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OBJECTIVE—To determine the mechanisms by which blockade
of adenosine A2B receptors (A2BRs) reduces insulin resistance.

RESEARCH DESIGN AND METHODS—We investigated the
effects of deleting or blocking the A2BR on insulin sensitivity using
glucose tolerance tests (GTTs) and hyperinsulinemic-euglycemic
clamps in mouse models of type 2 diabetes. The effects of diabetes
on A2BR transcription and signaling were measured in human and
mouse macrophages and mouse endothelial cells. In addition, tag
single nucleotide polymorphisms (SNPs) in ;42 kb encompassing
the A2BR gene, ADORA2B, were evaluated for associations with
markers of diabetes and inflammation.

RESULTS—Treatment of mice with the nonselective adenosine
receptor agonist 59-N-ethylcarboxamidoadensoine (NECA) in-
creased fasting blood glucose and slowed glucose disposal during
GTTs. These responses were inhibited by A2BR deletion or block-
ade and minimally affected by deletion of A1Rs or A2ARs. Dur-
ing hyperinsulinemic-euglycemic clamp of diabetic KKAY mice,
A2BR antagonism increased glucose infusion rate, reduced he-
patic glucose production, and increased glucose uptake into skel-
etal muscle and brown adipose tissue. Diabetes caused a four- to
sixfold increase in A2BR mRNA in endothelial cells and macro-
phages and resulted in enhanced interleukin (IL)-6 production in
response to NECA due to activation of protein kinases A and C.
Five consecutive tag SNPs in ADORA2B were highly correlated
with IL-6 and C-reactive protein (CRP). Diabetes had a highly
significant independent effect on variation in inflammatory
markers. The strength of associations between several ADORA2B
SNPs and inflammatory markers was increased when accounting
for diabetes status.

CONCLUSIONS—Diabetes affects the production of adenosine
and the expression of A2BRs that stimulate IL-6 and CRP produc-
tion, insulin resistance, and the association between ADORA2B
SNPs and inflammatory markers. We hypothesize that increased

A2BR signaling in diabetes increases insulin resistance in
part by elevating proinflammatory mediators. Selective A2BR
blockers may be useful to treat insulin resistance. Diabetes
60:669–679, 2011

O
besity and insulin resistance are associated
with low-grade systemic inflammation. Proin-
flammatory mediators produced in adipose
tissue (adipokines) that increase insulin resis-

tance include interleukin (IL)-6 (1), C-reactive protein
(CRP) (2), and plasminogen activator inhibitor 1 (PAI-1)
(3). In addition, insulin resistance due to a high-fat diet
causes macrophage accumulation in adipose tissue and
M2-like remodeling (4). Endothelial dysfunction is also
a hallmark of diabetes because inflammatory mediators
activate receptors and transcription factors such as nu-
clear factor-kB, toll-like receptors, c-Jun NH2-terminal ki-
nase (JNK), and the receptor for advanced glycation end
products, which cause systemic endothelial dysfunction (5).

Several studies have linked adenosine receptor blockade
with reversal of insulin resistance. Challis et al. reported
that adenosine receptor antagonists (6) or degradation of
adenosine with adenosine deaminase (7) reverse insulin
resistance in skeletal muscle isolated from diabetic animals.
After a lengthy delay before the development of bioavail-
able adenosine receptor antagonists, the A1/A2B orally ac-
tive antagonist, BW-1433, was found to persistently reverse
insulin resistance in obese insulin-resistant Zucker rats
(8–10). In these early studies, the effects of adenosine re-
ceptor antagonists were attributed to blockade of A1Rs. This
idea was corrected when moderately selective blockers
of the A2BR were found to lower glucose levels in diabetic
mice, an effect that could not be replicated with the se-
lective A1R antagonist 8-cyclopentyl-1,3-dipropylxanthine
(11). In mice rendered insulin resistant due to a high-fat
diet, ADORA2B gene deletion results in reduced adiposity,
reduced liver glycogen, increased energy expenditure, and
increased lean body mass (12).

In the current study we confirm that A2BR activation
stimulates IL-6 production in macrophages and endothelial
cells (ECs) and show that these effects are enhanced in
cells derived from diabetic animals. Blockade of A2BRs in
diabetic mice reduces hepatic glucose production (HGP)
and enhances glucose disposal into skeletal muscle and
brown adipose tissue. In addition, diabetes influences the
association of single nucleotide polymorphisms (SNPs) in
ADORA2B with IL-6 and CRP. These findings suggest that
diabetes and one or more SNPs in ADORA2B influence
proinflammatory A2BR signaling.
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RESEARCH DESIGN AND METHODS

RT-PCR. Total RNA was isolated from ECs or macrophages using TRIzol
(Invitrogen, Carlsbad, CA) according to the manufacturer’s protocol. Sense/
antisense mouse PCR primers were KC 59-cttgaaggtgttgccctcag-39/59-tgggga-
caccttttagcatc-39; IL-6 59-ctgatgctggtgacaaccac-39/59-tccacgatttcccagagaac-39;
A2AR 59-tggcttggtgacgggtatg-39/59-cgcaggtctttgtggagttc-39; and A2BR 59-ctgg-
gacacgagcgagag-39/59-gctggtggcactgtctttac-39. Sense/antisense human PCR
primers were A2AR 59-agttccgccagaccttcc-39/59-acctgctctccgtcactg-39; A2BR 59-
ggtcattgctgtcctctg-39/59-ttcattcgtggttccatcc-39.
Isolation and culture of human macrophages. Heparinized blood was
collected from healthy and diabetic volunteers in accordance with guidance
from the University of Virginia Institutional Review Board. Monocytes were
isolated using Rosette Sep human monocytes enrichment cocktail (StemCell
Technologies, Tukwila, WA) and plated in a tissue culture dish in Dulbecco’s
modified Eagle’s medium (DMEM) with 10% autologous serum and 10 ng/ml
human macrophage colony-stimulating factor for 3 days. Total RNA was iso-
lated from the differentiated macrophages using TRIzol reagent (Invitrogen).
cDNA was synthesized with Iscript cDNA synthesis kit (Bio-Rad) using 1 mg of
total RNA. Expression of A2AR, A2BR, and b-actin mRNA levels were measured
by quantitative RT-PCR.
Transgenic mice. The University of Virginia Animal Care and Use Committee
approved animal studies. Mice with adenosine receptor deletions used in this
study were congenic to C57BL/6 and were created as described previously:
A1R

