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Ischemic stroke (IS) is the second leading cause of death worldwide. Multimodal

neuroimaging techniques that have significantly facilitated the diagnosis of hyperacute

IS are not widely used in underdeveloped areas and community hospitals owing to

drawbacks such as high cost and lack of trained operators. Moreover, these methods

do not have sufficient resolution to detect changes in the brain at the cellular and

molecular levels after IS onset. In contrast, blood-based biomarkers can reflect molecular

and biochemical alterations in both normal and pathophysiologic processes including

angiogenesis, metabolism, inflammation, oxidative stress, coagulation, thrombosis,

glial activation, and neuronal and vascular injury, and can thus provide information

complementary to findings from routine examinations and neuroimaging that is useful

for diagnosis. In this review, we summarize the current state of knowledge on

blood-based biomarkers of hyperacute IS including those associated with neuronal

injury, glial activation, inflammation and oxidative stress, vascular injury and angiogenesis,

coagulation and thrombosis, and metabolism as well as genetic and genomic

biomarkers. Meanwhile, the blood sampling time of the biomarkers which are cited and

summarized in the review is within 6 h after the onset of IS. Additionally, we also discuss

the diagnostic and prognostic value of blood-based biomarkers in stroke patients, and

future directions for their clinical application and development.

Keywords: hyperacute ischemic stroke, blood-based biomarker, genetic and genomic, glial activation, neuronal

injury, oxidative stress, inflammation, angiogenesis

INTRODUCTION

As a disease with high incidence, disability, mortality, and recurrence rates, stroke is a significant
economic burden globally because of costs associated with treatment and post-stroke care. Stroke
is now the second leading cause of death worldwide (1), with Asia accounting for nearly two-thirds
of the total mortality due to stroke. In China, the age-standardized prevalence, incidence, and
mortality rates of stroke from 2012 to 2013 were 1.115, 0.247, and 0.115%, respectively, with
≈2.4 million new stroke cases, 1.1 million stroke-related deaths, and 11.1 million stroke survivors
annually (2).
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The two main subtypes of stroke are ischemic stroke (IS) and
hemorrhagic stroke (HS). Management strategies for hyperacute
IS include intravenous thrombolysis and intravascular treatment,
for which the therapeutic time windows are <4.5 and <6 h,
respectively, after symptom onset (3). Early detection and
intervention are critical to ensure a good clinical outcome
in hyperacute IS. A number of studies have focused on
how to shorten the door-to-needle time (DNT) and door-to-
puncture time (DPT). However, because laboratory and imaging
examinations cannot be performed outside of the hospital setting,
IS diagnosis and treatment are not possible during the pre-
hospital stage, i.e., from symptom onset to on-site first aid and
until the patient reaches the emergency room.

Additionally, the time nodes division standard of hyperacute
IS has not been unified so far. In clinical research, the
mainstream time nodes mainly include 6 or 8 h after symptom
onset (4, 5). However, at present, almost all the major early
diagnosis and treatment guidelines of IS recommend that
intravenous thrombolysis should be carried out within 4.5 h
after symptom onset, while mechanical thrombectomy should
be carried out within 6 h after symptom onset. Although
mechanical thrombectomy within 6–24 h after symptom onset
can be carried out based on the strict inclusion criteria including
endovascular therapy following imaging evaluation for ischemic
stroke 3 (DEFUSE) and diffusion-weighted imaging or computed
tomography perfusion assessment with clinical mismatch in
the triage of wake-up and late presenting strokes undergoing
neurointervention with trevo (DAWN), both of which are
complex and need special imaging technique such as the rapid
processing of perfusion and diffusion (RAPID) software, which
significantly limits the use of mechanical thrombectomy beyond
6 h after symptom onset in the vast underdeveloped areas and
community hospitals of China (6, 7).

