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The scientific literature describing the effects of weak magnetic fields on living systems
contains a plethora of contradictory reports, few successful independent replication studies
and a dearth of plausible biophysical interaction mechanisms. Most such investigations have
been unsystematic, devoid of testable theoretical predictions and, ultimately, unconvincing.
A recent study, of magnetic responses in the model plant Arabidopsis thaliana, however,
stands out; it has a clear hypothesis—that seedling growth is magnetically sensitive as a
result of photoinduced radical-pair reactions in cryptochrome photoreceptors—tested by
measuring several cryptochrome-dependent responses, all of which proved to be enhanced in
a magnetic field of intensity 500 mT. The potential importance of this study in the debate on
putative effects of extremely low-frequency electromagnetic fields on human health prompted
us to subject it to the ‘gold standard’ of independent replication. With experimental
conditions chosen to match those of the original study, we have measured hypocotyl lengths
and anthocyanin accumulation for Arabidopsis seedlings grown in a 500 mT magnetic field,
with simultaneous control experiments at 50 mT. Additionally, we have determined
hypocotyl lengths of plants grown in 50 mT, 1 mT and approximately 100 mT magnetic
fields (with zero-field controls), measured gene (CHS, HY5 and GST ) expression levels,
investigated blue-light intensity effects and explored the influence of sucrose in the
growth medium. In no case were consistent, statistically significant magnetic field
responses detected.
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hypocotyl growth; magnetoreception; radical-pair mechanism
1. INTRODUCTION

Exposure to the extremely low-frequency (ELF;
50/60 Hz) electromagnetic fields associated with elec-
trical power distribution is unavoidable in modern
industrial societies and has led to concerns about
adverse effects on human health (Crumpton & Collins
2004; Crumpton 2005). On the basis of epidemiological
evidence, which suggests a link between long-term
exposure to ELF magnetic fields stronger than 0.4 mT
and a small increased risk of childhood leukaemia
(Ahlbom et al. 2000; Greenland et al. 2000), the Inter-
national Agency for Research on Cancer has classified
ELF magnetic fields as ‘possibly carcinogenic to
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humans’ (IARC 2002). The UK National Radiological
Protection Board (now the Health Protection Agency),
however, concluded in 2001 that there was no compel-
ling evidence for carcinogenicity (AGNIR 2001).
Despite much effort, laboratory-based studies have so
far failed to establish convincing biological responses to
weak ELF magnetic fields. Although plenty of appa-
rently positive effects have been reported, the majority
of studies have been unsystematic, there have been few
serious attempts at independent replication, and most
of those have failed to corroborate the original
observations (Lacy-Hulbert et al. 1998; Galland &
Pazur 2005; Pazur et al. 2007). Moreover, there are
currently no plausible biophysical mechanisms that
could explain how ELF fields weaker than 1 mT might
significantly perturb a biological system or that could
be used to guide experimental studies (Swanson &
Kheifets 2006). Although the absence of an interaction
doi:10.1098/rsif.2008.0519
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mechanism cannot be taken to imply the absence of a
response, it does increase the need for careful, well-
designed and independently verified laboratory studies
to establish whether there are ELF effects at the cellular
or organism level.

Since its inception in the 1970s, the ‘radical-pair
mechanism’ has become well established as the only
known way in which magnetic interactions, many times
smaller than the thermal energy per molecule (kBT ),
can alter the rates and yields of chemical reactions
in vitro (Steiner & Ulrich 1989; Brocklehurst &
McLauchlan 1996; Brocklehurst 2002; Woodward
2002; Timmel & Henbest 2004). The theoretical
foundation of the mechanism is highly developed:
experimental data can be interpreted quantitatively
and magnetic field responses predicted from indepen-
dently determined properties of the transient radical-
pair intermediates (Rodgers et al. 2005, 2007). Most
experimental studies have employed static magnetic
fields, but with radical-pair lifetimes rarely in excess of a
microsecond, one can expect essentially identical
responses to slowly varying ELF fields (Scaiano et al.
1994). However, almost all investigations have
employed magnetic fields stronger than approximately
1 mT and it has proved difficult to contrive experimental
conditions in which much weaker magnetic fields have
a significant chemical effect (Maeda et al. 2008).