2/2 (13), A2AR
2/2 (14), and A2BR

2/2 (15). Some studies used diabetic B6.
Cg-m+/+Leprdb/J (db/db) with nondiabetic C57BL/6J controls or diabetic KK.
Cg-Ay/J (KK-Ay) with less diabetic KK/1H J (KK-a/a) controls as identified in
the figure legends. Feeding a high-fat diet (55% calories from fat, Harlan
TD93075 6 125 mg/kg ATL-801) for 10 weeks was used to produce insulin
resistance in C57BL/6 mice.
In vivo assessment of insulin sensitivity. A 2-h hyperinsulinemic-euglycemic
clamp was performed in conscious mice to assess insulin action and glucose
metabolism in individual organs. At 4 to 5 days before clamp experiments, mice
were anesthetized, and an indwelling catheter was inserted in the right internal
jugular vein. On the day of clamp experiments, a three-way connector was
attached to the catheter to intravenously deliver solutions (e.g., glucose, in-
sulin). After overnight fast (;15 h), a 2-h hyperinsulinemic-euglycemic clamp
was conducted in conscious mice with a primed (150 mU/kg body wt) and
continuous infusion of human regular insulin (Humulin; Eli Lilly, Indianapolis,
IN) at a rate of 2.5 mU/kg/min to raise plasma insulin within a physiological
range. Blood samples (20 ml) were collected at 20-min intervals for the im-
mediate measurement of plasma glucose concentration, and 20% glucose was
infused at variable rates to maintain glucose at basal concentrations. Basal
and insulin-stimulated whole body glucose turnover were estimated with
a continuous infusion of [3H]glucose (PerkinElmer, Boston, MA) for 2 h before
the clamps (0.05 mCi/min) and throughout the clamps (0.1 mCi/min), respec-
tively. All infusions were performed using the microdialysis pumps (CMA/
Microdialysis, North Chelmsford, MA). To estimate insulin-stimulated glucose
uptake in individual tissues, 2-deoxy-D-[1–14C]glucose was administered as
a bolus (10 mCi) at 75 min after the start of clamps. Blood samples were taken
before, during, and at the end of clamps for the measurement of plasma [3H]
glucose, 3H2O, 2-deoxy-D-[1–14C]glucose concentrations, and/or insulin concen-
trations. At the end of the clamps, mice were killed and tissues were taken for
biochemical and molecular analysis. KKAY mice were treated with 20 mg/kg
ATL-801 administered by oral gavage four times at 12-h intervals with the last
dose given 90 min before the clamp.
Association of human ADORA2B SNPs with phenotypic markers. The
Multi-Ethnic Study of Atherosclerosis (MESA) is a prospective cohort study
designed to study the progression of subclinical cardiovascular disease, con-
sisting of 6,814 men and women aged 45–85 years who were free of clinical
cardiovascular disease at entry. The participants were recruited from six U.S.
communities. The sampling procedures have been described previously (16),
and the protocol and research methods are available on the MESA Web site
(http://www.mesa-nhlbi.org). A subcohort of 2,880 MESA subjects (720 in each
of the four ethnic groups) was randomly selected from subjects who gave
informed consent for genetic studies. All phenotypic data reported in this
study were collected at the first MESA examination according to Declaration
of Helsinki principles. Details of phenotypting and genotyping procedures are
described in Supplementary Data.
Evaluation of SNP-diabetes interactions. For all SNPs, genotype-specific
means and variances for each quantitative phenotype were estimated overall
and within strata (ethnic group and diabetes status). Empiric P values were
determined by permutation. A label-swapping approach was used, in which
each SNP genotype is permuted for each phenotype (homeostasis model as-
sessment [HOMA], IL-6, CRP, soluble IL-2 receptor [IL-2sR], and PAI-1) within
each of the four clusters defined by ethnic group. A total of 5,000 permutations
were performed for each SNP-phenotype, and the observed statistic was

compared with that obtained from the simulations to define the empiric
P value. This approach was also used within diabetic/nondiabetic clusters for
evaluation of SNP-diabetes interaction. The permutations were performed
within PLINK using the max(T) option. This effectively tests the appropriate
distributional assumptions of the analyses; should the distributions of the
phenotypes deviate significantly from normality, we would expect the per-
muted P values to be far from those observed. In our case, the permuted
P values are consistent with those observed.

