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Abstract. The epigenetic regulation of gene expression (via 
DNA methylation, histone modification and microRNA inter-
ference) contributes to a variety of diseases, particularly cancer. 
Protein deubiquitination serves a key role in the mechanism 
underlying histone modification, and consequently influences 
tumor development and progression. Improved character-
ization of the role of ubiquitinating enzymes has led to the 
identification of numerous deubiquitinating enzymes (DUBs) 
with various functions. Gastric cancer (GC) is a highly 
prevalent cancer type that exhibits a high mortality rate. Latest 
analysis about cancer patient revealed that GC is sixth dead-
liest cancer type, which frequently occur in male (7.2%) than 
female (4.1%). Complex associations between DUBs and GC 
progression have been revealed in multiple studies; however, 
the molecular mechanism underpinning the metastasis and 
recurrence of GC is yet to be elucidated. Generally, DUBs 
were upregulated in gastric cancer. The relation of DUBs and 
tumor size, classification and staging was observed in GC. 
Besides, 5‑yar survival rate of patients with GC is effeccted 
by expression level of DUBs. Among the highly expressed 
DUBs, specifically six DUBs namely UCHs, USPs, OTUs, 
MJDs, JAMMs and MCPIPs effect on this survival rate. 
Consequently, the association between GC and DUBs has 
received increasing attention in recent years. Therefore, in the 
present review, literature investigating the association between 
DUBs and GC pathophysiology was analyzed and critically 
appraised.
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1. Introduction

Epigenetic mechanisms are implicated in tumorigenesis and 
cancer progression, and are defined as heritable changes that 
do not affect the DNA sequence. Examples include DNA 
methylation, histone modification and microRNA  (miR) 
interference (1). Histone modification serves an important role 
in transcriptional regulation, DNA repair and replication, and 
chromosomal condensation. Several studies have indicated 
that histone modifications typically occur at the N‑terminus, 
primarily in the form of acetylation, methylation, phosphory-
lation or ubiquitination (2,3).

Ubiquitination describes a post‑translational modifica-
tion of proteins under the conditions of normal homeostasis 
or disease, which involves the addition of the evolutionarily 
conserved small protein ubiquitin (4) or UBLs (ubiquitin‑like 
proteins) (5) that tag the protein for proteasomal degradation 
or non‑degradative processes  (6). Ubiquitin is a 76‑amino 
acid polypeptide that can covalently conjugate with protein 
substrates via a mechanism involving three enzymes: 
Ubiquitin‑activating (E1), ubiquitin‑conjugating (E2) and 
ubiquitin ligase (E3). The ubiquitination of a specific protein 
substrate requires the selective recruitment of E1, E2 and 
E3 (7‑9). In eukaryotic cells, the structure of ubiquitin is highly 
conserved and the protein responds to certain chemical signals 
(such as phosphorylation, oxidation, misfolding and damage to 
the ubiquitinated protein) to induce the ubiquitin‑proteasome 
degradation pathway (10). Notably, the activity of deubiquiti-
nating enzymes (DUBs) directly influences the turnover rate, 
activity, regeneration and localization of various proteins in 
cells. In addition, DUBs serve an important role in homeo-
stasis (11), the stabilization and degradation of proteins, and 
signal transduction pathways (11). Changes in protein structure, 
abnormal spatial and temporal expression, and uncontrolled 
activity can result in the development of certain conditions, 
including arthritis, neurodegenerative and cardiovascular 
diseases, and tumors. In humans, DUBs can serve a role in 
the genesis of tumors as either oncogenes or tumor suppressor 
genes.
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The DUB protein family reportedly comprises 103 
members, the majority of which are cysteine proteases. As a 
result of similarities in their amino acid sequences and molec-
ular structures, these proteins can be divided into the following 
six families: Ubiquitin C‑terminal hydrolases (UCHs) (12), 
ubiquitin‑specific proteases (USPs), ovarian tumor‑related 
proteases (OTUs), Machado‑Joseph disease protein domain 
proteases (MJDs), Jab1/MPN domain‑associated metalloiso-
peptidase (JAMM) domain proteins and monocyte chemotactic 
protein‑induced proteins (MCPIPs) (13). To further summa-
rize and stratify the aforementioned proteins, subfamilies are 
also detailed in Fig. 1. USP16 (14), USP6NL (15), ubiquitin 
thioesterase otulin (OTULIN) (16) and family with sequence 
similarity 105 member A (FAM105) (17) were also recently 
discovered. The majority of these DUBs are associated with 
tumor progression and several studies have revealed the asso-
ciation between DUBs and gastric cancer (GC) (18,19). Of note, 
GC is the second leading cause of cancer‑associated mortality 
and the fourth most common cancer type worldwide (20,21).

