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The Arctic is one of the least human-impacted parts of the world,
but, in turn, tundra biome is facing the most rapid climate change
on Earth. These perturbations may cause major reshuffling of Arc-
tic species compositions and functional trait profiles and diversity,
thereby affecting ecosystem processes of the whole tundra region.
Earlier research has detected important drivers of the change in
plant functional traits under warming climate, but studies on one
key factor, snow cover, are almost totally lacking. Here we inte-
grate plot-scale vegetation data with detailed climate and snow
information using machine learning methods to model the respon-
siveness of tundra communities to different scenarios of warming
and snow cover duration. Our results show that decreasing snow
cover, together with warming temperatures, can substantially
modify biotic communities and their trait compositions, with fu-
ture plant communities projected to be occupied by taller plants
with larger leaves and faster resource acquisition strategies. As
another finding, we show that, while the local functional diversity
may increase, simultaneous biotic homogenization across tundra
communities is likely to occur. The manifestation of climate warm-
ing on tundra vegetation is highly dependent on the evolution of
snow conditions. Given this, realistic assessments of future ecosys-
tem functioning require acknowledging the role of snow in tundra
vegetation models.
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Anthropogenic climate change is causing major changes in the
physical environment, which, in turn, may fundamentally

alter biodiversity and species compositions across the planet (1).
Species differ in their size, resource use, and biochemical path-
ways, that is, in their functional traits (2–4). Hence, turnover in
species assemblages may lead to major shifts in the functional
composition of biological communities and, consequently, cause
large-scale alterations in ecosystems processes (5, 6). Taxonomic
approaches, such as species-level models, offer only limited un-
derstanding of the importance of climate warming-induced
changes in functioning of ecosystems (7, 8). In contrast, trait-
based ecology and the accelerated availability of trait data have
revolutionized the field of ecosystem science (9, 10), allowing de-
veloping novel contributions for the climate change impact assess-
ments. Plant functional traits and functional diversity (FD) can thus
provide essential information for researchers and climate-smart
conservation planning about the processes and stability of ecosys-
tems otherwise challenging to quantify (6).
Functional traits, particularly in plants, may provide critical

understanding of the resource use in biotic communities and
their impacts on the ecosystems (2, 4). In practice, functional
traits are measurable properties of plant size, structure, and
biogeochemistry (6) that are intrinsically related to the key
functions of ecosystems such as productivity or cycling of water,
carbon, and nutrients (5, 11). FD, in turn, defines the range,
variability, and evenness of functional traits in a community,
describing one important component of biodiversity (2, 3, 12).
However, in contrast to its taxonomic equivalents, it involves

understanding of communities based on what organisms do,
rather than on their evolutionary history (13). Indeed, ecosystem
processes are often more consistently linked with FD than with
pure species count (2), and experimental and analytical evidence
shows that FD can provide a mechanistic link between organisms
and ecosystems (13). The main mechanism for how FD can affect
the ecosystem processes is the “niche complementarity effect”:
Higher FD diversity allows a greater range of functional traits in a
given community, leading to more efficient and diverse resource use
in spatiotemporally varying environments (2), thereby potentially
increasing the stability and resilience of ecosystems (14, 15).
Arctic communities provide one key environment to study the

consequences of altering functionality of species communities in
the face of climate change (16). This is because direct human
impacts on the environment are smaller than in other parts of the
globe, but, at the same time, the Arctic is warming from 2 to
3 times faster than the global average (17). Arctic soils are a
major storage of carbon, and the whole Arctic system may wit-
ness important feedbacks emerging from changes in vegetation
that could reinforce global climate warming (18, 19). Indeed,
there are a few comprehensive studies showing the importance
of growing season-related factors in driving functional compo-
sition of Arctic and alpine vegetation (5, 20–22). However, at the
same time, it remains largely unknown how the changes in one
key environmental driver in the Arctic, snow, will affect the
functional composition and diversity of the Arctic ecosystems.