Moreover, neuroimaging is the main technique for the
diagnosis of IS in the hyperacute phase. Non-contrast computed
tomography (NCCT) is the most common method used to
detect stroke in the emergency room because of its simplicity,
reasonable cost, and the rapidity with which results can be
obtained. However, NCCT has low specificity and sensitivity for
hyperacute IS (8). The development of multimodal neuroimaging
techniques such as T1-, T2-, and diffusion-weighted or fluid-
attenuated inversion recovery magnetic resonance imaging
(MRI) has significantly facilitated diagnosis, but they are not
widely used in underdeveloped areas and community hospitals in
China because of their inherent shortcomings such as high cost
and lack of trained operators. Additionally, current multimodal
neuroimaging techniques do not have sufficient resolution to
detect changes in the brain at the cellular and molecular levels
after IS onset, including in cell structure, the neurotransmitter
level, oxidative stress, neuroinflammation, angiogenesis, and
metabolism, although these can provide important information
on the prognosis of IS.

We hope that blood-based biomarkers can attract the
attention of clinicians and researchers in the diagnosis of IS in
the hyperacute phase, better guide clinical diagnosis, treatment,
and prognosis evaluation, and supplement the shortcomings
of current multimodal imaging techniques by the publication
of this review manuscript. Therefore, in this review, we

summarize the current state of knowledge on blood-based
biomarkers of hyperacute IS including those associated with glial
activation, neuronal injury, inflammation and oxidative stress,
vascular injury and angiogenesis, coagulation and thrombosis,
and metabolism as well as genetic and genomic biomarkers.
Meanwhile, the blood sampling time of the biomarkers which are
cited and summarized in the review is within 6 h after the onset
of IS. Additionally, we also discuss the diagnostic and prognostic
value of these biomarkers in stroke patients, and future directions
for their clinical application and development.

BIOMARKERS ASSOCIATED WITH

NEURONAL INJURY

Ubiquitin C-Terminal Hydrolase L1

(UCH-L1)
UCH-L1, a neuronal protein that is associated with
neurodegeneration, is highly expressed in the central nervous
system (CNS) and is associated with synaptic plasticity, synaptic
homeostasis, and self-repair of the brain after injury (9–11).
Serum UCH-L1 level was elevated after 3 and 6 h of ischemia
followingmiddle cerebral artery occlusion (MCAO) in rats, while
the level in intracerebral hemorrhage (ICH) rats was unchanged
(12). Consistent with this finding, in rats subjected to MCAO for
30min or 2 h, serum UCH-L1 level was significantly elevated 6 h
later (13). However, a clinical study reported that serumUCH-L1
within 4 and 6 h after symptom onset was higher in HS patients
than in IS patients and stroke mimics (SM), respectively (14);
and in a single-center study of hyperacute IS, the area under
the receiver operating characteristic curves (AUCs) of serum
UCH-L1 for distinguishing IS patients from controls and IS from
HS patients within 4.5 h after symptom onset were 0.64 and 0.62,
respectively (15).

To sum up, the different expression of UCL-L1 in IS and HS
suggests that it may be a potential biomarker in the diagnosis of
hyperacute IS.

N-Methyl-d-Aspartate Receptor (NMDAR)
Both embolic and thrombotic vascular occlusions induce
neurotoxicity mediated by the excitatory NMDAR, leading to
biochemical changes in brain tissue, the blood–brain barrier
(BBB), and cerebral vasculature (16). Within 3 h after symptom
onset, patients with IS showed elevated serum NMDAR
autoantibody levels compared to healthy control subjects (HCs),
which had an AUC of 0.99 for diagnosing IS with a sensitivity of
97.0% and specificity of 98.0% using the best cutoff point of 2.0
µg/l (16).

In a word, NMDAR is an independent and sensitive serologic
marker capable of detecting IS with a high post-test probability,
and may potentially be useful in assisting the diagnosis of
hyperacute IS in the emergency setting.