The lack of a comprehensive understanding of the 
molecular mechanism underpinning GC metastasis and recur-
rence suggests that further investigation is required. Thus, 
DUBs and their potential association with the progression of 
GC were the primary focus of the present review. Within the 
present study, subsequent data analyses were performed using 
the Gene Expression Profiling Interactive Analysis (GEPIA) 
website (http://gepia.cancer‑pku.cn), which primary collates 
data from The Cancer Genome Atlas and the Genotype‑Tissue 
Expression project databases. The name of a each target gene 
was input into the GEPIA website and the corresponding data 
was extracted (22).

2. UCHs and GC

The enzymes of the UCH protein family contain a conserved 
catalytic domain known as the UCH domain, which comprises 
~230 amino acids  (23). This protein family includes four 
members, including UCHL1/protein gene product  9.5, 
UCHL3, UCHL5/UCH37 and BRCA1 associated protein‑1 
(BAP1) (24‑27). The activities of these proteins have been 
associated with the occurrence and development of cancer, and 
several studies have identified that UCHL1, UCHL5 and BAP1 
are specifically involved in the formation of GC (24‑26).

Using data extracted from GEPIA, the gene expression 
profiles of UCHs between GC samples and the paired normal 
tissues are presented in Fig. 2. The gene expression levels of 
UCHL3 and UCHL5 in tumor tissues were upregulated >2‑fold 
compared with normal tissues. To the best of our knowledge, 
no studies have reported the link between UCHL3 and GC; 
however, UCHL5 has been identified as a potential biomarker 
of GC with novel prognostic value. For elderly patients with 
dysregulated protein homeostasis, high levels of UCHL5 inhib-
ited proteasome activity, and were determined to promote the 
apoptosis of cancer cells (28). Regarding UCHL1, research has 
shown that it could be a candidate biomarker and therapeutic 
target for GC metastasis, as UCHL1 promoted this process 
via the Akt and Erk1/2 pathways (29). BAP1 expression is 
downregulated in gastric carcinoma and its decreased expres-
sion was associated with a malignant phenotype (histological 
grade) and a more advanced TNM stage (30). Furthermore, 

low BAP1 expression was revealed to be associated with 
poor prognosis in patients with gastric adenocarcinoma and 
GC (30).

Associations between UCHs and certain clinicopatho-
logical features, and the 5‑years survival rates of patients with 
GC are presented in Table I. High expression levels of UCHs 
in patients with GC were predominantly associated with tumor 
size and TNM stage, but not sex or age. Analysis of these 
expression levels indicated that the higher the degree of posi-
tive BAP1 and UCHL5 expression in GC, the higher the 5‑year 
survival rate of patients. Conversely, increased expression of 
UCHL1 was revealed to reduce the survival rate of patients.

3. USPs and GC

USPs are the most diverse family of DUBs and the USP 
subclass represents the majority of DUBs encoded by the 
human genome. Consequently, numerous studies have inves-
tigated their function, substrates and mechanisms of action 
in various diseases. The discovery of gene mutations and the 
upregulation of USPs in various types of cancer, and their 
potential for targeted small molecule‑mediated inhibition, 
indicates USPs as a promising therapeutic target. There is also 
increasing interest in the development of USP‑specific inhibi-
tors as antiviral and anticancer agents (31). In the present study, 
the USP family was stratified into 10 subgroups comprising 
USPs 1‑10. The gene expression profile of USPs was compared 
between GC and paired normal tissues (Fig. 3).