Significance

Plant functional traits are central instruments in developing
understanding and predicting biodiversity patterns and eco-
systems processes. Snow is an important ecological factor in
cold climates, but its contribution to the evolution of func-
tionality of tundra vegetation is poorly known and insuffi-
ciently addressed in the research. We show here that snow has
a fundamental effect in mediating climate change impacts on
functional composition and diversity of Arctic tundra vegeta-
tion. As a whole, Arctic landscapes may lose spatial heteroge-
neity because plant communities will be functionally more
alike, although the local functional diversity may increase. Our
results highlight that future snow conditions and their fine-
scale variability should be acknowledged in the next genera-
tion of Arctic vegetation−ecosystem models.
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This is a significant shortcoming, as snow is a fundamental mediator
of climate conditions at local scales and has long been considered as
one of the most important environmental filters for Arctic and
alpine plants (23, 24). Another shortcoming is that earlier studies
have hitherto focused on explaining plot-scale patterns in func-
tional properties and paid limited attention to how trait compo-
sition and diversity might change across landscapes (2, 22, 25).
Here, to improve the understanding of the sensitivity of the

functions in the Arctic ecosystems to the changes in both snow
cover duration (SCD) and temperature, we used multidecadal
fine-scale information of snow cover dynamics linked with
summer temperature data and plot-scale cover values of 135
vascular plant species across an extensively studied tundra
landscape (195 km2; 5,300 plots within 1,325 study sites; Material
and Methods and Fig. 1). We examined the role of changing
temperatures and snow conditions on community weighted
means (CWMs) of seven widely applied functional traits and FD.
We used an ensemble of machine learning models to recon-

struct the species communities in current climate at 30-m spatial
resolution by utilizing fine scale topoclimatic data and SCD
derived from 135 Landsat satellite images. We related species
communities primarily to the SCD and summer temperature
variables but included also other key environmental factors (e.g.,
topographic soil wetness) in the models to take their potential
confounding impacts into account (26). Then, we used these
models to project the species compositions in future climatic
conditions by simulating 36 different scenarios of summer

warming and decrease in SCD (temperatures: no change and
representative concentration pathway [RCP] scenarios 2.6, 4.5,
and 8.5 for years 2040–2069; SCD: no change and eight
descending steps from 5% down to 40% decrease). We extracted
65,706 species-level trait measurements from three databases
(10, 27, 28) and calculated species-specific median values for
seven traits, namely plant vegetative height, leaf area, leaf dry
matter content (LDMC), specific leaf area (SLA), leaf nitrogen
content (LeafN), leaf phosphorus content (LeafP) and seed
mass. CWM trait values and several FD indices were calculated
for the modeled plant communities.

Results and Discussion
The ensemble models were able to capture the variation in
CWMs of the seven traits rather rigorously. Cross-validated R2

value between observed and modeled CWMs was highest for
height (0.553) and seed mass (0.485) followed by leaf area
(0.465), LeafN (0.464), SLA (0.452), and LeafP (0.447), while
the R2 for LDMC was the lowest (0.386). Model residuals
showed slight spatial autocorrelation (SI Appendix, Figs. S1–S7)
only within the shortest distances for some traits (height, leaf
area, SLA, and LDMC), whereas, for others, the spatial effect
was negligible (LeafP, LeafN, and seed mass).
The CWM traits projected over the study area under the 36

different temperature and snow scenarios showed that most of
the CWM traits were highly sensitive to changes in both summer
temperature and SCD (Fig. 2 A–D and SI Appendix, Figs. S15,

Fig. 1. SCD (in days) and the 1,325 study sites across the study area in northern Norway (A). The distributions of the species-level trait values of the 135 study
species for seven studied functional traits (B). Summer temperatures (degrees Celsius) on maps and occurrences and median trait values for three contrasting
example species common in the area (C–E).
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S23, and S24), but some were clearly more driven by snow
conditions (LeafN, LeafP, and seed mass) and others by tem-
peratures (leaf area). Simulated warmer future climate with
longer snow-free season led to taller plants with bigger leaves
and faster resource acquisition strategies (e.g., high SLA or ni-
trogen content; Fig. 3 and SI Appendix, Figs. S8–S14 and
S16–S22). The only clear exception was that LeafP decreased
rapidly when shorter SCD was simulated (Fig. 2D).
We calculated community-level heterogeneity in the projected

