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Abstract: Lentinan (LNT), a type of polysaccharide derived from Lentinus edodes, has manifested
protective effects during liver injury and hepatocellular carcinoma, but little is known about its
effects on nonalcoholic fatty liver disease (NAFLD). This study aimed to investigate whether LNT
can affect the progression of NAFLD and the associated mechanisms. C57BL/6J mice were fed a
normal chow diet or a high-fat diet (HFD) with or without LNT (6 mg/kg/d). AML12 cells were
exposed to 200 µM palmitate acid (PA) with or without LNT (5 µg/mL). After 21 wk of the high-fat
diet, LNT significantly decreased plasma triglyceride levels and liver lipid accumulation, reduced
excessive reactive oxygen species production, and subsequently attenuated hepatic apoptosis in
NAFLD mice. These effects were associated with increased PPARα levels, a decreased Bax/Bcl-2
ratio, and enhancement of the antioxidant defense system in vivo. Similar effects were also observed
in cultured cells. More importantly, these protective effects of LNT on palmitate acid-treated AML12
cells were almost abolished by PPARα knockdown. In conclusion, this study demonstrates that LNT
may ameliorate hepatic steatosis and decrease oxidative stress and apoptosis by activating the PPARα
pathway and is a potential drug target for NAFLD.

Keywords: lentinan; nonalcoholic fatty liver disease; PPARα; oxidative stress; apoptosis

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver
disease in the world [1,2]. In fact, approximately 25% of the global population is currently
thought to have NAFLD [2,3]. NAFLD covers a spectrum of liver damage ranging from
simple steatosis to more severe forms of liver injury, including nonalcoholic steatohepatitis
(NASH), fibrosis, and hepatocellular carcinoma [4,5]. Furthermore, NAFLD is a strong
risk factor for cardiovascular disease, atherosclerosis, Type 2 diabetes, and chronic kidney
disease [3,6]. Currently, there are limited therapeutic options. Lifestyle modifications are
difficult to achieve and sustain, and approved pharmacological therapy is lacking [7,8].
Rapid discovery of effective treatments for NAFLD is needed.

Whereas the underlying mechanism for the development and progression of NAFLD
is complex and multifactorial. The “multiple-hit hypothesis” has been widely accepted
for the development of NAFLD [9]. The “multiple-hit hypothesis” involves widespread
metabolic dysfunction, including collaboration among genetic, metabolic and environmen-
tal factors, which promote the accumulation of fat in hepatocytes and successively cause
inflammation, oxidative stress, apoptosis and fibrosis. However, fat accumulation in the
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liver caused by obesity and insulin resistance is still considered to be the hallmark feature
determining NAFLD. The excess fat in the liver, especially free cholesterol and saturated
fatty acids (SFAs), causes lipotoxicity and leads to organelle failure through mitochondrial
dysfunction [10]. A dysfunctional mitochondrion can cause ROS formation by increasing
the capacity to oxidize FA and causing oxidative stress due to an imbalance between the
production of ROS and protective oxidants [11]. Oxidative stress can lead to hepatocellular
damage through several mechanisms, including lipid peroxidation, which can directly
activate the apoptotic Fas-ligand pathway and cell necrosis, and has even been implicated
in causing fibrosis [12]. Apoptosis is also a key driver in terms of hepatocyte cell death in
NASH [13]. Caspase3 cleavage and TUNEL tests were positive in liver tissue from both
NASH patients and mouse models of NASH [14]. Noninvasive markers of apoptosis such
as circulating CK18 levels are also increased in NASH patients and can predict the presence
of NASH [15].

Lentinan (LNT) is a polysaccharide component extracted from Lentinus edodes that has
a β-1,3-glucan structure [16] and has been found in many previous studies to have multiple
functions, including immunomodulatory [17], antiviral [18], antitumor [19], antioxidative,
and anti-inflammatory effects [20]. In clinical work, we observed that lentinan supplemen-
tation could significantly improve lipid levels in patients with hyperlipidemia. In addition,
studies have demonstrated that Lentinus edodes intake could significantly decrease blood
lipids in spontaneous hypertension rats [21]. Moreover, β-glucan extracted from other
substances has also been shown to improve lipid metabolism-related diseases in numerous
studies [22,23]. However, the protective effects of LNT on lipid metabolism in NAFLD and
the associated molecular pathway have not yet been elucidated.