USP1s and GC. The USP1 subfamily includes 11 members: 
USP1 (32), USP10‑13 (33‑36), USP14‑16 (37‑39), USP17L2 (40), 
USP18 (41) and USP19 (42). Of the USP1 subfamily members 
investigated, the expression levels in CG tissues was higher 
compared with those in the adjacent normal tissues (Fig. 3). The 
expression levels of USP13 and USP18 were <10 Transcripts 
Per Million (TPM), which were relatively low compared with 
the other USP1s investigated (which were expressed at levels 
>10 TPM). USP17L2 expression was not detected. The highest 
levels of expression were noted for USP10, followed by USP14 
and USP11, which exhibited expression levels >20 TPM.

The expression of the majority of USP1s has been asso-
ciated with tumor growth, though studies into GC have 
predominantly investigated USP10, USP14 and USP15 (43). 
USP10 and USP14 are independent predictors of prognosis 
for patients with GC, and the increased expression of USP10 
in GC has been associated with the 5‑year survival rate of 
patients. A previous study demonstrated that the downregula-
tion of USP10, as well as the absence of USP14 expression 
in GC cells had significant effects on gastric wall invasion 
and lymph node metastasis, increased malignant biological 
behavior and reduced survival rate, as determined from a 
large number of clinical samples (44,45). Conversely, vimentin 
expression was upregulated in human GC tissues and cell 
lines as a result of deubiquitination, following interactions 
with USP14 and miR‑320a, which may contribute to the 
aggressiveness of GC cells (46). It was also reported that the 
direct targeting of USP14 and vimentin by miR‑320a inhibited 
GC cell proliferation, migration and invasion. miR‑320a not 
only directly suppresses vimentin expression, but also binds 
to USP14, indirectly downregulating vimentin in GC tissues. 
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Therefore, a high positive expression rate of USP14 correlates 
with a high recurrence rate in patients with GC (44,45).

USP2s and GC. The 10 USP2 family members are: USP2 (47), 
USP20 (48), USP21 (49), USP22 (50), and USP24‑29 (26,51‑55). 

Figure 1. Members of the DUB family. The DUB family contains numerous members, which have been divided into subfamilies. The USPs are the largest 
subfamily of DUBs, and were further divided into 9 subfamilies (USP1‑9) in the present study; CYLD lysine 63 deubiquitinase and USPL1 have been listed as 
other USP members. The first digits indicates the subfamily, for example, USP14 belongs to the USP1 subfamily. The subfamily classification of the ovarian 
tumor‑related protease family refers to existing taxonomies (102). DUB, deubiquitinating enzyme; USP, ubiquitin‑specific protease.

Figure 2. Gene expression profile of ubiquitin C‑terminal hydrolases between gastric cancer samples and paired normal tissues. Data were extracted using the 
Gene Expression Profiling Interactive Analysis website. UCH, Ubiquitin C‑terminal hydrolase; BAP1, BRCA1 associated protein‑1.
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As depicted in Fig. 3, the protein expression level of the USP2 
subfamily in GC tissues were typically higher compared with 
those in normal gastric tissues in 9/10 cases, although the 
opposite was true for USP20. Notably, USP26 and 29 were not 
detected in gastric tissues, yet USP22 was expressed at levels 
as high as 60.31 TPM.

USP20, USP22 and USP28 have been previously deter-
mined to be associated with GC. Compared with normal 
tissues, high expression levels of USP28 were detected in GC 
tissues, and were also associated with the distant metastasis of 
tumors. Conversely, USP28 downregulation may significantly 
inhibit the proliferation and migration of GC cells; however, the 