Neurofilament Light Chain (NfL)
When brain damage occurs, neuronal injury and disruption of
axonal membranes lead to the release of cytoskeleton proteins,
such as neurofilaments, into the interstitial fluid and eventually
into the cerebrospinal fluid (CSF) and blood (17). Neurofilaments
are highly specific structural, neuronal cytoskeletal proteins that
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consist of four neurofilament subunits: neurofilament light chain
(NfL), neurofilament medium chain (NfM), neurofilament heavy
chain (NfH), and α-internexin (17). In a cohort study, within
3 h after symptom onset, patients with IS showed elevated serum
NfL levels compared to transient ischemic attack (TIA) (18). In
summary, NfL was associated with clinical severity on admission
and hyperacute IS diagnosis.

BIOMARKERS ASSOCIATED WITH GLIAL

ACTIVATION

Glial Fibrillary Acidic Protein (GFAP)
As an intermediate filament protein that is almost exclusively
expressed in the CNS, GFAP maintains the structure and
facilitates the migration of astrocytes (19). The time window
between 2 and 6 h after symptom onset is critical for
differentiating HS from IS based on serum GFAP level, which has
a diagnostic accuracy of >80.0% (20). The AUC of plasma GFAP
for differentiating HS from IS and SMwithin 4.5 h after symptom
onset was found to be 0.915, with a sensitivity of 84.2% and
specificity of 96.3% using a cutoff value of 0.29 µg/l (21); another
study reported an AUC of 0.86 with a sensitivity of 61.0% and
specificity of 96.0% using a cutoff of 0.34 µg/l (15). Additionally,
within 4 and 6 h after symptom onset, serum GFAP had an AUC
of 0.866 for differentiating HS from IS and SM, with a sensitivity
of 75.0% and specificity of 84.0% using an optimal cutoff point
of 72 ng/l (14); another study reported an AUC of 0.872 with a
sensitivity of 77.8% and specificity of 94.2% using a cutoff of 0.03
µg/l within 6 h after symptom onset (22). A recent clinical study
reported that plasma GFAP within 4.5 h after symptom onset was
higher in HS patients than in IS patients (23).

In conclusion, different expression of GFAP in IS, HS, and
SM suggests it may be a potential biomarker in the diagnosis
of hyperacute IS; and GFAP levels were also associated with
stroke severity.

S100 Calcium-Binding Protein B (S100β)
S100β is an acidic calcium-binding protein that is predominantly
expressed in astrocytes in the mammalian brain and is involved
in cell cycle progression and differentiation, astrocyte–neuron
communication, and CNS development and maintenance (24,
25). In a mouse model of focal cerebral infarction, plasma S100β
level increased after 4 h of ischemia, which was correlated with
infarction volume and the degree of neurologic deficit (26). A
clinical study found that a plasma S100β concentration of 67 ng/l
within the first 6 h after symptom onset could differentiate HS
from IS with a sensitivity of 95.7% and a specificity of 70.4%
(27). Additionally, a high serum concentration of S100β at 6 h
after stroke onset was associated with increased risk of post-
stroke infections (28). Another study reported that a plasma
S100β concentration was lower than 1.364 pg/ml within 6 h after
symptom onset could predict the development of epilepsy after a
hyperacute stroke event (include IS and HS) (29).

As mentioned above, S100β may be a potential biomarker in
the diagnosis of hyperacute IS; and a high serum concentration
of S100β was related to severity and poor functional outcome.

BIOMARKERS ASSOCIATED WITH

INFLAMMATION AND OXIDATIVE STRESS

Cytokines
Interleukin 10 (IL-10) is an anti-inflammatory cytokine that is
secreted mainly by lymphocytes and monocytes/macrophages
(30). The IL-4 receptor (IL-4R) is expressed by hematopoietic,
endothelial, epithelial, and muscle cells; in fibroblasts and
hepatocytes; and in brain tissue, consistent with the broad
target range of IL-4 (31, 32); and IL-4R binds to IL-4 to exert
anti-inflammatory properties (33). Clinical-diffusion mismatch
(CDM) and perfusion-diffusion mismatch (PDM) have been
proposed as surrogates for the ischemic brain that is at risk of
infarction. A clinical study found that along with CDMand PDM,
the serum level of IL-10 at admission could identify IS patients
who were candidates for thrombolytic therapy with the tissue
plasminogen activator (tPA) (34). Moreover, a serum IL-10 level
≥30 pg/ml predicted a favorable functional outcome at 3 months
with a sensitivity of 86.0% and specificity of 88.0% (34). Another
study showed that plasma IL-4R level within 4.5 h after stroke
onset was an independent predictor of poor neurologic prognosis
with a sensitivity of 53.0% and specificity of 72.0% at 24 h and a
sensitivity of 52.0% and specificity of 73.0% at 48 h after stroke
onset using the same cutoff point of 503.40 ng/l (33).