CWM traits as an SD of CWMs with a moving window of 100-m
radius. These calculations showed that the high spatial variability
in CWM traits between communities was highly dependent on
late-lying snow patches (Fig. 2E; see also maps in Fig. 3). The
overall range of the CWM traits within the whole study area (the
difference between the minimum and maximum of the projected
CWM values for each of the scenarios and traits) showed a similar
pattern, but the largest shrinkage of range occurred in the scenario
with maximum shortening of SCD and no warming (Fig. 2F). The
CWM trait range increased in scenarios with summer warming but
only with small concurrent changes in SCD.
Both shorter SCD and warmer summer temperatures in-

creased local FD (calculated as multidimensional dispersion of
the functional trait values in each community) but decreased
functional evenness in the communities (Fig. 2G and SI Appen-
dix, Figs. S25–S32). The increase in FD largely coincided with
the increase in species count in local communities, although this
increase was higher in the scenarios with the maximum rate of
warming than in the scenarios with the greatest decrease in SCD
(Fig. 2H).
Our previous study with the same dataset as used here sug-

gested that declining SCD may cause a high rate of regional
extinctions among snow specialist species (29). According to our
models here, 15 species are projected to lose more than 95% of
their distributional area under the most severe combination of
climate and SCD scenarios (RCP8.5 and −40% SCD). The trait

profiles of these 15 species threatened by regional extinction
differed from the other species. These species were significantly
shorter (5 cm on average vs. 25 cm; Wilcoxon two-tailed rank
sum test, P < 0.001) and had smaller leaves (67 mm2 vs.
685 mm2; P < 0.001) and seed mass (0.28 mg vs. 0.93 mg; P =
0.013) and marginally lower SLA (15.4 mm2/mg vs. 18.3 mm2/mg;
P = 0.069) and higher LDMC (0.33 g/g vs. 0.28 g/g; P = 0.10).
Leaf nitrogen (21.0 mg/g vs. 23.4 mg/g; P = 0.42) and phosphorus
(2.3 mg/g vs. 2.2 mg/g; P = 0.68) contents showed no detectable
difference in trait values between the groups.
Our models display clear local-scale effects of temperature on

functional composition and diversity of tundra vegetation
(Fig. 4). Nevertheless, we found also clear deviations from these
trends triggered by heterogeneous SCD, highlighting the im-
portance of snow for functional properties of vegetation in cold
climate ecosystems. In the forthcoming decades, increasing tem-
peratures and shorter SCD have the potential to jointly drive the
tundra toward strong directional changes in plant traits, altering the
functionality of the whole ecosystem. Importantly, depending on the
magnitude of the environmental change and trait in question,
changes in these two environmental factors will either buffer or
reinforce each other’s impacts on ecosystem processes.
Comparing our modeling results with previous experimental

and gradient studies that have related plant functional traits to
snow and temperature conditions is challenging for several rea-
sons: 1) Tundra experiments have been usually rather short term
and measured the trait variation mainly within species (intra-
specific trait variation [ITV]); 2) studies considering whole
communities and multiple traits are rare; 3) experiments that
have simulated both the advancement of snow melt and warming
of summer temperatures are largely missing, and the majority of
the studies have delayed the snow melt instead (30); 4) in many
cases, the vegetation responses triggered by experimental treat-
ments were driven by single species, which makes generalizations
difficult (31, 32); and 5) studies are very heterogeneous in terms

Fig. 2. The evolution of CWM traits, variability, and FD. The evolution of CWM of four traits under modeled scenarios in summer temperatures and SCD
(values between 36 modeled scenarios interpolated in the trait surfaces) (A–D). Color indicates the average values calculated over the study area for each of
the scenario. The CWM traits shown are plant height (A), leaf area (B), SLA (C), and LeafP (D). (E–H) The evolution of community-level heterogeneity of the
CWM traits calculated as a SD within a 100-m-radius moving window; values of the seven studied traits stacked, normalized, and averaged (E; heter., het-
erogeneity), the overall range of CWM values within the whole study area (F; values of the seven studied traits stacked, normalized, and averaged), average
FD (G; Fdis, functional dispersal), and average species richness (H; N sp, i.e., pure species count). Current condition in upper left corner, and the extreme
scenario in lower right. Only areas above 400 m a.s.l. are considered in calculations.