Peroxisome proliferator-activated receptor α (PPARα), a transcription factor of the
NR1C family that is abundantly expressed in the liver [24], takes part in several aspects of
lipid metabolism [25], including fatty acid degradation, synthesis, transport, storage, and
lipoprotein metabolism [24]. PPARα knockout mice given a high-fat diet were found to
have severe steatosis and hepatitis [26]. However, in wild-type mice, the PPARα agonist can
improve the morphological changes in the liver by regulating intracellular lipid deposition,
liver inflammation, oxidative stress, and fibrosis [27]. In addition, PPARα also suppressed
antioxidative expression in high-fat diet (HFD)-induced NAFLD [28]. Moreover, the PPARα
agonist fenofibrate significantly decreased apoptosis factors (Bax and Caspase3) in HFD-
induced NAFLD [29].

In this study, we conducted both in vivo and in vitro experiments to explore the effect
of LNT on NAFLD, focusing on its role in hepatic steatosis, oxidative stress, and apoptosis
responses, and to elucidate its mechanism of action.

2. Results
2.1. LNT Prevented HFD-Induced Steatosis in Mice

As mentioned in the flow chart of the animal experiment shown in Supplementary
Materials Figure S1, LNT intervention persisted for 15 weeks. During Weeks 6 to 21, the
HFD group exhibited rapid increases in body weight, while LNT significantly prevented
the body weight gain induced by the high-fat diet (Figure 1A). Measured blood glucose and
HOMA-IR results also showed a significant increase in the HFD group and a significant
decrease in the LNT treatment group (Figure 1B). Serum TG, TC, and LDL-C, and liver TG
and TC were significantly increased in the HFD group but were significantly suppressed
by LNT (Figure 1C,G). In addition, LNT significantly increased the HDL-C levels in the
serum (Figure 1C).
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Figure 1. LNT ameliorated HFD-induced steatosis in mice. (A) Body weight, (B) blood glucose and 
HOMA-IR in four groups of mice. (C) Serum levels of TG, TC, LDL-C and HDL-C were determined. 
(D–F) Representative images of H&E and oil red O staining of the liver in mice. (G) Liver TG and 
TC content. (H,I) Hepatic mRNA levels of lipid uptake-, lipogenesis-, metabolism-, and transfer-
related genes. (J) Representative Western blots and quantification of PPARα and CPT1α in the liver. 
Data are presented as means ± SEM (n=8 per group). * p < 0.05 compared with the Control group. # 
p < 0.05 compared with the HFD group. 

In the examination of liver tissues, livers exhibited an enlarged size and a faded color 
with a fat layer on the surface and a soft texture in the HFD group, while these changes 

Figure 1. LNT ameliorated HFD-induced steatosis in mice. (A) Body weight, (B) blood glucose and
HOMA-IR in four groups of mice. (C) Serum levels of TG, TC, LDL-C and HDL-C were determined.
(D–F) Representative images of H&E and oil red O staining of the liver in mice. (G) Liver TG and TC
content. (H,I) Hepatic mRNA levels of lipid uptake-, lipogenesis-, metabolism-, and transfer-related
genes. (J) Representative Western blots and quantification of PPARα and CPT1α in the liver. Data are
presented as means ± SEM (n = 8 per group). * p < 0.05 compared with the Control group. # p < 0.05
compared with the HFD group.

In the examination of liver tissues, livers exhibited an enlarged size and a faded color
with a fat layer on the surface and a soft texture in the HFD group, while these changes were
prevented by the LNT treatment (Figure 1D). In the HFD group, vacuolar degeneration
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inside the liver parenchyma cells was found by hematoxylin and eosin staining (Figure 1E)
and a large accumulation of lipid droplets was found by oil red O staining (Figure 1F).
However, the degree of steatosis was remarkably limited under the LNT treatment. These
results demonstrated that LNT significantly prevented the progress of steatosis in NAFLD
mice.

To further explore the effect of LNT on liver function injury induced by HFD, we
measured the associated enzymes of liver function, serum AST and ALT levels. The results
showed that LNT significantly decreased the increase in AST and ALT levels induced
by HFD (Supplementary Materials Figure S3A). We also measured serum bile acid, ALP,
and total bilirubin levels in various animal groups, and found that the high-fat diet in-
creased serum bile acid, ALP, and total bilirubin levels. We noticed that LNT slightly
decreased serum bile acid, ALP, and total bilirubin levels, but this did not reach statistical
significance (Supplementary Materials Figure S3B). In addition, we analyzed the pro- and
anti-inflammatory cytokines in both the serum and liver. LNT alleviated the increase in
serum TNF-α and IL-6 levels in high-fat diet-treated mice; however, serum IL-10 levels did
not significantly increase (Supplementary Materials Figure S4A). Moreover, we measured
the levels of TNF-α, IL-6, and IL-10 mRNA and protein in liver tissues, which showed
similar results with serum (Supplementary Materials Figure S4B,C). These results suggested
that LNT prevented the increase in pro-inflammatory cytokines induced by HFD but had
no significant effect on anti-inflammatory cytokines.