In short, cytokines (including IL-10 and IL-4R) are
independent predictors of poor neurologic prognosis and
functional outcome.

Neutrophils, Neutrophil to Lymphocyte

Ratio (NLR), and Platelet to Lymphocyte

Ratio (PLR)
NLR and PLR have recently been reported as potential novel
biomarkers of the baseline inflammatory process and could serve
as outstanding predictors in patients with IS (35, 36). Before
intravenous thrombolysis treatment, the AUCs of NLR and PLR
for predicting post-thrombolysis early neurological deterioration
and NLR for predicting post-thrombolysis early neurological
improvement were 0.763, 0.703, and 0.695, respectively (37).
Additionally, within 4.5 h after symptom onset, serum neutrophil
counts and NLR were positively correlated with IS severity,
and higher neutrophil counts and NLR were independently
associated with worse outcomes and higher mortality rates at
month 3 (38).

Anyway, neutrophils, NLR, and PLR may be potential
biomarkers in assessing the severity and prognosis of
hyperacute IS.

Serum Amyloid Protein (SAP)
SAP is a member of the pentraxin family and plays a key role
in innate immunity and inflammation, and serum amyloid A
(SAA) is an acute-phase protein, which is upregulated by a variety
of inflammatory stimuli (39). In IS patients who were treated
with thrombolysis, the baseline (before thrombolysis treatment)
SAP remained significantly and independently associated with
3-month death (40). Additionally, within the first 6 h after
symptom onset, SAA had an AUC of 0.76 for predicting stroke-
associated infections (41).
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To sum up, SAP remained significantly and independently
associated with 3-month death and can predict stroke-associated
infections in hyperacute IS.

Others Potential Biomarkers Associated

With Inflammation and Oxidative Stress
Human β-defensin 2 (HBD-2) and chitotriosidase (ChT) are
involved in the immune response and inflammation, and both
are related to neurologic outcomes. Specifically, ChT is a sensitive
parameter of macrophage activation and its elevated level in
plasma reflects an inflammatory response (42). The baseline (pre
tPA treatment) plasma ChT activity in IS patients was shown to
be a short-term (i.e., at 48 h after stroke onset) predictor of tPA
treatment outcome (43). HBD-2 mainly acts as an antimicrobial
peptide and chemoattractant (44); baseline plasma HBD-2 level
(within 4.5 h after symptom onset) was linked to neurologic
decline at 24 and 48 h after stroke onset (33).

Retinol-binding protein 4 (RBP4), an adipokine primarily
secreted by adipocytes and hepatocytes, has been implicated in
oxidative stress, inflammation, and coronary artery calcification
(45). Plasma RBP4 is a promising biomarker for distinguishing
IS from HS patients during the hyperacute phase (within 6 h
after symptom onset) as it was detected at a higher level in
the former group (46). Moreover, the combination of RPB4 and
GFAP improved the detection of IS (46). A recent clinical study
reported that plasma RBP4 within 4.5 h after symptom onset was
higher in IS patients than in HS patients (23).

Fluorescent molecular peroxidation products (FMPPs) are
potential biomarkers of molecular oxidative damage that can
increase the permeability of the BBB (47). Plasma FMPP level
in IS patients before thrombolytic therapy predicted early
neurologic deterioration at 48 h after symptom onset and was
related to the occurrence of symptomatic HS after thrombolytic
treatment of IS (47).