Figure 3. Gene expression profiles of ubiquitin‑specific proteases between gastric cancer samples and paired normal tissues. Data were extracted using the 
Gene Expression Profiling Interactive Analysis website. USP, ubiquitin‑specific protease. CYLD, CYLD lysine 63 deubiquitinase.
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effects of USP28 expression on the proliferation and migration 
of gastric epithelial mucosal cell lines were not significant (46). 
The aforementioned findings provide a novel insight for the 
development of therapeutic strategies to treat GC via the regu-
lation of USP28 (56). USP20 also serves an important role in 
gastric tumorigenesis and progression. A negative association 
between USP20 expression and tumor size, tumor invasion 
and TNM stage has previously been reported (Table I). It was 
revealed that USP20 expression negatively correlated with 
patient prognosis and its anti‑tumor activity. The mechanism 
underlying the effects of USP20 included the positive regula-
tion of claspin stabilization in GC, thus, USP20 represents 
a promising molecular target for the development of novel 
therapeutic drugs (57). USP22‑mediated protein stabilization 
of B cell‑specific Moloney murine leukemia virus integration 
site 1 promotes the stemness of GC stem cells as well as GC 
progression, and its expression may also serve an important 
role in gastric carcinoma (58‑60). Yang et al discussed that 
USP22 expresion is correlate with cancer progression. Where 
they found that around 57% of gastric cancer tisues showed 
high expression of USP22 comparing with normal connective 
tissue. This overexpression of USP22 consequentially effecct 
on tumor size, inavsion and metastasis (60). Additionally, both 
USP20 and USP22 expression are positively correlated with 
the 5‑year survival rate of patients with GC (57,60).

USP3s and GC. The USP3 subfamily represents the largest 
family of USPs and consists of the following 12 members: 
USP3 (61), USP 30 (62), USP31 (63,64), USP32, USP32P2 (22), 
USP33 (64), USP34 (65), USP35 (66), USP36 (67), USP37 (68), 
USP38 (69) and USP39 (70). As shown in Fig. 3, excluding 
USP32P2 and USP35, the expression of each member was 
upregulated in GC tissues compared with normal gastric tissues. 
The highest expression levels were exhibited by USP34 (37.21), 
while the lowest were reported for USP32P2  (0.33). The 
expression levels of USP30, USP31, USP32P2, USP35, USP37 
and USP38 were <10 TPM.

USP3 s may also serve as useful biomarkers to predict the 
prognosis of patients with GC. Studies investigating USP3s 
revealed their ability to influence cell proliferation, cell cycle 
regulation and transfer‑related protein expression (61). In vivo 
experiments revealed that USP3s promoted the growth and 
metastasis of GC. Additionally, the high expression levels of 
these proteins imparted a lower survival rate in patients (71). 
Studies have also discovered that tumor location, tumor infil-
tration depth and TNM stage are all associated with USP33 
upregulation, and affect the overall survival rate and prognosis 
of patients with GC. USP33 may also be linked with the 
prognosis of GC (62), and its high expression levels indicated 
longer survival times in patients (72).

It was also determined that short hairpin RNA‑mediated 
downregulation of USP39, another member of the USP3 
subfamily, inhibited GC cell proliferation and colony forma-
tion. USP39 inhibition also induced G2/M phase arrest and 
increased poly (ADP‑ribose) polymerase cleavage (Asp214) 
suggesting that USP39 is critical for GC cell proliferation. As 
USP39 is upregulated in certain types of cancer, and hyper-
proliferation is a hallmark of cancer, USP39 may represent a 
potential therapeutic target for the treatment of several cancer 
types (73). By contrast, miR‑133a expression was inversely 

correlated with USP39, which it directly targets by binding at 
the 3'‑untranslated region; the high expression rate of USP39 
indicated a longer survival time for patients (74).

USP4s and GC. The USP4 subfamily has a total of 11 members: 
USP4 (75), USP40 (76), USP41 (77), USP42 (78), USP43 (79), 
USP44, USP45 (80), USP46 (80), USP47 (80), USP48 (81) and 
USP49 (82). Generally, the expression of USP4 s in GC tissues 
was increased compared with those in normal adjacent tissues; 
however, USP40, USP44, USP45 and USP47 were downregu-
lated (Fig. 3). The expression levels of the seven upregulated 
members were all <10.

