2002). NormFinder determined
the most stable gene with the lowest stability value calculated
by combining the intra- and inter-group variation (Andersen
et al., 2004), and BestKeeper did this based on the standard
deviation and the coefficient of variation (Pfaffl et al., 2004). The
final rankings of candidate reference genes were not identical
when using different algorithms in this study. The variance in
results provided by different algorithms was also reported in
the previous works (Velada et al., 2014; Gao et al., 2017). The
main reason causing the discrepancy is the varying priorities
in different algorithms. Furthermore, co-regulated genes with
similar expression profiles can affect the rank order of geNorm,
resulting in making the wrong choice for normalization. In
contrast, the algorithms of NormFinder and Bestkeeper are less
sensitive to co-regulation (Wu et al., 2016). Thus, we selected
the most stable reference genes based on the integrating of the
results from three algorithms. By combining the results of three
algorithms, we found that dnaG, dpoIII, and gyrA were the most
stable reference genes when all samples pooled were analyzed
together, however different experimental conditions emerged
their own optimal reference genes. This is more evident that
the validation of the reference genes for specific experimental
condition is required prior to use in RT-qPCR normalization. In
8% ethanol, dpoIII performed as the most stable gene, followed
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FIGURE 5 | Relative expression of hsp18 in different ethanol stress conditions. (A) Relative expression of hsp18 in 8% ethanol shock treatment (ST) normalized using

reference genes, dpoIII+gyrA, dpoIII+dnaG, and ldhD, respectively. (B) Relative expression of hsp18 in 12% ethanol ST normalized using reference genes,

dpoIII+gyrA+dnaG, gyrA+gyrB+rrs, and rpoA, respectively. (C) Relative expression of hsp18 in 16% ethanol ST normalized using reference gene, dnaG+dpoIII,

proC+gyrB, and ldhD, respectively. The results are represented as mean fold changes in relative expression compared to control samples (t = 0 h).

by dnaG and gyrA. In 12% ethanol, gyrA and gyrB were identified
as the most stable gene, while rrs ranked third position. In
16% ethanol, the top-ranked gene was proC, which was not
evaluated in the previous studies of O. oeni, whereas gyrB and
dnaG were ranked second and third respectively. In our study,
dpoIII, dnaG, gyrB, and gyrA showed better expression stability,
while in some studies, they were used together as reference
genes for RT-qPCR normalization in O. oeni, but not evaluated
particularly (Costantini et al., 2011; Margalef-Català et al., 2016;
Liu et al., 2017). Moreover, the traditional reference genes in
O. oeni, such as ddlA and ldhD varied greatly in our experimental
conditions. ddlA were ranked fourth, seventh and seventh in
the overall rangkings of 8, 12, and 16% ethanol, respectively.
ldhD, together with rpoA, was considered as the least stable
genes in all experimental conditions, so in this work, it was
not chosen as reference gene for the normalization. This result
is consistent with that described by Cafaro et al. (2014). rrs,
encoding 16S rRNA, has been reported unstable in some studies
with the disadvantage of high transcript level (Desroche et al.,
2005; Wen et al., 2016). Our results showed also the much higher
abundance of rrs than other genes, however in 12% ethanol,
the expression stability of rrs was stable, which was ranked
in top position by geNorm analysis and third in the overall
ranking, was good (Figure 2C). Thus, in this study, rrs would
be used for normalization to validate the selection result in 12%
ethanol. Furthermore, in order to neutralize the impact of the
high abundance of rrs, the templates for rrs should be diluted
more times than the samples for the other genes in RT-qPCR

analysis, however the different dilution ratios can lead to more
human errors (Sun et al., 2016). Thus, in each experiment, three
independent biological replicates and three technical replicates
were required at least.

In order to validate the selection of reference genes, in this
study, we employed three reference gene strategies to normalize
the relative expression of one stress response gene, hsp18. In
this study, the results showed that the expression patterns were
influenced by the reference gene strategy obviously. When being
normalized with the least stable gene, the relative expression
levels of hsp18 were overestimated in all experimental conditions
(Figure 5). The expression overestimated would deeply affect
the accurateness of analysis. The hsp18 gene acts in the early
response to stress conditions (Beltramo et al., 2006). A significant
over-expression of this gene was observed for 1 h after ethanol
shock in all experimental conditions when normalization with
the optimal reference genes from each treatment or from all
samples. Furthermore, when normalization with the optimal
reference genes, in 8 and 12% ethanol, the expression trends
were consistent with those observed in previous studies (Guzzo
et al., 2000; Beltramo et al., 2006). However, in 16% ethanol,
the expression trend using proC and gyrB as reference genes
was different from using dnaG and dpoIII (Figure 5C). These
results further verified the importance of the selection of reliable
reference genes for each particular condition. The hsp18 gene
was proposed as molecular marker to select good MLF starters
by Coucheney et al. (2005). Capozzi et al. (2010) reported that
strains with better MLF performance presented higher relative
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expression of hsp18, which confirmed hsp18 as a useful tool to
evaluate the ability of O. oeni strains to survive in wine and
to perform MLF. Moreover, Betteridge et al. (2017) considered
hsp18 as an indicator to determine the high ethanol tolerance
phenotype of O. oeni. Therefore, according to the expression
results, O. oeni SD-2a seems to be a high ethanol tolerance strain
and a good starter for MLF process.

Concluding, microarray and RNA-seq datasets from O. oeni
could be used as alternative sources to identify novel candidate
reference genes, however the validation of these novel genes using
RT-qPCR or literature-based searches was required (Alexander
et al., 2012; Pombo et al., 2017).The transcriptomic analysis
of O. oeni SD-2a using RNA-seq has been reported by Liu
et al. (2017). However, prior to validation of this transcriptomic
analyses using RT-qPCR, the evaluation of reference genes
for normalization was not performed. In further analysis, our
findings will make the validation of high-throughput data from
O. oeni SD-2a under ethanol stress condition more accurate and
robust. In this study, we selected nine candidate genes, commonly
used for normalization in O. oeni, based on literature review.
These genes are still very popular with the researchers and still
used for RT-qPCR data normalization in many studies.

This study is the first to systematically analyze reference genes
for RT-qPCR under ethanol stress conditions in O. oeni. The
results will benefit future gene expression studies inO. oeni SD-2a
and facility the selection of reference genes of other LAB strains
under ethanol condition.
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