Adenosine acts as a vasodilator, inhibits inflammation, and
might be neuroprotective (48).Within 3.3 h after symptom onset,
serum adenosine showed a high value in separating IS from
SM (49). In conclusion, RBP4 is a promising biomarker for
distinguishing IS from HS patients during the hyperacute phase;
and HBD-2 is a potential biomarker in assess prognosis of
hyperacute IS. Additionally, ChT and FMPPs were predictors
of tPA treatment outcome. And adenosine is a promising
biomarker for distinguishing IS from SM patients during the
hyperacute phase.

POTENTIAL BIOMARKERS ASSOCIATED

WITH VASCULAR INJURY AND

ANGIOGENESIS

Matrix Metalloproteinase-9 (MMP-9)
Matrix metalloproteinase-9 (MMP-9) is responsible for
degradation of type IV collagen, laminin, and fibronectin,
which are the major components of the basal lamina; and
the loss of integrity of the basal lamina is considered to be
the primary cause of edema after focal cerebral ischemia and
hemorrhagic transformation (50). In IS patients within 6 h after

symptom onset, plasma MMP-9 level substantially increased and
correlated with the severity of the disease and infarct volume
(51). Additionally, the baseline (pre tPA treatment) plasma
MMP-9 level in IS patients predicted parenchymal hematoma
(PH) appearance after tPA treatment (52). Another study showed
that serum MMP-9 level ≥140 µg/l within 3 h after stroke onset
and before tPA therapy predicted the occurrence of PH after
therapy with a sensitivity of 92.0% and specificity of 74.0% (53).

In short, MMP-9 is a potential biomarker to evaluate the
severity of hyperacute IS and predict the complications after
tPA treatment.

Metabolites of the l-Arginine Pathway
Nitric oxide (NO) is critical for the maintenance of vascular
integrity (54). Asymmetric dimethylarginine (ADMA) and
symmetric dimethylarginine (SDMA) are protein degradation
products of L-arginine that can reduce NO production through
direct or indirect pathways (55, 56). The levels of serum
metabolites of the L-arginine pathway including L-arginine,
ADMA, and SDMA were elevated in IS within 6 h after symptom
onset compared to asymptomatic carotid stenosis, indicating a
greater degree of endothelial dysfunction (57). Meanwhile, the
serum concentration of L-arginine and ADMA/SDMA ratio were
correlated with thrombo-inflammation within 6 h after IS onset
(58); these correlations were in turn independently associated
with risk of post-stroke infection but not other outcomes (58).
Additionally, within 3.3 h after symptom onset, serum ADMA
and SDMA showed a high value in separating IS from SM (49).

In conclusion, the different expression of metabolites of the L-
arginine pathway in IS control and asymptomatic carotid stenosis
patients prompts it as a potential biomarker in the diagnosis and
assessment of the prognosis of hyperacute IS.

Cellular Fibronectin (c-Fn)
Fibronectin exists in two forms: plasma fibronectin (p-Fn), which
is primarily produced by hepatocytes; and c-Fn, which is mainly
synthesized by endothelial cells. A high plasma level of c-Fn is
indicative of endothelial damage (59). Plasma c-Fn level before
tPA therapy was independently associated with tPA-induced
hemorrhagic transformation (HT) (59), whereas serum c-Fn level
≥3.6 mg/l within 3 h after stroke onset and before tPA therapy
predicted PH after tPA therapy with a sensitivity of 100.0%,
specificity of 60.0%, and negative predictive value of 100.0%
(53). Therefore, c-Fn is a potential biomarker to predict the
complications after tPA treatment.

Endostatin
Endostatin, an inhibitor of endothelial cell proliferation
and migration, is derived from collagen XVIII, which is a
major constituent of both endothelial and epithelial basement
membranes (60). High plasma endostatin level (within 3 h after
symptom onset) was found to reflect an acute antiangiogenic
status and predicted worse long-term functional outcome
in IS patients (61). Another study reported that a plasma
endostatin concentration higher than 1.203 ng/ml within 6 h
after symptom onset could predict the development of epilepsy
after a hyperacute stroke event (include IS and HS) (29). A recent
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clinical study reported that plasma endostatin within 4.5 h after
symptom onset was higher in IS patients than in HS patients (23).
As mentioned above, endostatin may be a potential biomarker in
assessing the prognosis and complications of hyperacute IS.