21482 | www.pnas.org/cgi/doi/10.1073/pnas.2001254117 Niittynen et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2001254117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2001254117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2001254117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2001254117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2001254117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2001254117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2001254117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2001254117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.2001254117


of duration, gradient lengths, treatment magnitudes, ambient
snow and temperature conditions, and overall methodologies.
However, despite this variability, commonly reported results
largely concur with our findings, including the increase of plant
height and leaf sizes as a response to shorter snow season and
higher summer temperatures (24, 33–35), and a higher leaf nu-
trient concentration and SLA in late melting sites or under snow-
adding treatments (24, 36, 37). In this study, we examined the
indirect effects of changing environmental conditions on CWM
traits (i.e., species turnover), but intraspecific trait responses can
also be important, especially at shorter time scales (24). How-
ever, both turnover and ITV seem to shift the community trait
compositions in the same direction; for example, both warmer
conditions and shorter SCD lead to taller individuals within
species as well as directional community turnover toward taller
species (20).
Our study area is compact, but it contains wide environmental

gradients and range of habitat types representative of large parts
of the tundra biome. Even if the species pool somewhat varies
between regions, similar vegetation shifts along the snow accu-
mulation gradients have been reported all across the tundra bi-
ome (23, 37). Thus, we consider our results applicable for a wide
range of tundra areas where topographic heterogeneity allows
uneven snow accumulation and duration. In flat and dry regions,
snow may still be an important filter for species, but applying our
results to such areas should be done by carefully considering the
ambient temperature and snow conditions of the target region.
Furthermore, Arctic regions where changing snow and thermal
conditions will trigger drastic changes in permafrost and the
currently waterlogged soils may react very differently compared

to our Low Arctic system (38, 39). In essence, snow conditions
are projected to change all over the tundra biome, but the
magnitude may vary. Thus, the different future projections sim-
ulated here can be relevant for different regions. Furthermore, it
should be noted that the current limited knowledge makes it
difficult to assess how snow conditions at different topographic
positions will respond to climatic changes. Thus, our approach to
simulate similar percentage change in SCD across the snow ac-
cumulation and elevational gradients is a useful but nevertheless
simplified approximation of the potential changes.
The importance of snow in controlling functional trait com-

position of tundra vegetation may rise from several mechanisms.
Firstly, SCD limits the length of the growing season, but it is also
tightly linked to the thickness of the snowpack and consequently
its insulating capacity. Thus, snow has strong local control on
both summer and winter thermal conditions and incoming solar
energy (32, 40, 41). Secondly, snow conditions are also directly or
indirectly linked to many environmental factors other than en-
ergy and temperatures. These include, for example, soil mois-
ture, wind desiccation, ice crystal abrasion, soil forming
processes, and nutrient mineralization (32, 41, 42). All these
mechanisms may select plant species according to their life
forms, size, structure, and biochemistry and thus act as strong
local filters, producing a wide range of functionally different
plant communities along the snow gradients. The fine-scale snow
accumulation is largely controlled by local topography in tundra,
but topography is also driving soil moisture and water flow,
which are not linked to snow and meltwaters. However, we
controlled the soil moisture effects emerging from local topog-
raphy by including a topographic wetness index in our models.
This enabled us to dissect the unique impacts of SCD on species
traits, not blurred by the potentially confounding effect of the
local topography.
It is noteworthy, that according to our models, climate change

will increase the average FD in tundra but decrease the vari-
ability between communities. This outcome is based on the fact
that if the late-lying snowbed environments are lost, the com-
munities will be more diverse as such but functionally more alike;
that is, there will be increasing similarity in their functional trait
profiles. Therefore, the ecosystem resilience and stability may
increase locally but decrease at the scale of the whole ecosystem,
due to these conflicting trends (2, 14). Our results show that the
loss of snowbed environments will wipe out snow specialist
species that differ from the other species, especially in their size-
related traits (short species with small leaves and seeds),
whereas, for leaf economics, there are no clear trends. Thus,
especially in the case of size-related traits, species extinctions
may also play an important role in the landscape-level func-
tionality, not only compositional turnover caused by colonizing
species (29, 34).
Recent coarse-scale investigation (43) found relatively weak