RESULTS

Characterization of a novel selective A2BR antagonist
ATL-692. Several potent and selective antagonists of the
A2BR such as MRS-1754 have been described (17). In
general these compounds have poor aqueous solubility,
poor bioavailability, and are less potent and selective at
rodent than at human A2BRs. We have recently described
ATL-801 as a selective A2B blocker with improved water
solubility useful for in vivo studies (18). Figure 1 shows the
chemical structure and binding characteristics of a new
antagonist, ATL-692, with greater potency and selectivity
than ATL-801. The synthesis and pharmacological char-
acterization of ATL-692 is described in Supplementary
data. In competition for radioligand binding to recombi-
nant adenosine receptors, ATL-692 is .400-fold selective
for the A2BR over the other recombinant human, mouse, or
rat adenosine receptor subtypes. However, relative to ATL-
801, ATL-692 has 103 lower aqueous solubility (3 vs. 30
mg/ml) and 53 lower oral bioavailability in rats (13 vs.
73%). Hence, we used ATL-692 as the preferred compound
for in vitro studies, whereas ATL-801 as preferred for in
vivo studies.
Effect of A2BR deletion or blockade on glucose
metabolism. In previous studies, 2-alkynyl-8-aryladenine
adenosine antagonists with selectivity for the A2BR sub-
type have been reported to have hypoglycemic activity in
the KK-AY mouse model of type 2 diabetes (11). We ex-
amined the effects of ATL-801 on insulin sensitivity during

FIG. 1. Structure and adenosine receptor binding characteristics of
ATL-692. Ki values for ATL-692 at rat, mouse, and human (h) adenosine
receptors are expressed as mean nM 6 SE (N = 3) and were calculated
from the half-maximal inhibitory concentration (IC50) of ATL-692 to
compete for radioligand binding to recombinant receptors on human
embryonic kidney (HEK)293 cell membranes. The radioligands used were
125

I-ABA (A1R and A3R),
125

I-ZM241385 (A2AR), and
125

I-ABOPX (A2BR).
Binding is plotted as fraction of control specific binding.
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hyperinsulinemic-euglycemic clamps in KKAY mice. Body
weight and basal plasma glucose levels were not affected
by short-term (2 day) ATL-801 treatment (Fig. 2A and B).
During the clamp, plasma glucose levels were maintained
at ;7 mmol/L (Fig. 2C). Steady-state rates of glucose
infusion to maintain euglycemia during clamps were
significantly elevated in ATL-801–treated KKAY mice as
compared with untreated KKAY controls (Fig. 2D). Insulin-
stimulated glucose uptake in skeletal muscle and brown
adipose tissue were increased by 20 to;50% in KKAY mice
(Fig. 2E and F). Basal and clamp HGP rates were markedly
reduced in ATL-801–treated KKAY mice, resulting in a 30%
increase in hepatic insulin action (Fig. 2G–I). In sum, ATL-
801 treatment of diabetic mice increased insulin action in
liver and increased glucose uptake in skeletal muscle and
brown adipose tissue.

We reasoned that if insulin resistance occurs as a con-
sequence of A2BR activation, injecting mice with the stable
nonselective adenosine receptor agonist 59-N-ethyl-
carboxamidoadensoine (NECA) should activate adenosine
receptor–mediated effects and also inhibit glucose dis-
posal. Figure 3A shows that oral gavage with NECA 35 min
before an oral glucose tolerance test (GTT) in wild-type
fasted mice results in a substantial delay in glucose dis-
posal during GTT. These effects of NECA were somewhat
attenuated in mice lacking A1 or A2A receptors but were
almost completely abolished in mice lacking the A2BR.
Moreover, NECA significantly increased fasting glucose
levels in C57BL/6 but not in A2BR

2/2 mice (Fig. 3B). In-
sulin resistance in response to NECA was associated with
an increase in plasma IL-6 measured 4 h after NECA ad-
ministration (Fig. 3C). Genetic ablation of the A2BR has

FIG. 2. ATL-801 treatment increases insulin sensitivity in KKA
Y
mice. ATL-801 was administered by oral gavage 4 times at 12-h internals with the

last dose given 4 h before clamp. A: Body weight change during ATL-801 administration. B: Basal plasma glucose levels. C: Plasma glucose levels
during clamps. D: Steady-state glucose infusion rates during clamps. E: Insulin-stimulated skeletal muscle glucose uptake. F: Insulin-stimulated
glucose uptake in brown adipose tissue. G: Basal HGP. H: HGP during clamps (insulin-stimulated state). I: Hepatic insulin action reflected as
insulin-mediated percent suppression of basal HGP. *P , 0.05 by two-tailed Student t test; N = 7.
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previously been shown to dramatically reduce the ability
of NECA to raise IL-6 plasma levels in vivo and to abrogate
NECA-induced IL-6 release from mouse peritoneal mac-
rophages (19). The addition of the orally active A2BR an-
tagonist ATL-801 (10 mg/kg/day) to high-fat mouse diet
(55% of calories from lipid) for 10 weeks significantly re-
duced diet-induced elevated fasting blood glucose (Fig.
3D). The results indicate that the effects of adenosine re-
ceptor antagonists to reduce insulin resistance are medi-
ated by blockade of the A2BR subtype. In addition, the
results suggest that endogenous levels of adenosine in di-
abetic animals are sufficient to activate A2BRs.
NECA causes induction of cytokine transcripts in
ECs and macrophages. Because endothelial activation is
a hallmark of insulin resistance, we sought to determine
whether NECA causes induction of cytokine transcripts in
ECs and whether the response is influenced by diabetes.
As shown in Fig. 4A and B, NECA triggers a transient

increase in IL-6 mRNA and a more sustained stimulation of
IL-6 production. NECA also stimulates the production of
the murine IL-8 homolog KC (Fig. 4C and D). As shown in
Fig. 4E, A2BR mRNA in ECs from diabetic mice (db/db or
KKAY) is increased six- to sevenfold compared with ECs
derived from age- and sex-matched congenic controls. This
induction is associated with a shift to the left in the dose
response curve for NECA-induced IL-6 production and an
increase in the maximal response (Fig. 4F). To determine
whether diabetes causes induction of A2BR mRNA in human
tissues, we prepared macrophages from the monocytes of
diabetic and nondiabetic individuals. Monocyte pop-
ulations readily differentiate into macrophages in tissue
and, during the differentiation process, retain their genetic
identity (20). These macrophages, and not their mono-
cyte precursors, are the culprits in inflammation and
disease (21). As shown in Fig. 4G, diabetes is associated
with increased expression of A2BR mRNA in macrophages

FIG. 3. A2BR-mediated regulation of glucose metabolism. A: C57BL/6J and adenosine receptor knockout mice (male, 8 weeks, N = 5) received an
oral bolus of vehicle or NECA (0.3 mg/kg) at time 235. At time 0, mice were subjected to an GTT (1.25 g/kg ip). At the indicated time points, blood
glucose levels were determined using a OneTouch Ultra glucometer (LifeScan, Milpitas, CA) and area under the curve (AUC) was calculated using
GraphPad PRISM software. *P, 0.0001. B: Fasting glucose levels were measured in wild-type and A2BR

2/2
mice 35 min after NECA gavage (N = 5).