To investigate the mechanisms by which LNT prevented the progress of hepatic
steatosis, the expression of genes associated with lipid uptake, lipogenesis, and lipid
metabolism were detected in the liver. In the HFD group, the mRNA expression levels
of CD36, FAS, PPARγ, SREBP, and CHREBP increased significantly, and PPARα, ACAT,
CPT1α, ApoB, and MTTP decreased significantly compared with the Control group, while
LNT treatment dramatically downregulated the expression of CD36 and upregulated the
expression of PPARα, ACAT, and CPT1α compared with the HFD group (Figure 1H,I).
The levels of PPARα and CPT1α, the key enzymes in lipid metabolism, were further
determined in protein by Western blot analysis. The results also indicated that LNT
significantly upregulated the PPARα and CPT1α protein levels compared with those in the
HFD group (Figure 1J). In addition, we also detected the protein expression of AMPKα,
p-AMPKα, and RXRα under the LNT treatment and found that LTN showed no detectable
effects on these genes (Supplementary Materials Figure S5A,B). These data indicated that
the PPARα may be involved in the effects of LNT on regulating steatosis in NAFLD mice.

2.2. LNT Protected against HFD-Induced Hepatic Oxidative Stress and Apoptosis in Mice

To evaluate the effects of LNT on oxidative stress in the hepatic tissue of NAFLD
mice, we determined the levels of reactive oxygen species (ROS) and lipid peroxidation
products, as well as the activity or content of enzymes that are known to be key regulators
maintaining redox homeostasis. DHE staining indicated that ROS production in the liver
was significantly elevated in the HFD group but was dramatically decreased under the
LNT treatment (Figure 2A). In NAFLD mice, LNT significantly increased hepatic SOD and
GSH/GSSG content, and significantly decreased hepatic MDA and 4-HNE, compared with
the HFD group (Figure 2B–E). In addition, compared with the HFD group, hepatic antiox-
idant enzyme (SOD1, SOD2) protein levels were dramatically upregulated and hepatic
pro-oxidant enzyme (NOX2, NOX4) protein levels were significantly downregulated under
the LNT treatment (Figure 2F).
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Figure 2. LNT suppressed HFD-induced oxidative stress and apoptosis in the liver. (A) Representa-
tive images and quantification of DHE staining of hepatic ROS production. (B–E) MDA, GSH/GSSH, 
SOD, and 4-HNE levels in the liver. (F) Representative Western blots and quantification of SOD1, 
SOD2, NOX2, and NOX4 in the liver. (G) Cleaved-Caspase3 expression by Western blot analysis. 
(H) Caspase3 activity in livers from the four treatment groups. (I) Representative Western blots and 
quantification for apoptosis-related proteins in the liver. Data are presented as the mean ± SEM (n = 
8 per group). * p < 0.05 compared with the Control group. # p < 0.05 compared with the HFD group. 

Compared with the HFD group, LNT significantly decreased cleaved-Caspase3 pro-
tein levels and Caspase3 activity (Figure 2G,H). Moreover, after the high-fat diet, the pro-
apoptotic Bax protein was dramatically increased and the anti-apoptotic Bcl-2 protein was 

Figure 2. LNT suppressed HFD-induced oxidative stress and apoptosis in the liver. (A) Representa-
tive images and quantification of DHE staining of hepatic ROS production. (B–E) MDA, GSH/GSSH,
SOD, and 4-HNE levels in the liver. (F) Representative Western blots and quantification of SOD1,
SOD2, NOX2, and NOX4 in the liver. (G) Cleaved-Caspase3 expression by Western blot analysis.
(H) Caspase3 activity in livers from the four treatment groups. (I) Representative Western blots and
quantification for apoptosis-related proteins in the liver. Data are presented as the mean ± SEM
(n = 8 per group). * p < 0.05 compared with the Control group. # p < 0.05 compared with the HFD
group.