Other Potential Biomarkers Associated

With Vascular Injury and Angiogenesis
Caveolin-1, which is highly expressed in endothelial cells, is an
important regulator of endothelial permeability after cerebral
ischemia (62). A low serum level of caveolin-1 (within 4.5 h
after stroke onset) was associated with symptomatic HT after
recombinant tPA therapy (63).

B-type natriuretic peptide (BNP), a neurohormone produced
by the heart ventricles and the brain, promotes natriuresis and
diuresis in the body, acting as a vasodilator with countering
vasoconstrictor effects (64). Two fragments after the cleavage of
a propeptide include N-terminal proBNP (NT-proBNP) which
does not have biological activity, and formed-BNP which is
biologically active (64). A recent clinical study reported that
plasma NT-proBNP within 4.5 h after symptom onset was higher
in IS patients than in HS patients (23).

Therefore, caveolin-1 is a potential biomarker to predict
complications after tPA treatment. And NT-proBNP is a
promising biomarker for distinguishing IS from HS patients
during the hyperacute phase.

POTENTIAL GENETIC AND GENOMIC

BIOMARKERS

Epigenetic analysis and gene profiling have been used as
diagnostic tools in cardiovascular diseases and cancer, and are
increasingly being applied to stroke.

RNAs
MicroRNAs (miRNAs) are a group of small, non-coding,
endogenous single-stranded RNA molecules that are the main
regulators of homeostasis in neurons; their dysregulation has
been linked to specific pathologic processes in the brain (65,
66). In rats, miR-223-3p was upregulated whereas let-7b-
3p was downregulated in the blood at 4 h after permanent
MCAO-induced cerebral ischemia (67); and in patients with
IS, circulating serum miRNA-221-3p and miRNA-382-5p levels
were lower than in HCs within 6 h after symptom onset (68).
Additionally, within 6 h after symptom onset, plasma miR-16
had an AUC of 0.775 for differentiating IS, with a sensitivity
of 69.7% and specificity of 87.0%; and miR-16 AUC, sensitivity,
and specificity in IS patients reached 0.95, 100.0, and 91.3% in
stroke derived from large artery atherosclerosis (69). Moreover,
plasma miR-16 level was higher in the poor prognosis (mRS
3–6) group than in the good prognosis (mRS 0–2) group (69).
Another study showed that the levels of plasma miR-125a-5p,
miR-125b-5p, and miR-143-3p were upregulated in IS within 6 h
after symptom onset compared to HCs; and the set of plasma
miRNAs (miR-125a-5p, miR-125b-5p, miR-143-3p) had an AUC
of 0.90 for differentiating IS from HCs, with a sensitivity of
85.6% and specificity of 76.3%, which was superior tomultimodal

cranial computed tomography obtained for routine diagnostics
(sensitivity: 72.5%) (70).

Circular RNAs (circRNAs) are a class of RNA molecules that
may hold the key to understanding and properly manipulating
tightly regulated gene expression patterns, as they are more
highly expressed in brain tissues than in other tissues (71, 72).
The levels of blood circPHKA2 (hsa _circ_0090002) and circBBS2
(hsa_circ_0039457) were downregulated in IS within 6 h after
symptom onset compared to control subjects (73).

Transfer RNAs (tRNAs) are best known for their role in
protein synthesis, tRNAs and tRNA-derived fragments (tRFs)
also play a role in regulatory processes such as gene expression
and translational control (74). Within 6 h after symptom onset,
plasma tRFs had an AUC of 0.986 for differentiating HS from IS
and SM (75).

Long non-coding RNAs (lncRNAs) represent an extensive,
largely unexplored functional component of the genome, with
multiple studies demonstrating that the brain expresses the
highest amounts of lncRNAs among all tissue types, H19 is one
of the best characterized lncRNA genes (76). A study showed that
the levels of plasma H19 were significantly higher in IS patients
within 3 h after symptom onset compared to HCs; and the plasma
H19 had an AUC of 0.910 for differentiating IS from HCs, with a
sensitivity of 80.6% and specificity of 92.0% (77).