Studies into GC have investigated USP42, USP44 and USP47. 
It has been reported that USP47 may represent a drug resistant 
target for GC. Additionally, it was determined that miR‑204‑5p 
was downregulated in GC, and may inhibit the proliferation of 
GC cells by targeting USP47 and RAB22A, thus serving a role 
in suppressing cancer development. Therefore, the recovery of 
miR‑204‑5p expression may be a potential therapeutic strategy 
for the treatment of GC (83,84). In vitro analyses also demon-
strated that USP42 silencing suppressed cell proliferation by 
inducing G0/G1 arrest, and inhibited cellular invasion via matrix 
metalloprotease and epithelial‑mesenchymal transition regula-
tion. The increased expression of USP42 may be important in 
tumor progression and the metastasis of GC, and may serve as a 
prognostic marker (85). The combination of USP44 expression 
and DNA ploidy status may also serve as an independent prog-
nostic marker in GC. Notably, the expression rate of USP44 
in GC is negatively correlated with the 5‑year survival rate of 
patients (86).

USP5s and GC. The USP5 subfamily comprises six members, 
including USP5 (87), USP50 (88), USP51 (89), USP52 (90), 
USP53 (91) and USP54 (92). The expression of USP5s in GC 
and normal tissues differed (Fig. 3). Notably, the expression of 
USP52 in CG tissues was upregulated 3‑fold compared with 
that in normal gastric tissues, and USP52 was differentially 
expressed compared with USP5. The expression levels of 
USP50 and USP51 were <1 in normal and gastric tumor tissues, 
and although USP5s have been associated with multiple cancer 
types (93), no studies have reported the association between 
USP5s and GC.

USP6s and GC. At present, the USP6 subfamily comprises 
only two members, USP6 (94) and USP6NL (15). As presented 
in Fig. 3, the two members, particularly USP6, were not highly 
expressed in either GC or normal tissues. However, USP6 
has been reported to contribute to the progression of colon 
cancer and may therefore represent a valuable prognostic 
biomarker for patients. USP6NL (also known as RN‑tre) is a 
GTPase‑activating protein involved in the regulation of endo-
cytosis and signal transduction. USP6NL upregulation results 
in increased glycolysis in breast cancer cells and highlights 
a point of metabolic vulnerability for the targeting of certain 
therapeutic agents in a subset of aggressive basal‑like breast 
tumors. The association between the USP6 subfamily and GC 
progression requires further investigation (15,95).

USP7s and GC. USP7 is currently the only member of the 
USP7 subfamily. Its expression levels in GC tissues are 



SUN et al:  DEUBIQUITINATING ENZYMES IN GASTRIC CANCER 37

higher than those in normal tissue (46.63 TPM and 28.04 
TPM, respectively; Fig. 3). Studies investigating USP7 and 
its relation to GC are yet to be performed; however, H. pylori 
was reported to affect the expression of the USP family via 
alternative H. pylori‑specific mechanisms distinct from the 
conserved signaling pathways, during the activation of the 
innate immune response (18).

USP8s and GC. The roles of USP8 and its substrate (epidermal 
growth factor) have been evaluated in cancer therapy, and their 
possible targeting for the treatment of Cushing's disease has 
been investigated (96); USP8 is the only member of the USP8 
subfamily. As shown in Fig. 3, USP8 expression in GC tissues 
was increased ~2‑fold compared with that in normal tissues.

USP9s and GC. The USP9 subfamily comprises two members, 
USP9X and  Y. As presented in Fig.  3, the expression of 
USP9X in GC tissues was upregulated 2‑fold compared with 
that of normal tissues. By contrast, the expression of USP9Y 
in normal tissues was higher than that of cancerous tissues, 
though its overall expression was notably lower than that of 
USP9X. Upregulation of the deubiquitinating enzyme USP9X 
in GC suggested that it may be associated with certain onco-
genes, and it was also significantly associated with reduced 
survival rate (97). A link between USP9Y and GC has not yet 
been confirmed, although its expression has been revealed to 
correlate with certain breast cancer characteristics (98).