Compared with the HFD group, LNT significantly decreased cleaved-Caspase3 pro-
tein levels and Caspase3 activity (Figure 2G,H). Moreover, after the high-fat diet, the
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pro-apoptotic Bax protein was dramatically increased and the anti-apoptotic Bcl-2 pro-
tein was significantly decreased compared with the Control group, while these changes
were prevented by LNT (Figure 2I). Taken together, all these results suggested that LNT
significantly protected against hepatic oxidative stress and apoptosis in NAFLD mice.

2.3. LNT Prevented Lipid Accumulation in PA-Induced AML12 Cells

To investigate the effects of LNT on PA-induced lipid deposition in vitro, we used
AML-12 cells, which have been well documented as cellular models of NAFLD [30]. The
cultured hepatocytes were treated with 5 µg/mL of LNT or palmitic acid for 24 h. Intracel-
lular lipid content was assessed by oil red O staining and a triglyceride assay. Hepatocyte
lipid droplets and triglyceride content were significantly increased in PA-induced AML12
cells. However, LNT dramatically prevented lipid deposition in AML12 cells (Figure 3A,B).
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Figure 3. LNT alleviated lipid accumulation in PA-induced AML12 cells. (A,B) Oil red O staining
and TG content in AML-12 cells. (C–E) mRNA levels of lipid uptake-, lipogenesis-, metabolism-, and
transfer-related genes in AML-12 cells. (F) Representative Western blots and quantification of PPARα
and CPT1α in AML-12 cells. Data are presented as the mean ± SEM (n = 3 per group). * p < 0.05
compared with the Control group. # p < 0.05 compared with the PA group.
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Consistent with the in vivo findings, LNT significantly decreased PPARα and CPT1α
mRNA and protein levels in PA-treated AML-12 cells. However, LNT had no obvious
effect on the expression of CD36, FAS, and PPAR-γ mRNA (Figure 3C,D,F). In addition, the
co-regulators of PPARα genes, including SIRT1, LXR, FXR, and RXRα were significantly
upregulated in PA-treated AML-12 cells, while LNT treatment had no significant effect
(Figure 3E). Taken together, these findings indicated that LNT may prevent PA-induced
lipid accumulation by activating the PPARα signaling pathway in vitro.

2.4. LNT Improved Oxidative Stress and Apoptosis in PA-Induced AML12 Cells

We continued to explore the effects of LNT on oxidative stress in AML12 cells. DHE
staining indicated severe oxidative stress after 24 h of exposure to PA, which was promi-
nently improved by LNT (Figure 4A). In addition, there were significantly higher levels
of MDA and 4-HNE, as well as lower levels of SOD and GSH/GSSG in PA-induced
AML12 cells compared with the Control group. These changes were prevented by LNT
(Figure 4B–E). Furthermore, LNT significantly attenuated the decrease in the protein levels
of anti-oxidative enzymes (SOD1, SOD2) and the increase in the protein levels of oxidative
enzymes (NOX2, NOX4) after PA treatment in AML12 cells (Figure 4F).

To further prove the effects of LNT on apoptosis in vitro, flow cytometry showed
that the percentage of apoptotic cells markedly increased in PA-induced AML12 cells,
but significantly decreased under LNT treatment (Figure 4G). Consistently, the results of
CCK8 revealed increased cell viability under the LNT treatment compared with the PA
group (Figure 4I). Cleaved-Caspase3 protein levels and Caspase3 activity were significantly
increased by palmitic acid addition, an effect that was also attenuated by LNT (Figure 4H).
LNT attenuated the increase in pro-apoptotic Bax and the decrease in anti-apoptotic Bcl-2 af-
ter the addition of palmitic acid to AML12 cells, which may contribute to the anti-apoptotic
effects of LNT on AML12 cells (Figure 4J). Collectively, these findings demonstrated that
LNT may attenuate PA-induced oxidative stress and apoptosis in AML12 cells, which was
consistent with the results obtained in NAFLD mice.