C: Plasma IL-6 was measured 4 h after C57BL/6J mice received vehicle or NECA. D: C57BL/6 mice were fed a high-fat diet 6 10 mg/kg/day of ATL-
801 for 10 weeks. Blood glucose was measured after a 4-h fast (N = 5). Con, control.
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derived from human monocytes. We also examined the ef-
fect of diabetes on NECA-stimulated IL-6 production in
mouse peritoneal macrophages in vitro. As shown in Fig.
4H, diabetes significantly increases A2BR-mediated IL-6
production in mouse macrophages.
Characterization of adenosine receptors on mouse
aortic ECs. There are differences in the adenosine recep-
tors found on ECs in various vascular beds. To pharmaco-
logically evaluate the adenosine receptor subtype that
mediates cytokine release from mouse aortic ECs, we used
100 nmol/L FSPTP, a highly selective A2AR antagonist (22),
and 1 mmol/L ATL-692, a highly selective A2BR antagonist
(Fig. 1). The A2AR is primarily coupled to Gs, while the A2BR
is dually coupled to Gs and to Gq (23). Consistent with Gs
coupling, NECA caused a rapid increase in cyclic AMP that
is blocked by 1 mmol/L ATL-692 but not affected by FSPTP
(Fig. 5A). Thus, although A2ARs are found on some ECs,
cyclic AMP accumulation in mouse aortic ECs is exclusively
mediated by A2BRs. We used kinase inhibitors to investigate
signaling downstream of A2BR activation in ECs. Both
Gö6976, an inhibitor of PKC, and KT5720, an inhibitor of
PKA, significantly inhibited IL-6 mRNA induction by NECA,
and the combination of the two agents had an additive ef-
fect (Fig. 5B). Thus both PKA and PKC appear to contribute
to induction of IL-6 in response to A2BR activation. In ECs
derived from A2BR

2/2 mice, IL-6 release was reduced to

near 0 in the absence or presence of NECA. These findings
suggest that constitutive A2BR activity or constitutive pro-
duction of adenosine by ECs stimulates low-level cytokine
production in vitro. This may also occur in vivo where local
adenosine production in response to shear stress, platelet
activation, or nerve activation likely stimulates endothelial
A2BRs and cytokine production. As further confirmation
that A2BRs mediate the effects of NECA in mouse aortic
ECs, agonists of adenosine receptors subtypes added at
doses sufficiently low to exert receptor subtype selectivity
(CPA, A1; CGS21680, A2A; and Cl-IB-MECA, A3) were found
to be without effect on IL-6 production (Fig. 5C).
SNPs in ADORA2B. Having established a relationship
between diabetes, A2BR mRNA induction, and cytokine
production in mice, we examined SNPs in the A2BR gene,
ADORA2B, in 2,847 subjects from the MESA for associa-
tions between receptor SNPs and diabetes or inflammation.
Table 1 lists by SNP genotype the means for HOMA-insulin
resistance (HOMA-IR) and inflammatory adipokines, ad-
justed for covariates. The minor alleles of ADORA2B SNPs
(the allele with the lower frequency and thus considered the
variant allele) are listed first in the table. For five consec-
utive tag SNPs numbered 2–5 in the table, there is a striking
association of allelic genotype (homozygous minor, het-
erozygote, homozygous major) with plasma concentrations
of IL-6 and CRP. Among the same tag SNPs, the relationship

FIG. 4. A2BR transcription and function in ECs and macrophages. Time courses of responses to 1 mmol/L NECA in mouse aortic ECs are IL-6 mRNA
(A), IL-6 protein (B), KC mRNA (C), and KC protein (D). E: Effect of diabetes in two strains of mice on EC A2BR mRNA relative to congenic
nondiabetic controls. *P , 0.05. F: Effect of diabetes on the dose-response curve of NECA to stimulate IL-6 production in ECs at 24 h. The
concentrations of NECA that produce 50% of maximal responses (EC50) are 140 nmol/L C57BL/6 and 46 nmol/L db/db. G: A2BR mRNA in monocyte-
derived macrophages prepared from controls or diabetic human donors (N = 6). H: IL-6 production in C57BL/6 (N = 3) or KKA

Y
(N = 6) mouse

peritoneal macrophages treated in vitro for 24 h with vehicle (Veh), 1 mmol/L NECA, or NECA + 1 mmol/L ATL-692. *P , 0.01.
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is inverted for IL-2sR. These findings indicate that minor
allele frequency in ADORA2B SNPs influences the expres-
sion of inflammatory markers in the MESA population.
Effect of diabetes status on association of ADORA2B
SNPs with inflammation markers. In models that in-
cluded diabetes as an independent predictor of variation in
inflammatory markers, the diabetes effect was highly sig-
nificant (P � 10217) for all ADORA2B SNPs IL-6, CRP, or
IL-2sR. We further evaluated the effect of diabetes on the
associations between individual ADORA2B SNPs and
markers of inflammation. Within patients with diabetes
and nondiabetics, clusters were defined to test for homo-
geneity of SNP association with each phenotype using the
Cochrane-Mantel-Haenszel approach. Analyses of associ-
ation between ADORA2B SNPs with individual MESA
phenotypes are shown in Table 2, adjusted for covariates
(age, sex, ethnicity, site of ascertainment, smoking) and
population admixture (first five principal components from

ancestry informative markers). Among patients with di-
abetes, significant associations between one or more SNPs
and all four markers of inflammation were noted. In seven
instances denoted in the table, there is a.10-fold decrease
in the P value of SNP associations with inflammatory
phenotypes in patients with diabetes compared with non-
diabetics.