Other proteins and GC. Additional USP family members 
include CYLD lysine 63 deubiquitinase (CYLD) and USPL1. 
Their expression in GC tissues was notably increased 
compared with normal tissues (Fig. 3). The CYLD signaling 
pathway serves a biological function similar to that of the 
oncogenes in gastrointestinal tumors, and has been associ-
ated with the occurrence and development of GC (99,100). 
Moreover, genetic variations affecting USPL1 expression have 
been linked to breast cancer (101).

Analysis of USP gene expression in GC and normal tissues 
(Fig.  3) revealed that their expression in tumor tissues is 
markedly upregulated compared with that in normal tissues; 
the majority of GC and normal tissues exhibited detectable 
basal levels of USP expression. Of note, the expression of 
certain genes was upregulated >2‑fold; increased expres-
sion of USP52 (tumor=43.5; normal=13.6) was reported in 
normal tissues compared with GC samples. However, whether 
USPs may be considered as reliable prognostic indicators of 
GC requires further investigation. As presented in Table I, 
associations between USPs, and the clinicopathological 
features and prognosis of GC were reported. In addition, the 
increased expression of the majority of USPs in GC tissues 
was associated with poor prognosis. It was also revealed that 
the expression profiles of USP10, USP20 and USP33 were the 
opposite of those aforementioned.

4. OTUs and GC

A total of 18 OTU family DUBs exist in humans, the majority 
of which have been associated with the prognosis of patients 
with tumors. OTUs can be divided into four categories: 
OTUBs, OTUDs, A20s and OTULINs  (102). The gene 

expression profiles of OTUs in GC samples and paired normal 
tissues ware presented in Fig. 4.

OTUBs and GC. The OTUB family comprises two members, 
OTUB1  (103) and OTUB2  (104), which are expressed in 
the majority of tissues. In the present study, their expression 
was determined to be increased 2‑fold compared with that 
of normal tissues. Additionally, the expression of OTUB1 
in gastric tissues was markedly higher than that of OTUB2 
(which was almost undetectable), yet the expression levels of 
OTUB1 in GC tissues were as high as 93.09, which was twice 
that exhibited in normal tissues (Fig. 4). OTUB1‑isoform 2 
was reported to be a predictor of poor prognosis and to 
promote tumor progression in patients with GC (95). However, 
its potential clinical application as a marker of tumor invasive-
ness requires further investigation. Poor prognosis of patients 
with GC was revealed to correlate with high expression of 
OTUB1‑isoform 2 (105); the association between OTUB2 and 
GC remains to be further studied.

OTUDs and GC. OTUDs are the largest class of DUBs, which 
comprises the following nine members: OTUD1‑5 (106‑110), 
OTUD6A (111) and B (112), UDP‑N‑acetylglucosamine trans-
ferase subunit ALG13 homolog (ALG13) and hematological 
and neurological expressed 1 protein (HIN1 L) (102). Using 
data extracted from GEPIA, the expression levels of both of 
the OTUD subfamily members in GC and normal tissues 
were determined to be relatively low. OTUD6A and HIN1L 
were undetectable, although the expression levels of OTUD4 
and OTUD5 were >10 in GC tissues. Further investigation is 
required to determine the pathophysiological role of OTUDs 
in GC progression.

A20s and GC. The A20 subfamily contains five members: 
A20, Cezanne (113), Cezanne2 (114), Ubiquitin thioesterase 
ZRANB1 (TRABID)  (115) and ubiquitinating protein 
VCIP135 (VCPIP) (102). As exhibited in Fig. 4, the expression 
of VCPIP in GC and normal tissues was notably high, yet low 
expression levels of other A20s were detected. Additionally, to 
the best of our knowledge, no data regarding the expression of 
TRABID has yet been reported. Inhibition of A20 expression 
or overexpression of miR‑200a may prevent the polydial-
lylation of receptor interacting serine/threonine kinase 1, and 
promote caspase‑8 lysis and tumor necrosis factor‑related 
apoptosis inducing ligand‑associated apoptosis (102). A20 is 
able to induce apoptosis in GC cells, thus may be considered 
as a potential therapeutic target for GC (116). In the current 
study, the expression levels of A20s in GC tissues were not 
high, yet notable levels of VCPIP were detected, suggesting 
that further study into the prognostic value of A20s in GC is 
required.