2.5. PPARα Knockdown Abolished the Protective Effects of LNT on Lipid Deposition in PA-Induced
AML12 Cells

To investigate the roles of PPARα on the effects of LNT against PA-induced damage, a
transfection approach using PPARα siRNA was carried out to knockdown PPARα. As ex-
pected, PPARα knockdown significantly decreased the expression levels of PPARα in both
mRNA and protein in AML12 cells (Figure 5A,B). The decreased hepatocyte lipid droplets
and triglyceride content seen under LNT treatment were prevented by pretreatment with
PPARα siRNA in PA-induced AML12 cells (Figure 5C,D). This finding suggested that LNT
exerted its ameliorating effect through PPARα.
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Cleaved-Caspase3 expression by Western blot analysis and Caspase3 activity in AML-12 cells. (I) 
Cell viability of AML-12 cells. (J) Representative Western blots and quantification for apoptosis-
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Figure 4. LNT improved oxidative stress and apoptosis in PA-induced AML12 cells. (A) DHE
staining of AML-12 cells. (B–E) MDA, GSH/GSSH, SOD, and 4-HNE levels in AML-12 cells. (F) Rep-
resentative Western blots and quantification of SOD1, SOD2, NOX2, and NOX4 in AML-12 cells.
(G) Representative annexin-V-FITC/PI staining and quantification of apoptosis by flow cytometry.
(H) Cleaved-Caspase3 expression by Western blot analysis and Caspase3 activity in AML-12 cells.
(I) Cell viability of AML-12 cells. (J) Representative Western blots and quantification for apoptosis-
related proteins in AML-12 cells. Data are presented as the mean ± SEM (n = 3 per group). * p < 0.05
compared with the Control group. # p < 0.05 compared with the PA group.
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Figure 5. PPARα knockdown abolished the protective effects of LNT on lipid deposition in PA-
induced AML12 cells. (A,B) PPARα mRNA and protein expression levels in AML-12 cells. (C,D) Oil
red O staining and TG content in AML-12 cells. Data are presented as the mean ± SEM (n = 3 per
group). * p < 0.05 compared with the si-con group. # p < 0.05 compared with the PA+si-con group.
N p < 0.05 compared with the PA+LNT + si-con group.

2.6. PPARα Knockdown Prevented the Effects of LNT on Oxidative Stress and Apoptosis in
PA-Induced AML12 Cells

We further investigated the roles of PPARα on the effects of LNT against PA-induced
oxidative stress and apoptosis. LNT alleviated PA-mediated increased MDA and 4-HNE
levels and decreased GSH/GSSG and SOD levels in AML12 cells. However, PPARα siRNA
abolished these effects of LNT (Figure 6A–D). Similarly, as shown in (Figure 6E), PPARα
siRNA blocked the LNT-induced upregulation of SOD1 and SOD2 protein expression
levels and the downregulation of NOX2 and NOX4 protein expression levels in PA-treated
AML12 cells. Flow cytometry revealed a significant decrease in PA-induced apoptosis
after treatment with LNT compared with PA-only addition; these protective effects of
LNT were abolished by PPARα siRNA (Figure 6F). PPARα knockdown also attenuated the
LNT-induced increase in cell viability in PA-treated AML12 cells (Figure 6G). Furthermore,
LNT alleviated the PA-mediated elevation of cellular Caspase3 activity, cleaved-Caspase3
protein levels, and the Bax/Bcl-2 ratio, which were prevented by PPARα knockdown
(Figure 6H,I). These findings indicated that LNT attenuated PA-induced oxidative stress
and apoptosis via the activation of PPARα in vitro.
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Figure 6. PPARα knockdown abolished the effects of LNT on oxidative stress and apoptosis in
PA-induced AML12 cells. (A–D) MDA, GSH/GSSH, SOD, and 4-HNE levels in AML-12 cells.
(E) Representative Western blots and quantification of SOD1, SOD2, NOX2, and NOX4 in AML-
12 cells. (F) Representative annexin-V-FITC/PI staining and quantification of apoptosis by flow
cytometry. (G) Cell viability and (H) Caspase3 activity in AML-12 cells. (I) Representative Western
blots and quantification for cleaved Caspase3, apoptosis-related proteins in AML-12 cells. Data are
presented as the mean ± SEM (n = 3 per group). * p <0.05 compared with the si-con group. # p < 0.05
compared with the PA+si-con group. N p < 0.05 compared with the PA+LNT + si-con group.

3. Discussion

In the present study, we tested the effects of LNT on a well-established NAFLD mouse
model, which was induced by continuous HFD feeding. We found that LNT attenuated the
detrimental effects associated with NAFLD. Specifically, LNT decreased liver cholesterol
and triglycerides, improved hepatic steatosis, and attenuated oxidative stress and apoptosis.
LNT also upregulated the expression of the PPARα signal pathway, which was typically
suppressed in NAFLD. Together, our results suggested that LNT protected against the
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development and progression of NAFLD at least partially through the PPARα pathway in
this model.