DISCUSSION

IL-6, CRP, and PIA-1 are all adipokines, i.e., proin-
flammatory mediators produced in adipose tissue, that
have been associated with diabetes (24). Inflammation in
diabetes may be triggered in part by elevated concen-
trations of free fatty acids that increase CD11c+ macro-
phage accumulation and activation in adipose tissue (25).
The results of this study suggest that adenosine signaling
through the A2BR also contributes to insulin resistance by

FIG. 5. NECA increases IL-6 production in mouse aortic ECs by activating A2BRs. A: Time course of NECA to increase cyclic AMP in ECs from
C57BL/6 mice, and the effects of antagonists, 100 nmol/L FSPTP, or 1 mmol/L ATL-692 (N = 6). B: Induction of IL-6 mRNA by NECA in ECs is
attenuated by inhibitors of PKC (1 mmol/L Gö6976) or PKA (1 mmol/L KT5720). #P , 0.05 vs. no inhibitors. The combination of inhibitors is more
effective than either alone (N = 6, *P, 0.01). C: ECs from C57BL/6J and A2B

2/2
mice were stimulated for 16 h with NECA (100 nmol/L)6 ATL-692.

IL-6 production in the A2BR
2/2

ECs is significantly lower than basal C57BL/6J ECs (#P , 0.001). D: ECs were treated for 16 h with 10 nmol/L CPA
(A1R agonist), 100 nmol/L CGS21680 (A2AR agonist), 10 nmol/L Cl-IBMECA (A3R agonist), or 100 nmol/L NECA (nonspecific agonist). Media were
collected and assayed for IL-6 by ELISA (N = 6). *P , 0.01 vs. other treatments.
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altering the production of IL-6 and other cytokines. IL-6 is
produced primarily by macrophages and adipocytes and
drives the production of CRP, an acute-phase reactant that
rises dramatically during inflammatory processes. We
demonstrate six types of associations between diabetes/
insulin resistance and A2BRs: 1) diabetes is associated with
elevated A2BR mRNA expression in ECs and macrophages,
2) diabetes is associated with elevated A2BR-mediated
cytokine production in ECs and macrophages, 3) A2BR
activation in mice elevates fasted blood glucose levels,
4) A2BR activation in mice inhibits whole body glucose
disposal, 5) A2BR blockade inhibits high-fat diet–induced
blood glucose elevation, and 6) A2BR blockade inhibits
diabetes-induced insulin-resistance during hyperinsulinemic-
euglycemic glucose clamp. Our findings suggest that A2BR
blockers may combat insulin resistance by impairing HGP
and by attenuating the production of IL-6 and other
cytokines that influence glucose and fat metabolism.
Association of ADORA2B SNPs and proinflammatiory
mediators. SNP analysis seeks to identify significant
associations between gene sequences and phenotypes. If
a significant association is found, it can then be concluded
that the SNP polymorphism, or a nearby polymorphism in

a DNA region statistically associated with the SNP, influ-
ences either the function or expression of the gene prod-
uct. Because the current study was not a genome-wide
association study, it was not subject to large type 1 error,
i.e., the false apparent associations that can occur when
large numbers of genes are analyzed. The genotypic means
(minor homozygote, heterozygote, and major homozygote)
of five adjacent ADORA2B SNPs (numbered 2–6 in Table
1) are correlated with increased levels of IL-6 and CRP and
decreased levels of IL-2sR. This compelling pattern
strongly suggests that one of these SNPs or another SNP in
linkage disequilibrium is involved in regulating the func-
tion or expression of the A2BR. Our analysis does not en-
able us to identify which SNP is responsible for altered
receptor expression or function. There have been previous
attempts to associate particular SNPs in adenosine re-
ceptors with diseases. One such study failed to associate
coding SNPs in ADORA2B with cystic fibrosis (26). In an
investigation of all adenosine receptor genes, a SNP in the
39-UTR of ADORA1 was associated with increased sus-
ceptibility to aspirin-intolerant asthma (AIA), whereas
another SNP in the coding region was associated with
decreased susceptibility. The functional consequences of

TABLE 1
Genotypic means 6 SDs of ADORA2B SNPs for MESA phenotypes, combined ethnic groups

SNP Site Genotype HOMA-IR ln(IL-6) (pg/mL) ln(CRP) (pg/mL) ln(IL-2sR) (pg/mL) PAI-1 (ng/mL)

rs7225585 59 A/A 2.22 (2.69) 0.15 (0.62) 0.68 (0.93) 20.33 (0.20) 2.73 (0.92)
(1)* G/A 2.00 (1.90) 0.33 (0.66) 0.89 (1.17) 20.24 (0.39) 2.76 (0.84)

G/G 1.89 (2.09) 0.15 (0.68) 0.52 (1.18) 20.12 (0.37) 2.93 (0.92)
rs2779193 59 A/A 2.17 (2.15) 0.31 (0.65) 0.90 (1.02) 20.34 (0.37) 2.84 (0.87)
(2) G/A 2.06 (2.16) 0.29 (0.72) 0.78 (1.21) 20.25 (0.34) 2.77 (0.90)