trait–environment relationships of plot-scale plant communities
at global scale but large within-region variability, indicating high
relevance of local conditions. Our results support those findings:
Even though the wide temperature gradient in our study area
had a clear effect on functional composition, the local snow
conditions were notably important determinants of how the ef-
fects of climate change are manifested in tundra vegetation. This
suggests that snow conditions represent local-scale agents whose
importance is masked out in coarse-scale analyses. Heteroge-
neous SCD is a characteristic element of Arctic and alpine
landscapes. It is evident that this environmental variability en-
ables relatively high taxonomic diversity, as found in earlier
studies (25, 29, 42), but also high FD and variation between
communities as highlighted here.
An Arctic-wide study explored relationships between tem-

perature, moisture, and largely the same functional traits as in-
vestigated here (20). It concluded that the temperature−trait

Fig. 3. CWM SLA predicted over the study area in current climate and under
19 different scenarios combining specific change in summer temperatures or
SCD for years 2049–2070. Insets show the distribution of CWM SLA for each
of the scenarios in the study area. Dashed lines show minimum and maxi-
mum CWM SLA values under each of the scenarios. Areas below 400 m a.s.l.
were excluded from the scenario maps to avoid prediction to nonanalog
climate space and extrapolation outside the model calibration data. Other
white areas in maps represent major water bodies. SLA was chosen as an
example trait, due to its commonness in ecological literature (for similar
figures of other traits, see SI Appendix, Figs. S8–S14).
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relationships are strongly dependent on local soil moisture
conditions, and that, especially, traits related to leaf economics
had weaker links to summer temperatures than expected. We
propose that snow conditions have a role similar to soil moisture
and mediate the effects of other environmental factors on trait
compositions. We also showed that the traits that did not show
such clear relationships with temperature at Arctic-wide scale
had, here, clear links to snow conditions, an environmental fac-
tor that is not typically considered in studies investigating trai-
t−environment relationships in cold ecosystems.
The importance of snow has been demonstrated for plant

distributions, biodiversity patterns, and functions of tundra
ecosystems (24, 29, 44), but at least two bottlenecks exist,
obstructing putting this knowledge into action and routine inte-
gration of fine-scale snow information into ecosystem models of
Arctic tundra. Firstly, availability of snow information at eco-
logically relevant spatiotemporal scales is rather poor. Here we
provided a procedure applicable to any region to construct such
information, but, for successful applications across large areas,
closer cooperation between remote sensing specialists and ecolo-
gists is needed.
Secondly, snow has complex relationships with global climate

patterns. The local snow conditions are a result of tangled in-
teractions between temperature, precipitation, wind, radiation,
and local topography (45). This complexity exists also in our
mountainous study area, as SCD has surprisingly low correlation
with temperatures (rs = −0.45). In recent decades, northern
Fennoscandia has experienced a slight increase in winter pre-
cipitation and maximum snow depth but a significant decrease in
spring snow depth and SCD (29, 46, 47). This indicates that gains
in winter snowfall are not enough to counterbalance the ad-
vanced snow melt caused by higher spring and summer tem-
peratures (48). However, rough projections of the future snow
conditions present huge variation between Arctic regions and
demonstrate high uncertainty. Here we simulated a wide range
of SCD scenarios, but it is difficult to evaluate which one is the
most probable for the study area and is even more problematic
for other Arctic regions. Given the high importance of snow con-
ditions for the future of tundra vegetation, these uncertainties in

snow projections represent an important open question to be
tackled by future research and methodological development in cli-
mate change impact modeling.
Finally, we acknowledge that we have used correlative models

in our data analyses that cannot easily account for population
dynamics, functional plasticity, dispersal limitation, species in-
teractions, and time lags in responses (49). We also recognize
that the most drastic climate and snow scenarios used in our
study include an increased risk for making extrapolations to
novel environmental conditions (outside the range of the data
used in model fitting), which produces some uncertainties in
those projections. Another important point is that the traits vary
also within species, and this ITV can be important along the
environmental gradient, especially in the shorter term. However,
we consider that there are multiple aspects in our study design
and methodology that reduce the potential shortcomings related
to these questions: 1) The study area is rather compact, and,
thus, no severe dispersal limitation is likely to occur; 2) our study
area consists of the maximum environmental gradients found in
northern Fennoscandia; and, 3) although ITV can be important,
the ITV seems to follow the same patterns as the trait variation
between species, and it should not change our conclusions but
rather make them stronger.