As mentioned above, the different expression of RNAs in IS,
HS, and SM suggests that it may be a potential biomarker in the
diagnosis of hyperacute IS.

Genetic Analysis and Gene Profiling
In a case–case prospective study, CD40-1C>T polymorphism
(rs1883832) in peripheral blood was found to be associated
with brain vessel re-occlusion after fibrinolysis in the early
phase (within 3 h) after stroke onset (78). It was also reported
that a large number of genes showed altered expression in
the peripheral blood of humans as early as 3 h after IS onset,
which was mainly attributable to neutrophils and was thought
to contribute to tissue damage after stroke (79). Gene expression
profiles in the peripheral blood (within 3 and 5 h after stroke
onset) differ after cardioembolic compared with large-vessel
atherosclerotic stroke (80). More specifically, genes showing
altered expression in large-vessel atherosclerotic stroke were
associated with platelets and monocytes and are known to
be involved in the modulation of hemostasis, whereas those
that were altered in cardioembolic stroke were expressed in
neutrophils and related to the immune response to infection (80).

In short, CD40-1C>T polymorphism (rs1883832) can predict
brain vessel re-occlusion after fibrinolysis after stroke onset; and
genes may be potential biomarkers in assessing the complications
of hyperacute IS.

POTENTIAL BIOMARKERS ASSOCIATED

WITH COAGULATION, THROMBOSIS, AND

METABOLISM

Mean platelet volume (MPV), an index of platelet size, is related
to thrombus formation and propagation and may contribute
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to acute thrombotic events (81). Disabling or fatal IS in
thrombolytic patients was associated with high blood MPV level
before initiation of recombinant tPA treatment (82).

Apolipoprotein CI and CIII (ApoC-I and ApoC-III,
respectively) are involved in triglyceride metabolism. Plasma
concentrations of ApoC-I and ApoC-III were lower in HS
patients than in IS patients within 6 h after symptom onset (83).

Branched-chain amino acids (BCAAs) including valine,
leucine, and isoleucine were reduced in rat plasma within 2 h
after IS onset (84). A similar decrease in BCAAs was observed
in human plasma within 6 ± 2 h after IS onset, and the degree of
reduction was correlated with worse neurologic outcome (84).

A mass spectrometry-based proteomic analysis revealed that
within 4.5 h after symptom onset, gelsolin, dihydropyrimidinase-
related protein 2 (DPYSL2), and cystatin A in peripheral blood
were independent predictors of poor outcome in IS (85).

Pregnenolone sulfate is one of the circulating metabolites.
Within 3.3 h after symptom onset, serum pregnenolone sulfate
had a high value in differentiating IS from SM (49).

As described above, MPV is a potential biomarker to predict
the complications after tPA treatment. ApoC-I and ApoC-III,
valine, leucine, isoleucine, gelsolin, DPYSL2, cystatin A, and
pregnenolone sulfate are potential biomarkers to diagnose and
assess the prognosis of hyperacute IS.

DISCUSSION

Stroke is a serious global public health problem. Multimodal
neuroimaging is the standard method used for the diagnosis
of hyperacute IS. However, it cannot detect changes in specific
molecules and cell types in the brain, which is valuable
for assessing etiology and prognosis. The pathophysiological
mechanism of cerebral ischemia plays an important role
in specifying the prevention and treatment of ischemic
stroke, so the blood-based biomarkers in this manuscript are
classified according to the pathophysiological mechanism of
IS. Specifically, IS initiates a wide range of events called
ischemic cascades at the beginning of cerebral ischemia. Ischemic
events begin with gradual or sudden cerebral hypoperfusion,
including cellular bioenergy failure, excitotoxicity, oxidative
stress, blood-brain barrier dysfunction, microvascular injury,
hemostatic activation, inflammation, and eventual neuronal,
glial, and endothelial cell necrosis (86). Blood-based biomarkers
can provide important information on clinical status beyond that
obtained by standard tests and diagnostic procedures. Further,
we list the main research results of the relevant cited literature
in Supplementary Table 1, which includes biomarkers and
classification, participants, sample type, onset to measurement
time, major outcomes, association with stroke, study design,
and references.