G/G 1.87 (2.07) 0.14 (0.66) 0.52 (1.17) 20.11 (0.37) 2.93 (0.91)
rs758857 intron 1 A/A 2.02 (2.14) 0.22 (0.69) 0.63 (1.15) 20.26 (0.38) 2.74 (0.85)
(3) G/A 1.97 (2.05) 0.17 (0.69) 0.59 (1.22) 20.16 (0.36) 2.92 (0.91)

G/G 1.82 (2.11) 0.15 (0.66) 0.53 (1.16) 20.09 (0.37) 2.94 (0.92)
rs758858 intron 1 A/A 1.95 (1.33) 0.36 (0.68) 0.88 (1.17) 20.34 (0.32) 2.69 (0.81)
(4) G/A 2.02 (2.08) 0.27 (0.71) 0.77 (1.18) 20.26 (0.35) 2.72 (0.88)

G/G 1.89 (2.11) 0.14 (0.66) 0.52 (1.18) 20.11 (0.37) 2.94 (0.91)
rs2041458 intron 1 A/A 1.94 (1.86) 0.31 (0.66) 0.86 (1.11) 20.32 (0.32) 2.68 (0.86)
(5) C/A 2.08 (2.14) 0.28 (0.69) 0.80 (1.17) 20.22 (0.35) 2.78 (0.88)

C/C 1.87 (2.10) 0.13 (0.67) 0.48 (1.18) 20.11 (0.38) 2.95 (0.92)
rs8069362 intron 1 A/A 1.90 (1.72) 0.30 (0.67) 0.94 (1.14) 20.33 (0.37) 2.52 (0.80)
(6) G/A 2.04 (2.03) 0.30 (0.65) 0.89 (1.10) 20.27 (0.34) 2.79 (0.87)

G/G 1.89 (2.11) 0.14 (0.68) 0.51 (1.19) 20.12 (0.37) 2.93 (0.92)
rs17715109 intron 1 A/A 1.45 (0.90) 20.08 (0.40) 20.14 (1.03) 20.30** 2.30**
(7) C/A 1.96 (1.86) 0.12 (0.70) 0.49 (1.15) 20.23 (0.28) 3.02 (0.96)

C/C 1.91 (2.12) 0.18 (0.67) 0.59 (1.19) 20.13 (0.38) 2.89 (0.90)
rs2015353 intron 1 G/G 1.86 (2.91) 0.21 (0.64) 0.73 (1.11) 20.05 (0.41) 2.85 (0.95)
(8) A/G 1.97 (1.77) 0.23 (0.66) 0.69 (1.19) 20.14 (0.35) 2.86 (0.92)

A/A 1.88 (2.00) 0.09 (0.70) 0.40 (1.18) 20.20 (0.36) 3.00 (0.86)
rs2779211 intron 1 G/G 1.86 (3.11) 0.19 (0.65) 0.71 (1.12) 20.02 (0.41) 2.88 (0.97)
(9) A/G 1.96 (1.78) 0.23 (0.66) 0.67 (1.19) 20.12 (0.36) 2.86 (0.92)

A/A 1.89 (1.95) 0.12 (0.69) 0.46 (1.18) 20.21 (0.36) 2.96 (0.87)
rs1045599 39 G/G 1.85 (1.98) 0.06 (0.70) 0.31 (1.18) 20.15 (0.37) 3.00 (0.81)
(10) A/G 1.95 (1.87) 0.19 (0.67) 0.63 (1.19) 20.15 (0.36) 2.90 (0.94)

A/A 1.92 (2.51) 0.23 (0.65) 0.74 (1.14) 20.12 (0.39) 2.84 (0.93)
rs2286795 39 G/G 1.84 (2.03) 0.04 (0.69) 0.25 (1.16) 20.15 (0.38) 2.99 (0.83)
(11) A/G 1.89 (1.69) 0.17 (0.66) 0.60 (1.19) 20.13 (0.36) 2.93 (0.94)

A/A 2.00 (2.51) 0.26 (0.67) 0.77 (1.14) 20.15 (0.39) 2.82 (0.92)

Minor (variant) alleles are listed first. The rs7225585 (1) through the rs758857 (3) rows of the HOMA-IR column, the rs2779193 (2) through the
rs8069362 (6) rows of the ln(IL-6) and ln(CRP) columns, and the rs2015353 (8) and rs2779211 (9) rows of the ln(CRP) column indicate
ADORA2B SNPs in which the homozygous minor, heterozygous, and homozygous major alleles are associated with high to low (high, medium,
and low plasma inflammatory marker means IL-6, CRP, or PAI-1). In the rs7225585 (1) through rs17715109 (7) rows of the ln(IL-2sR) column,
the order of association is reversed, from low to high. *Sequentially numbered tag SNPs referred to in the text. **Small sample size for this
allele.
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particular variants were not defined. Other SNPs in aden-
osine deaminase, ADORA2A, ADORA2B, and ADORA3,
were not significantly associated with AIA (27). Recently,
there has been an explosion of genome-wide and candidate
gene association of SNPs with both disease and quantitative
(associated) phenotypes. Despite early expectations that
SNPs in coding regions of genes would be most significant,
most of the SNPs that have been shown to exhibit the
strongest associations have been either intronic or inter-
genic (not in the coding regions). Mutations in these regions
are most likely to regulate gene transcription. Hence it is
possible that a functional SNP in ADORA2B results in
modification of gene transcription. Based on the results of
the current study we conclude that in patients with diabe-
tes, signaling through A2BRs is influenced by one or more
SNPs that modify production of IL-6 and CRP, which in turn
influence insulin resistance.
Proinflammatory and anti-inflammatory signaling by
A2BRs. Deletion of the mouse A2BR resulted in a proin-
flammatory phenotype manifested as mild vascular in-
flammation at baseline and exacerbation of cytokine