Conclusions
Previous studies have shown the importance of snow in modu-
lating microclimate, altering species distributions, extinction
rates, and species richness (7, 29, 40, 42, 44). Here we demon-
strate that the same holds for plant functional composition and
diversity in Arctic tundra. SCD is strongly linked to functional
traits, and the local manifestation of climate warming effects on
tundra vegetation is dependent on the evolution of the snow
conditions. Consequently, realistic assessments of the future
Arctic vegetation patterns and ecosystem functioning require
acknowledging the role of snow in tundra vegetation models and
robust projections of the future snow conditions at fine spatial scales.

Fig. 4. A conceptual summary of the main results. (A) Increasing temperatures and/or shorter SCD will have directional effects on CWM of the most im-
portant plant functional (Func.) traits, but the magnitude of the effects is highly dependent on which one of the climatic factors is changing (A). Under
current climate, topography generates uneven snow accumulation and high functional turnover across the local SCD gradients (B). Shorter SCD and warmer
summer temperatures will increase the local functional richness but reduce the functional variability between communities, that is, subtract the importance of
local topographic gradients associated with snow accumulation and persistence (C).
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Materials and Methods
Study Area. The study area is located in northern Norway and consists of
195 km2 of mountainous tundra (70°0′N, 26°14′E). The altitude spans from
120 m above sea level (m a.s.l.) to 1064 m a.s.l. (Mt. Rastigaisa is the highest
peak). Therefore, the area contains large environmental gradients, espe-
cially in temperatures and snow conditions (Fig. 1). The lowest valleys are
forested (mainly Betula pubescens subsp. chzerepanovii), and the tree line
reaches the altitudes of 250 m a.s.l. to 350 m a.s.l., depending on slope as-
pect. The tundra above is mostly dominated by dwarf shrubs (e.g., Empe-
trum nigrum subsp. hermaphroditum and Betula nana subsp. nana) (50).
Different snowbeds, wetlands, and meadows are inhabited more by forbs
and graminoids, but these habitats are relatively small and restricted to
topographically sheltered locations and along mountain creeks (44). The
area is grazed by reindeer mainly in winter and by lemmings and voles that
have distinctive population dynamics with rather rarely occurring peak years
(51). The wide environmental gradients and contrasting plant communities
within the relatively compact study area with minimal direct human impact
serve as a suitable modeling environment for testing hypotheses of the
potential effects of climate changes on natural vegetation patterns (52).

Vegetation Data. The plant community data consist of 5,300 1-m2 vegetation
plots clustered within 1,325 study sites. In each site, four plots were situated
5 m from the center of the study site toward the four principal compass
directions. All vascular plants from all plots were identified at species level
(with a few exceptions, such as Taraxacum spp.), and their percentage cover
values were estimated. In this study, we used site-level data with species
cover values averaged over the four plots within each site. Nomenclature
and species identification follow the species lists by the Finnish Biodiversity
Information Facility (https://laji.fi). The data were collected in summers
2014–2018.

Trait Data. Trait observations for seven widely used plant functional traits
were downloaded from three international databases: Tundra Trait Team
(TTT) (10), TRY Plant Trait Database (TRY) (9, 27), and the Botanical Infor-
mation and Ecological Network (BIEN) (28). The seven traits were plant
vegetative height, SLA (leaf area per leaf dry mass), LDMC, leaf area, LeafN,
LeafP and seed dry mass. The total number of available trait observations for
the study species was 65,746. We calculated a median trait value per species
per trait (median instead of mean to handle possible outliers in the het-
erogeneous original data), preferably by using the TTT data, because the TTT
dataset is collected from ecosystems similar to the study system here. If TTT
contained less than five trait observations per trait for a given species, we
also used data from TRY and BIEN. For species that lack species-level trait
observations, we calculated genus or family-level values. For cryptogams
that do not have seeds but spores instead, we used the minimum seed mass
found among the other study species (0.001 mg) to reflect their dispersal
capability. The species-specific medians covered 96.2 to 99.4% of the cover
weighted community data, and thus, the genus- and family-level trait values
had only a trivial effect on the CWM traits.