β-glucans are heterogeneous non-starch polysaccharides, which form the structural
compounds of the cell wall of certain microorganisms, including algae and yeast, and
certain protists, including mushrooms and grains, such as wheat and oats [17]. β-glucan, the
main component of LNT, plays a key role in LNT function, including immunomodulation,
antiviral activity, antitumor activity, antioxidation and anti-inflammation [18–20,31]. β-
glucans have been used to reduce blood cholesterol levels since the 1960s [32]. On the
basis of the extensive evidence showing an inverse association between β-glucan intake
and LDL cholesterol, several countries have currently approved the health claims of oat
β-glucan for its LDL-C lowering effects and its ability to reduce CVD risk [17,33,34]. In
addition, agaricus β-glucan was proved to have anti-hyperglycemic, anti-triglyceride, and
anti-atherosclerosis effects in diabetic rats [35]. In this study, LNT significantly reduced
TC and triglycerides both in vivo and in vitro, which was consistent with a previous study
reporting that shiitake (Lentinus edodes) and maitake had a cholesterol-lowering effect in
spontaneously hypertensive rats [21].

Oxidative stress, which is produced by large amounts of ROS, has increasingly
emerged as the pivotal factor in the development and progression of NAFLD through the
induction of lipid peroxidation and the promotion of lipid accumulation, insulin resistance,
and inflammation [12]. ROS, which are primarily superoxide anions, hydrogen peroxide,
and free radicals, are considered to be closely associated with lipid peroxidation, and
irretrievable protein and DNA degeneration. The resulting extremely reactive aldehyde
components, such as 4-HNE and MDA, can be used as representative biomarkers of lipid
peroxidation [10]. NADPH oxidases (NOXs) are major producers of ROS. Redundant ROS
are generally eliminated by a series of enzymes, primarily including superoxide dismu-
tase (SOD), glutathione peroxidase (GPx), and catalase (CAT), whereas the nonenzymatic
molecules include glutathione (GSH), beta-carotene, and tocopherol [12,36]. When the
antioxidant system is vulnerable, the expression of activated ROS will be enhanced. In our
result, LNT significantly reduced the activity of ROS, MDA, 4-HNE, NOX2, and NOX4,
while the ratio of GSH/GSSH and the content of SOD1 and SOD2 were significantly ele-
vated both in vivo and in vitro. However, after co-treatment with PPARα siRNA, the ratio
of GSH/GSSH and the content of SOD1 and SOD2 decreased, and the activity of ROS,
MDA, NOX2, and NOX4 increased, indicating that LNT restored redox balance in NAFLD,
at least partly through the PPARα pathway by enhancing cellular antioxidant activity and
improving the ability of cells to scavenge ROS. Zi. et al. reported that benzo(a)pyrene
induced oxidative damage in human immortalized keratinocytes (HaCaT cells) was notably
rescued by LNT treatment, consistent with our results [37].

Apoptosis plays an important role in the progression of NAFLD. Bcl-2 protein, which
is mainly located at the outer part of the mitochondrial membrane, may play a key role
in regulation of the mitochondrial–apoptosis system and is a member of the regulatory
proteins in the complex apoptosis pathway. The Bax gene plays a key role in the process of
apoptosis. The ratio of Bax to Bcl-2 is called the “apoptosis switch”, as cell apoptosis occurs
when the Bax protein is dominant. Caspase3 is the most critical protease responsible for
mediating and executing death instructions and is a key effector of apoptosis in hepato-
cytes [38]. A previous study pointed out that Caspase3 knockout in mice was associated
with decreased levels of apoptosis in NASH induced by a methionine- and choline-deficient
(MCD) diet [39]. In our results, LNT significantly reduced the ratio of Bax/Bcl2 protein
and Caspase3 activity both in vivo and in vitro. After co-treatment with PPARα siRNA,
the ratio of Bax/Bcl2 protein and Caspase3 activity increased, indicating that LNT acted
at least partly through the PPARα pathway to reduce apoptosis. Former studies pointed
out that LNT afforded significant protection against paclitaxel-induced apoptosis in mouse
bone marrow cells [40]. In addition, Zhang et al. pointed out that the level of apoptosis
significantly decreased in LNT-treated pancreatic beta-cells compared with STZ-induced
cells [41].
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PPARα has been widely accepted as a transcriptional switch for various genes involved
in liver FA uptake and oxidation. PPARα activation protected against HFD-induced hepa-
tocellular injury and liver inflammation and improved insulin sensitivity [25]. Similarly,
PPARα-deficiency in mice promoted HFD-induced hepatic TG and macrophage infiltration,
and elevated plasma levels of ALT and AST [28]. In addition, hepatocyte-specific PPARα
deletion in mice showed a marked increase in hepatic steatosis, increased plasma FFA, and
impaired ketone bodies in response to two weeks of HFD feeding [42]. In this study, we
found that LNT upregulated the expression of PPARα and its target gene CPT1α, which
is involved in lipid metabolism in the liver of NAFLD mice, as well as in AML12 cells
in vitro. In addition, after siRNA-PPARα transfection, LNT had little meliorative effect on
PA-induced cells with a low expression of PPARα, confirming that PPARα activation plays
a key role in LNT attenuation of NAFLD.