OTULINs and GC. The OTULIN subfamily comprises only 
two members, OTULIN and FAB105A  (102). The role of 
OTULIN in immune homeostasis and inflammation has been 
reported to result in certain autoimmune and cancer‑associ-
ated defects (117). Data analysis in the present study indicated 
that OTULIN and FAB105A expression in GC tissues was 
increased compared with that in normal tissues; however, the 
levels of expression remained low (Fig. 4). Conversely, the 
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expression levels of OTUB1, OTUD5, ALG13 and VCPIP 
were markedly increased. In particular, OTUB1 expression 
in GC tissues was 93.09, which is >2‑fold higher than the 
expression level observed in healthy tissues. Moreover, certain 
studies have revealed that the high expression rate of OTUB1 
in GC tissues was associated with poor prognosis (105,118). 
The association between the prognosis of patients with GC 
and the expression of other members of the OTU subfamily 
remains unclear; thus further investigation is required.

5. MJDs and GC

Ataxin (ATXN)3, ATXN3L, Josephin domain containing 
(JOSD)1 (119) and JOSD2 (120) all belong to the MJD subfamily. 
In the present study, JOSD1 and 2 were revealed to be expressed in 
both GC and normal tissues; however, the expression of ATXN3L 
was not detected (Fig. 5). The expression levels of ATXN3 and 
JOSD1 in GC tissues were increased compared with normal 
tissues. Notably, the expression level of JOSD2 was downregulated 

Figure 4. Gene expression profiles of ovarian tumor‑related proteases between gastric cancer samples and paired normal tissues. Data were extracted using the 
Gene Expression Profiling Interactive Analysis website. NF, not found.

Figure 5. Gene expression profiles of Machado‑Joseph disease protein domain proteases between gastric cancer samples and paired normal tissues. Data were 
extracted using the Gene Expression Profiling Interactive Analysis website. NF, not found. ATXN, ataxin; JOSD, Josephin domain containing.



SUN et al:  DEUBIQUITINATING ENZYMES IN GASTRIC CANCER 39

in GC samples. Furthermore, the expression of ATXN3 in GC 
was determined to be associated with tumor cell proliferation and 
infiltration (121). Therefore, the association between MJDs and the 
prognosis of patients with GC requires further analysis.

6. JAMMs and GC

The JAMM subfamily comprises 12 members, including COP9 
signalsome subunit (CSN)5, 26S proteasome non‑ATPase regu-
latory subunit 14 (POH1) (122), BRCA1/BRCA2‑containing 
complex subunit  3 (BRCC3)  (123), MPN domain 
containing (MPND)  (124), myb‑like SWIRM and MPN 
domains  1 (MYSM1)  (125), eukaryotic translation initia-
tion factor 3 subunit (EIF3)H, CSN6 (126), 26S proteasome 
non‑ATPase regulatory subunit  7 (PSMD7)  (127), EIF3F, 
anti‑Müllerian hormone (AMSH) (128), AMSH‑LP (129) and 
pre‑mRNA‑processing‑splicing factor 8 (PRPF8) (130). The 
data presented in Fig. 6 demonstrate that the expression levels of 
JAMMs in GC tissues were upregulated compared with those 
in normal tissues, particularly EIF3H and EIF3F, in which the 
expression levels were >120. The expression of BRCC3 was not 

detected. These findings suggest that the inhibition of CSN5 
may result in a significant increase in p53 levels, indicating that 
CSN5 may be a crucial regulator of p53 and its associated intra-
cellular signaling pathway, via CSN5‑mediated cell activity.