Delays in treatment greatly increase the disability and
mortality rates of IS. Although a standardized stroke
management protocol can shorten DNT and DPT, there is
an inevitable delay between the time from symptom onset
to arrival at the emergency room during which medical
interventions cannot be administered. There are no methods for

rapid detection of IS, which is mainly based on the observation
of symptoms. Moreover, CT and MRI equipment are not widely
installed in ambulances in China. Therefore, new tools for
detecting IS outside of the hospital setting that are easy to
operate without specialized knowledge and yield rapid results
are needed. Blood-based biomarkers can serve as a foundation
for the development of such diagnostic tests.

As an important part of the cytoskeleton of neurons, NfL
has been proven to be associated with a variety of nervous
system diseases, including Alzheimer’s disease (AD), multiple
sclerosis (MS), amyotrophic lateral sclerosis (ALS), Parkinson’s
disease (PD), and frontotemporal dementia (FTD), etc. It is
conducive to predict, diagnose, monitor the progress, and
evaluate the efficacy and prognosis of these diseases. Of note, NfL
and cerebrovascular-related diseases (e.g., stroke, subarachnoid
hemorrhage, traumatic brain injury, etc.) have also become
research hotspots in recent years. Three important clinical studies
also showed the associations of NfL with stroke. Specifically, one
of these important studies showed that higher plasma NfL levels
was independently associated with 3- or 6-month functional
disability and higher all-cause mortality (87). Meanwhile,
another study showed that serum NfL levels increased with the
grade of age-related white matter changes and were able to
predict unfavorable clinical outcome 90 days after stroke (88).
Additionally, it is shown that serum NfL levels 7 days post-
stroke independently predicted mRS 3 months post-stroke (89).
In this clinical research, NfL was expected to objectively be one of
the most promising surrogate markers for evaluating the clinical
outcome of stroke. However, in the three studies, the authors
did not state clearly that the blood sampling time was within 6 h
after ischemic stroke onset (20 d, 24 h, 24 h, respectively), which
was why we did not cite and summarize them before. Thus, we
eagerly anticipate that more NfL studies will emerge in the future
to better confirm the clinical value of blood-borne biomarkers
in stroke.

Biomarkers are physiologic features or biological substances
that can be objectively and reproducibly measured. The ideal
biomarker has the following characteristics (25, 90): (1) accurate
and reproducible; (2) measured in a standardized fashion; (3)
acceptable to the patient and easy to interpret by clinicians;
(4) non-invasive and inexpensive; (5) has sensitivity and
specificity of at least 80%; (6) explains a reasonable proportion
of the outcome independent of established predictors, with
consistency across multiple studies; and (7) there is evidence
that clinical management strategies can be determined based on
biomarker level.

Some blood-based biomarkers have been identified for
IS diagnosis, differentiation, and evaluation of severity and
prognosis. However, there are several limitations associated
with their use in clinical practice. Firstly, alterations in
the brain may not be reflected by blood-based biomarkers
because of the presence of the BBB. Secondly, IS is a
heterogeneous clinical syndrome with various etiologies and
complex clinical manifestations that cannot be represented
by a single biomarker. Thirdly, blood-based biomarkers can
be influenced by comorbidities such as hypertension and
diabetes. Fourthly, most data on potential biomarkers of
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hyperacute IS have come from single-center studies with small
samples in which candidate biomarker levels varied. Finally,
a standard set of criteria for biomarker cutoff values is
currently lacking.

In summary, blood-based biomarker testing can serve
as a valuable adjunct to routine clinical examinations
and neuroimaging in the diagnosis of hyperacute IS.
Further exploration of the relationship between these
biomarkers and the pathophysiology of hyperacute IS
can guide treatment selection and facilitate prognostic
assessment of hyperacute IS patients, thereby improving
clinical outcomes.
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