TRY trait observations correspond to TRY trait ID numbers 3106 (height),
47 (LDMC), 3108, 3109, 3110, 3111, 3112, 3113, and 3114 (leaf area; for species
with compound leaves only, 3108, 3110, 3112 and 3114), 14 (leaf N), 15 (leaf
P), 26 (seed mass), and 3115, 3116, and 3117 (SLA).

FD is a rather complex concept of biodiversity and is dependent on several
choices made by the researcher (13). During recent decades, there have been
suggested multiple methodologically contrasting indices that may also give
contrasting results (53). Therefore, we calculated six indices that describe the
aspects of FD and treat the trait data differently. Prior to the FD calculations,
we log-transformed the species-specific median values for height, leaf area,
and seed mass, because these three traits had few very large values possibly
fully overriding the effects of other traits and species in calculating FD. After
this, we also standardized all seven traits. We used the species abundances as
weights in the FD calculations (except in calculating FDgp, a dendrogram-
based functional diversity index). See Table 1 for a summary of the calcu-
lated FD indices.

Environmental Data. This study focuses mainly on the effects of changing
summer temperatures (Tsummer), and SCD. Tsummer is an average free air
temperature for June, July, and August. It is based on a gridded climate
dataset introduced in Aalto et al. (56). Aalto et al. utilized the climate record
of 942 climate stations in Sweden, Norway, and Finland, and a digital ele-
vational model, to statistically model climate surfaces at 50-m resolution (30-
y climate period: 1981–2010), resampled here to 10-m resolution. Tsummer is
the only climatic variable used here, as all macroclimatic factors are highly

correlated (r |>0.9|) in the compact study area. SCD is based on 135 cloud-
free Landsat (Thematic Mapper 5, Enhanced Thematic Mapper Plus 7, and
Operational Land Imager 8) images covering the whole study area from
March to October in 1984–2016. We calculated a normalized difference
snow index from the images and then binarized (snow/no snow) them. From
the binarized imagery, we calculated average melting and snowfall days
pixel by pixel using binomial regression. For a detailed description of the
method, workflow, and validation of the SCD variable, see refs. 29, 44.

Arctic SCD is projected to decrease by 10 to 40% before 2050 (48). Because
the range in SCD projections is that large, we simply reduced the observed
pixel-based SCD by 5%, 10%, 15%, 20%, 25%, 30%, 35%, and 40% to test a
wide range of possible snow trajectories. Thus, the absolute change is
smaller in sites with short SCD and bigger in late-lying snowbeds. The Tsummer

variable was projected for the period 2040–2069 forced by three RCP sce-
narios, 2.6, 4.5, and 8.5. The projected temperatures were averaged over 23
CMIP5 (Coupled Model Intercomparison Project phase 5) climate simulations
(57). The nine SDC and four temperature scenarios (no-change scenario also
included for both variables) resulted in 36 possible combinations which were
all used in the vegetation projections over the study area.

Our target was to construct reasonable and realistic models for the cover
of the study species. Therefore, we also included four other environmental
predictors—in addition to Tsummer and SCD variables—known to be impor-
tant for plants in tundra environments (26). These additional variables were
potential annual incoming solar radiation (RAD), topographic wetness index
(SAGA [System for Automated Geoscientific Analyses] wetness index algo-
rithm; hereafter, TWI), surface soil quality (SOILQ), and soil edaphic
conditions (EDAP).

RAD and TWI were derived from an ∼2-m-resolution digital elevation
model (DEM). The DEM was constructed by mean merging and edge
matching 10 individual surface model tiles produced by ArcticDEM program
by the Polar Geospatial Center. They have applied stereo autocorrelation
techniques to overlapping pairs of high-resolution Worldview satellite im-
ages to create three-dimensional models of the terrain surfaces. Stereo-
graphic methods are affected by high vegetation but are working well in
tundra areas covered by low-stature plants.