production in response to endotoxin (15). Thus, in some
settings, signaling via the A2BR reduces inflammation. On
the other hand, in this and several previous studies, acti-
vation of A2BRs increased IL-6 plasma levels in mice, and
by several types of isolated cells (28), including macro-
phages (19) and dendritic cells (19,29). IL-62/2 mice de-
velop mature onset obesity accompanied by abnormal
glucose and fat metabolism (30). Although IL-6 is associ-
ated with diabetes, its actions are complex. IL-6 impairs
insulin action in the liver and adipose tissue, but these
effects depend on its concentration and duration of action
(31). In skeletal muscle IL-6 has a dual role, acutely pro-
moting insulin sensitivity but chronically resulting in
insulin resistance through induction of JNK, suppressors
of cytokine signaling-3, and protein tyrosine phosphatase
1b (32). IL-6 also is directly involved in stimulating the
production of transcription factors that enhance CRP
production (33). It is interesting that SNP genotypes as-
sociated with IL-6 and CRP are inversely associated with
another inflammatory marker, IL-2sR (Table 2). Unlike
IL-6, CRP, and PAI-1, IL-2sR is not an adipokine and is a

TABLE 2
Association of ADORA2B SNPs and inflammatory phenotypes by diabetes status

SNP Site

P values

ln(IL-6) ln(CRP) ln(IL-2sR) PAI-1

rs7225585
Nondiabetics 59 0.042‡ (0.043)* 0.215 (0.211) 0.629 (0.627) 0.333 (0.329)
Patients with diabetes 0.294 (0.288)† 0.526 (0.529) 0.055 (0.056) 0.315 (0.322)

rs2779193
Nondiabetics 59 0.782 (0.784) 0.844 (0.841) 0.177 (0.169) 0.785 (0.787)
Patients with diabetes 0.607 (0.607) 0.690 (0.688) 0.550 (0.550) 0.108 (0.108)

rs758857
Nondiabetics intron 1 0.198 (0.189) 0.189 (0.189) 0.189 (0.182) 0.033‡ (0.037)
Patients with diabetes 0.936 (0.935) 0.427 (0.428) 0.535 (0.539) 0.228 (0.230)

rs758858
Nondiabetics intron 1 0.859 (0.853) 0.508 (0.502) 0.043‡ (0.050) 0.153 (0.165)§
Patients with diabetes 0.284 (0.273) 0.950 (0.942) 0.448 (0.449) 0.015‡ (0.014)§

rs2041458
Nondiabetics intron 1 0.766 (0.761) 0.879 (0.876) 0.185 (0.194) 0.071 (0.074)
Patients with diabetes 0.241 (0.231) 0.839 (0.836) 0.051 (0.048) 0.044‡ (0.040)

rs8069362
Nondiabetics intron 1 0.755 (0.759) 0.328 (0.333) 0.317 (0.324)§ 0.252 (0.251)
Patients with diabetes 0.079 (0.079) 0.813 (0.807) 0.009 (0.010)§ 0.033‡ (0.034)

rs17715109
Nondiabetics intron 1 0.709 (0.714) 0.945 (0.943) 0.760 (0.755) 0.380 (0.377)
Patients with diabetes 0.835 (0.843) 0.230 (0.230) 0.779 (0.770) 0.452 (0.455)

rs2015353
Nondiabetics intron 1 0.463 (0.463)§ 0.721 (0.716)§ 0.081 (0.085) 0.443 (0.456)
Patients with diabetes 0.047‡ (0.047)§ 0.001‡ (0.001)§ 0.154 (0.148) 0.472 (0.466)

rs2779211
Nondiabetics intron 1 0.261 (0.253) 0.469 (0.456)§ 0.216 (0.221) 0.731 (0.729)
Patients with diabetes 0.112 (0.113) 0.003‡ (0.002)§ 0.825 (0.825) 0.534 (0.526)

rs1045599
Nondiabetics 39 0.499 (0.495) 0.372 (0.364) 0.584 (0.590) 0.763 (0.755)
Patients with diabetes 0.059 (0.058) 0.050‡ (0.049) 0.496 (0.490) 0.454 (0.454)

rs2286795
Nondiabetics 39 0.303 (0.303) 0.390 (0.388)§ 0.936 (0.938) 0.886 (0.889)§
Patients with diabetes 0.235 (0.239) 0.009‡ (0.008)§ 0.550 (0.544) 0.038‡ (0.038)§