Carnitine palmitoyl transferase 1α (CPT1α) is a subtype of the carnitine palmitoyl
transferase (CPT) enzyme family, which is mainly expressed in the liver. CPT1α is located
in the outer membrane of the mitochondria and is one of the rate-limited enzymes of lipid
metabolism. By converting acyl CoA to acyl carnitine, CPT1α is in charge of the transporta-
tion of fatty acids into the mitochondria for further oxidation [43]. It is well known that
de novo lipogenesis and β-oxidation of fatty acids are two key roles in lipid metabolism.
PPARα and CPT1α are two key enzymes in the β-oxidation of fatty acids [44]. Importantly,
CPT1α is a target gene of PPARα, and the mechanism of PPARα for transporting fatty acids
into hepatocyte mitochondria could be associated with the increasing effect of PPARα on
CPT1α in the liver, which also reveals the consistency of expression between PPARα and
CPT1α [45]. In this study, LNT significantly increased the mRNA and protein expression
levels of PPARα and CPT1α and decreased both serum and liver TC and triglyceride levels.
These results were consistent with those of previous studies, which pointed out that CPT1α
upregulation leads to a reduction in triglycerides. In addition, CPT1α activation was
related to the decrease in TC and LDL-C, as the long-chain fatty acids can be converted into
triglycerides via the transshipment of the CPT enzyme system. Overexpression of CPT1α
attenuated NAFLD by activating β-oxidation [46], whereas HFD-fed CPT1α heterozygous
knockout mice had more severe hepatic lipid accumulation [47]. This study suggested that
the PPARα/CPT1α pathway plays an important role in LNT’s attenuation of NAFLD.

4. Materials and Methods
4.1. Animals

The animal experiments were consistent with ARRIVE and NIH guidelines for animal
welfare [48], and were conducted with the approval of the Animal Research Committee of
Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Male C57BL/6J mice (5–6 weeks old) were purchased from Beijing Vital River Laboratory
Animal Technology Co., Beijing, China. Mice were given free access to food and water and
housed with a 12-h light/dark cycle. After acclimatization for 1 week, mice were randomly
fed with either a standard laboratory chow diet or a 60% high-fat diet (diet#D12492) for
6 weeks. The mice were then randomly divided into 4 groups (8 mice/group): (1) Control,
fed with a chow diet; (2) LNT, fed with a chow diet and orally treated with LNT at
6 mg/kg/d; (3) HFD, fed with a 60% high-fat diet; (4) HFD + LNT, fed with a 60% high-fat
diet and orally treated with LNT at 6 mg/kg/d. The oral concentration was calculated as
described previously [49]. Weight gain, blood glucose, and serum lipids were measured
every 3 weeks and all the data were collected blindly. All animals were sacrificed on the
21st week after beginning the diet. For tissue sampling, mice were fasted overnight and
anesthetized with pentobarbital (50 mg/kg bodyweight). Blood was collected from the
retro-orbital vein. Parts of the liver were obtained for histological analysis; RNA extraction,
and protein analysis; frozen with liquid nitrogen; and stored at −80 ◦C. The flow chart of
the animal experiment is shown in Supplementary Materials Figure S1.
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4.2. Cell Culture and Treatments

Mouse alpha liver cells (AML12), an immortalized normal mouse hepatocyte cell
line, were cultured in Dulbecco’s modified Eagle’s medium (DMEM) with 10% FBS in an
atmosphere of 95% air and 5% CO2 at 37 ◦C. After synchronization, cells were treated with
or without LNT (5 µg/mL) for 0.5 h. Next, the cells were incubated with 1.0% bovine
serum albumin (BSA) alone or in combination with 0.4 mM free fatty acid (FFA) containing
1.0% acid-free BSA for 24 h. The concentration and intervention methods were obtained
according to previous descriptions [31] and a prior experiment (Supplementary Materials
Figure S2).