Moreover, upregulation of CSN5 has been significantly asso-
ciated with the progression of GC; therefore, CSN5 may represent 
a novel target for the treatment of this disease (131). EIF3H was 
also reported to influence the progression of GC (132), and there-
fore, may serve as a potential therapeutic target. In particular, 
the strategy of inhibiting EIF3H expression may suppress 
the progression of GC and improve patient prognosis  (131). 
Furthermore, EIF3F was determined to serve an important role in 
the recurrence of GC; increased expression rates of EIF3F in GC 
were associated with higher 5‑year survival rates of patients (133).

7. MCPIPs and GC

The MCPIP subfamily includes MCPIP1 (134), MCPIP2‑4 (135), 
MCPIP5 (136), MCPIP6 and 7 (137). The expression data of the 
MCPIP subfamily in GC and normal tissues are presented in 
Fig. 7. MCPIPs were expressed at markedly low levels in GC 

Figure 6. Gene expression profiled of the Jab1/MPN domain‑associated metalloisopeptidases between gastric cancer samples and paired normal tissues. Data 
were extracted using the Gene Expression Profiling Interactive Analysis website. NF, not found.

Figure 7. Gene expression profiles of monocyte chemotactic protein‑induced proteins between gastric cancer samples and paired normal tissues. Data were 
extracted using the Gene Expression Profiling Interactive Analysis website. NF, not found. MCPIP, monocyte chemotactic protein‑induced proteins.
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and normal tissues; and only MCPIP1 was expressed at levels 
>10. It has been demonstrated that MCPIP3 serves a negative 
role in the migration of human colorectal cancer cells (138). In 
the same study, researchers demonstrated that overexpression of 
MCPIP3 inhibit cell migration, which confirmed by downregu-
lation of E‑cadherin (Marker of EMT). Alternately, mutated 
MCPIP3 was responsible for enhancing cancer cell migration; 
However, MCPIP3 expression could not inhibit the cell growth 
and proliferation (138). Though none of the MCPIP family 
members were determined to be associated with the 5‑year 
survival rate of patients with GC. In addition, the expression 
profiles of MCPIP5‑7 in GC and normal tissues have not yet 
been determined. Therefore, the association between MCPIPs 
and GC should be further evaluated in the future.

8. Conclusions and future perspectives

According to global cancer statistics in 2018 (125), 18.1 million 
new cancer cases and 9.6 million cancer‑associated mortali-
ties were reported worldwide, and the incidence of GC was 
ranked sixth; the incidence of GC was 5.7% (18.1 million) and 
the mortality rate was 8.2% (9.6 million) of the total cancer 
cases. Furthermore, the incidence of GC in males was 7.2% 
(9.5 million), and the mortality rate was 9.5% (5.4 million), 
compared with an incidence of 4.1% (8.6  million) and 
mortality rate of 6.5% (4.2 million) in female patients (139). 
The high prevalence and mortality rates suggest that novel 
therapeutic strategies are required to treat this disease. The 
present review focused on the association between GC and 
DUBs. The present study reported that DUBs are typically 
upregulated in the majority of GC tissues (79%). A total of 25% 

of the reported GC cases exhibited a ≥2‑fold increase in DUB 
expression compared with that of normal tissues. Only 19% 
of healthy tissues exhibited enhanced USP32P2 and USP52 
expression, in which this expression was twice the level of that 
in GC tissues (Fig. 8D). Notably, USP17L2, USP26 and USP29 
expression was detected in both GC and normal tissues.

On the contrary, the number of DUBs associated with GC 
was determined to be 29%. Following analysis of data from 
previously published studies (Table I), the expression of DUBs 
in GC and normal tissues was not determined to be associ-
ated with either sex or age; however, an association between 
DUBs and tumor size, classification and staging was observed. 
In addition, the expression level of DUBs was significantly 
associated with the 5‑year survival rate of patients with GC. 
Among the upregulated genes in GC, six DUBs were linked 
to a high 5‑year survival rate, though the difference between 
the two was not significant. Thus, DUBs may serve a dual 
role in the prognosis of GC. However, further investigation is 
required. Providing that DUBs can be divided into two catego-
ries according to the prognosis of GC, the common features 
associated with this disease and DUBs may be identified, in 
which DUBs may be considered in the development of treat-
ments for GC.
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