*P values from the additive (1 df) model in nondiabetic subjects, adjusted for age, sex, center of ascertainment, pack-years smoking, and
ancestry (the first five principal components from 200 AIMs), Bonferroni adjusted (number in parenthesis represents the empiric P value).
†P values from the additive (1 df) model in diabetic subjects, adjusted for age, sex, ethnicity, center of ascertainment, pack-years smoking, and
ancestry (the first five principal components from 200 AIMs), Bonferroni adjusted (number in parenthesis represents the empiric P value).
‡P , 0.05. §P value in nondiabetics is .10 3 patients with diabetes.
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marker of T cell activation. The results suggest that A2BR
signaling can result in inhibition of lyphocyte activation, at
least in some individuals.
Adenosine receptor signaling in diabetes. Previous
studies have shown that the stable nonselective adenosine
analog NECA stimulates glucose production by hep-
atocytes (34). In the current study we show that oral ga-
vage with NECA acutely increases fasting glucose levels
and strongly inhibits glucose disposal. Both deletion of
the A2BR gene and selective A2BR blockade with ATL-801
implicate the A2BR as the primary mediator of these
responses. These findings indicate that the previously
noted effects of adenosine receptor antagonists to reduce
diabetes-induced insulin resistance (6–11) can be attrib-
uted to adenosine receptor blockade and not to off-target
effects. We also observed a small effect of deleting the A1R
to increase glucose disposal after NECA administration to
mice, possibly due to the known effect of A1R blockade to
increase pancreatic insulin secretion (35). Hyperinsulinemic-
euglycemic glucose clamps in KKAY mice demonstrate that
blockade of A2BR signaling enhances insulin sensitivity and
glucose metabolism in skeletal muscle, brown adipose tis-
sue, and liver. These data are consistent with the hypothesis
that activation of the A2BR causes insulin resistance that
may be mediated in part by cytokine production.
Association of coffee consumption with diabetes. The
most potent activity of the methylxanthine caffeine is
nonselective blockade of A1, A2A, and A2B adenosine
receptors (36). It is notable, however, that ATL-692 is
about 5,000 times more potent than caffeine as a competi-
tive antagonist of the human A2BR. In human epidemio-
logic studies, long-term coffee consumption is strongly
associated with a reduction in the incidence of type 2 di-
abetes. However, factors other than caffeine contribute to
this effect, and the contribution of caffeine is controversial
(37,38). Moreover, blockade of A1Rs acutely counteracts
insulin actions by stimulating catecholamine release and
by counteracting the antilipolytic effect of A1R activation
in adipocytes. Perhaps due to the complex pharmacology
of coffee and caffeine, it has not been possible in epide-
miologic studies to clearly demonstrate a significant effect
of caffeine as a contributor of coffee-induced protection
from type 2 diabetes. However, in rigorously controlled
studies in diabetic KKAY mice, consumption of high
amounts of coffee or equivalent doses of pure caffeine
reduce hyperglycemia, decrease fat mass, reduce the ex-
pression of tumor necrosis factor-a (TNF-a) and IL-6 in
white adipose tissue, and reduce the expression of hepatic
genes involved in fatty acid synthesis (39). The results of
the current study suggest that at least some of the effects
of caffeine in diabetic animals are mediated by blockade of
A2BRs. It is pertinent also that in human studies, genetic
variability in the activity of polymorphic forms of adeno-
sine deaminase is associated with obesity and type 2 di-
abetes (40). An increase in the activity of adenosine
deaminase, by reducing adenosine levels, has an effect
similar to nonselective adenosine receptor blockade pro-
duced by caffeine.
Diabetes and adenosine metabolism. Human gesta-
tional diabetes is associated with elevated extracellular
adenosine (41). In rats, diabetes also enhances adenosine
accumulation and signaling and diminishes the expression
of cytosolic adenosine kinase, the enzyme that converts
adenosine to AMP (42). In mice, ablation of the adenosine
kinase gene results in severe hepatic steatosis (43) that is
strongly associated with diabetes. Hepatic steatosis has

been attributed to increased circulating free fatty acids,
resulting in liver lipid deposition. Another enzyme involved
in adenosine production is the ecto-59-nucleotidase CD73,
which converts AMP to adenosine in the extracellular
space. It is notable that statins stimulate the induction of
CD73 and have been shown in numerous studies to elicit
insulin resistance. Statins also enhance ischemia-mediated
vasodilation in humans that is blocked by caffeine, con-
sistent with an effect to enhance adenosine production
(44). We speculate that enhanced adenosine production,
by activating A2BRs, may contribute to the well-known
effect of statins to provoke insulin resistance (45).
Diabetes and regulation of A2BR transcription. In the
current study we demonstrate that diabetes triggers in-
duction of A2BR mRNA in macrophages and ECs, resulting
in increased cytokine production in response to A2BR ac-
tivation. Analyses of the cloned human A2BR promoter
identified a functional binding site for hypoxia-inducible
factor (46) and identified TNF-a and the oxidative stress-
promoting enzyme NAD(P)H oxidase as additional regula-
tors of A2BR gene expression (47). Because elevated TNF-a
and oxidative stress are associated with diabetes (48,49),
it is reasonable to speculate that these factors contribute to
induction of A2BR mRNA in patients with diabetes. We no-
ticed a strong effect of diabetes on the probability of asso-
ciations between ADORA2B SNPs and inflammatory
markers (Table 2). A2BR signaling in nondiabetics due to
low adenosine levels and low A2BR expression could render
SNPs in ADORA2B that might influence A2BR signaling in-
consequential in this population. In patients with diabetes,
on the other hand, strong A2BR signaling may enhance
functional consequences of ADORA2B SNPs. The findings
of this study, in particular the induction of A2BR mRNA in
ECs and macrophages from diabetic animals, are consistent
with the possibility that one or more SNPs in ADORA2B
influences A2BR mRNA expression. It will be of interest in
future studies to determine whether ADORA2B genotypes
are associated with A2BR mRNA expression in human
monocytes.

In sum, the results of this study are consistent with the
idea that diabetes enhances signaling through A2BRs both
by elevating adenosine levels and by increasing the ex-
pression of the A2BR. Our findings indicate that A2BR
signaling can facilitate the release of proinflammatory
cytokines from human macrophages and mouse ECs.
Blockade or deletion of the A2BR reverses the effects of
diabetes on cytokine production and insulin resistance
assessed by GTT or hyperinsulinemic-euglycemic clamp.
The minor (variant) allele of several (sequential) tag SNPs
in ADORA2B are strongly correlated with IL-6 and CRP,
acute phase proteins that are highly associated with di-
abetes. We also observed a strong effect of diabetes on the
association between ADORA2B SNPs and markers of in-
flammation. These findings suggest that both diabetes and
ADORA2B genotype can influence A2BR expression. It will
be of interest to determine whether new potent and se-
lective A2B blockers that are currently in clinical de-
velopment are effective in reducing obesity or insulin
resistance in human disease.
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