The silencing of peroxisome proliferator-activated receptor α (PPARα) was performed
by small interfering RNAs (siRNAs), synthesized by Ribobio (Guangzhou, China). The
siRNA transfection was conducted with Lipofectamine 2000 (Invitrogen, Waltham, MA,
USA) according to the manufacturer’s protocol. After 24 h of transfection, cells were
cultured with 5 µg /mL LNT and 0.2 mM palmitate, as shown above, for another 24 h.
Western blot was used to determine the siRNA knockdown efficiency 36 h after transfection.
Experiments were subsequently performed only if the silencing effect was more than 70%.

4.3. Biochemical Parameters

Total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density
lipoprotein cholesterol (HDL-C), and triglyceride (TG) in serum, liver, or AML12 cells
were measured by ELISA according to the manufacturer’s protocol (Nanjing Jiancheng
Bioengineering Institute, Nanjing, China). MDA, GSH, SOD, ALT, AST, ALP, BA, TBIL,
TNF-α, IL-6, and IL-10 levels and Caspase3 enzyme activity in serum, liver tissue, or cell
homogenate were also measured by ELISA according to the manufacturer’s protocol (Bey-
otime, Shanghai, China). Moreover, 4-HNE levels in liver tissue and cells were measured
by ELISA according to the manufacturer’s protocol (Abcam, Shanghai, China).

4.4. Western Blot Analysis

Western blot analysis was performed as previously described [50]. Briefly, equal
amounts of protein from liver tissue or AML12 cells were separated by electrophoresis
on 10% SDS-PAGE gels. The resolved proteins were electrophoretically transferred to
polyvinylidene difluoride membranes using a transfer buffer containing 192 mM glycine,
20% (v/v) methanol, and 0.02% SDS. The membranes were incubated with 5% nonfat dry
milk in TBST for 2 h, then incubated overnight at 4 ◦C with the indicated primary antibodies.
The proteins were visualized by enhanced chemiluminescence (ECL) and quantified by
Image J software. The antibodies used in the study are listed in Supplementary Materials
Table S1.

4.5. Histological Analysis

Liver tissues, fixed in 10% formalin, were embedded in paraffin, sectioned into 4 µm
slices, and stained with H&E as previously described [51]. Frozen liver sections (8 µm)
and cells in 6-well plates were stained with oil red O and DHE (Sigma-Aldrich, MO, USA)
to assess lipid accumulation and ROS accumulation based on the requirements of the
manufacturer’s protocol. All the sections were visualized with a microscope and quantified
by Image-Pro Plus Version 6.0.

4.6. Flow Cytometry Analysis

AML12 cells were cultivated with Annexin V-FITC/PI (BD Biosciences, Sparks, MD,
USA) to assess cell apoptosis. After cultivation, cells were analyzed with a FACStar Plus
flow cytometer (BD Biosciences, Sparks, MD, USA), as described previously [52].

4.7. Quantitative RT-PCR

RNA from cells and animal tissues was isolated by TRIzol, and then reserved and
transcribed into cDNA by means of the First-Strand cDNA Synthesis Kit (Vazyme Biotech,
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Nanjing, China). Real-time PCR was carried out with the SYBR rapid quantitative PCR Kit
(Vazyme Biotech, Nanjing, China). All processes were conducted in accordance with the
manufacturer’s protocol. The primers that were used in the study are listed in Supplemen-
tary Materials Table S2.

4.8. Statistics

All data are displayed as means ± SEM, and discrepancies among groups were
determined by Student’s t-test or ANOVA after numerous comparisons with Tukey’s test.
All these statistical tests were conducted with SPSS (v18.0), and p < 0.05 was regarded as
statistically significant in all cases.

5. Conclusions

In conclusion, we demonstrated that the LNT improved the lipid accumulation, oxida-
tive stress, and apoptosis of NAFLD, at least partly though the PPARα pathway. LNT may
be a potential drug target for NAFLD.

Supplementary Materials: The following are available online at http://www.mdpi.com/xxx/s1,
Figure S1. Flow chart of the animal experiment, Figure S2. Effects of different concentrations of LNT
in PA-induced AML12, Figure S3. Effects of LNT on liver function in HFD-induced mice, Figure S4.
Effects of LNT on inflammatory cytokines in HFD-induced mice, Figure S5. Effects of LNT on related
protein in PA-induced AML12 cells, Table S1. List of antibodies, Table S2. List of primer sequences.
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