The potential annual incoming solar radiation (in kilowatt hours per
square meter per year) was calculated using the Potential Incoming Solar
Radiation Tool from SAGA-GIS (System for Automated Geoscientific Analyses -
Geographic Information System) Terrain Analysis toolbox and utilizing Sky
View Factor analyses with 10-km radius from the same toolbox. The SAGA
wetness index algorithm that was used to calculate the TWI variable is a
modification of the traditional topographical wetness index. Prior to the
TWI calculation, we preprocessed the DEM by filling possible sinks and then
used it to calculate the specific catchment area and slope required by the
TWI algorithm.

SOILQ represents the quality of the surface soil conditions with five classes:
peat, fluvial sediments, glacial till, bolder field, and bare rock. SOILQ was
digitized and interpreted from fine-scale satellite images (resolutions of
0.5 m to 1.4 m) and verified with field examinations. EDAP characterizes the
nutritional status of the bedrock and was calculated as the downhill Eu-
clidean distance to the shale belt (the only base-rich rock in the area) scaled
from 0 to 100. Areas located on the shale belt were valued at 100, and areas
uphill from shale belt or outside the area where the shale belt drains were
set to 0. The geological bedrock data were gathered from the bedrock ge-
ology database maintained by Geological Survey of Norway (geo.ngu.no/
kart/berggrunn/). Values of the predictors were extracted for the study
points from rasters with the original resolutions, but, for spatial predictions,
all predictors were resampled with bilinear interpolation to 30-m spatial
resolution (as in Landsat satellite images used in constructing the SCD vari-
able). SOILQ was an exception because it is a nominal variable, and therefore
a maximum area aggregation was used instead of bilinear interpolation.

Modeling. All data processing and statistical analyses were performed using
statistical software R (58). The models were fitted with randomForest (59)
and gbm (60) R libraries with the help of streamlined modeling functional-
ities of the caret library (61). All raster processing utilizes functions of the
raster library (62).

We modeled the cover values of 135 species individually using two
modeling methods, generalized boosted models (GBM) and random forests
(RF) and their ensemble. Before the modeling, the absolute cover values were
transformed to relative cover values, so that each species-specific cover value
is a proportion of the total vegetation cover within each study site. The 135
species consist of all vascular plant taxa recorded in at least eight study sites.
The modeling method specific modeling parameters were tuned by testing a
range of parameter combinations (GBM: interaction depth = 3, 4, 5;
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n.trees = 500, 1,000, 1,500, 2,000, 2,500; shrinkage = 0.01, 0.005, 0.001;
n.minobsinnode = 5, 10; RF: mtry = 2, 4, 6, 8, 10). The parameters leading to
the best predictive performance were selected for each species separately.

The predictive performance of the models was tested with four-fold cross-
validation repeated three times for each species. There the data are divided
randomly into four subsets. Each subset is, in turn, removed from the data,
and the model is fitted with the remaining data points and then used to
predict to the withheld data. As this procedure is repeated three times, each
data point is predicted exactly three times. As a final prediction, we took an
average of these three predictions. The overall predictive performance at
the community level was evaluated by examining how well the models were
able to reconstruct the CWM of the seven traits. We used squared correla-
tion (R2) between the observed and reconstructed CWM traits as the eval-
uation metric. The model performance was tested for GBM and RF
separately and for ensemble modeling methods: simple mean and predictive
performance (R2) weighted mean of the two models. The latter produced
the highest predictive performance and was used to construct the spatial
predictions across the study area and the range of future scenarios.

To analyze which species are likely to disappear from the study area, we
fitted models similar to those we used to model the cover values, but with

binary species data (presence/absence), and projected the species’ distribu-
tions under each temperature and SCD scenario (ensemble prediction: a
species was considered as present if both modeling methods [GBM and RF]
predicted occurrence). We checked which species were predicted to lose
more than 95% of their current range within the study area and then tested
whether the functional trait values of these species differed statistically from
the traits of all other species, by using two-tailed Wilcoxon rank sum test.

Data Availability. All data used in this manuscript are publicly available. and
are deposited in the Zenodo public data repository (https://doi.org/10.5281/
zenodo.3956705) (63).
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