Despite several reports of magnetic field effects on
biomolecular radical pairs (Harkins & Grissom 1994;
Taraban et al. 1997; Møller et al. 2000; Liu et al. 2005;
Henbest et al. 2008), not all of which have met the test
of independent replication (Jones et al. 2006, 2007), no
such response has yet been convincingly established
in vivo. However, it has been proposed that radical-pair
reactions form the basis of the ability of migratory birds
to sense the direction of the Earth’s magnetic field for
the purpose of orientation and navigation (Schulten
et al. 1978; Ritz et al. 2000; Rodgers & Hore 2009).
Supporting evidence has come from spectroscopic
(Giovani et al. 2003; Liedvogel et al. 2007; Henbest
et al. 2008) and theoretical (Weaver et al. 2000;
Cintolesi et al. 2003; Solov’yov et al. 2007) studies
and recent experiments on a model system (Maeda
et al. 2008), which have shown for the first time that
radical-pair reactions can respond measurably to
magnetic field strengths weaker than 50 mT. Moreover,
radiofrequency fields, which are known to modify
radical-pair reaction yields in vitro (Woodward et al.
2001; Henbest et al. 2004; Rodgers et al. 2005), have
been found to disrupt the magnetic compass of
European robins at intensities below 1 mT (Ritz et al.
2004, in press; Thalau et al. 2005). These observations
have been interpreted as diagnostic of a radical-pair
magnetoreception mechanism.

The molecules proposed as the avian magnetorecep-
tors are cryptochromes—50–70 kDa blue-light photo-
receptor flavoproteins—that regulate a variety of
processes in organisms ranging from bacteria to
humans (reviewed in Lin & Todo 2005; Partch &
Sancar 2005; Losi 2007), and the only known source
of potentially suitable radical pairs (reviewed in
Mouritsen & Ritz 2005; Wiltschko & Wiltschko 2006;
Johnsen & Lohmann 2008). Evidence in support of
J. R. Soc. Interface (2009)
the cryptochrome hypothesis is gradually accumulating
(Möller et al. 2004; Mouritsen et al. 2004), and includes
a report of magnetic field responses in plants in which
two cryptochromes, Cry1 and Cry2, mediate a number
of photoresponses, including blue-light growth inhi-
bition and entrainment of the circadian clock (Ahmad
et al. 2007). Enhanced cryptochrome-mediated inhi-
bition of hypocotyl (stem) elongation in Arabidopsis
thaliana in a 500 mT magnetic field, relative to controls
in the ambient magnetic field (approx. 40 mT), was
observed under blue-light irradiation but not under red
light (where the mediating photoreceptors are phyto-
chromes), nor in total darkness (Ahmad et al. 2007).
No magnetic field effects were found in Cry1/Cry2-
deficient Arabidopsis mutants. Blue light-induced
degradation of Cry2 and blue light-dependent
anthocyanin accumulation (another cryptochrome-
dependent process) were also enhanced at 500 mT. All
three effects of the 500 mT field—a 12–37 per cent
reduction in hypocotyl lengths, a 28–45 per cent
increase in anthocyanin production and a reduction in
Cry2 levels—are consistent with a magnetic field-
induced increase in the sensitivity of the seedlings to
blue light. This was interpreted by Ahmad et al. in
terms of a flavin–tryptophan radical pair formed by
photoinduced electron transfer within a cryptochrome
photoreceptor (Giovani et al. 2003).

Although the Arabidopsis study was not motivated
by health issues, it is significant on several counts
which distinguish it from the vast majority of the
literature on putative biological responses to weak
magnetic fields. The responses were not large but they
were observed in two laboratories (Paris and
Frankfurt; Ahmad et al. 2007) using more than one
experimental measure. Unusually for a study of
biological magnetic responses, there was a proposed
biophysical mechanism and a proposed receptor,
allowing various theoretical predictions to be tested.
Though the experiments were at field strengths much
higher than human ELF exposures, A. thaliana appears
to be a promising model for the investigation of
biological responses to weak ELF and static fields. If
plants, for which magnetic responses have no apparent
function and which presumably lack a highly evolved,
specialized magnetoreceptor, are sensitive to external
magnetic fields then conceivably other cryptochrome-
containing species may be too. In this context, it may be
noted that cryptochromes are key components in the
regulation of the mammalian circadian clock and that
disruption of circadian timing has been linked to
susceptibility to cancer (Reddy et al. 2005).

We report here our attempts to subject the Arabi-
dopsis study to the ‘gold standard’ (Crumpton 2005) of
independent replication. Choosing experimental con-
ditions to match those used in the original study, we
have compared hypocotyl lengths and anthocyanin
accumulation of seedlings grown in a 500 mT magnetic
field with controls at 50 mT. Additionally, hypocotyl
lengths of plants grown in 0 mT, 1000 mT and approxi-
mately 100 mTmagnetic fields have been recorded, gene
(CHS, HY5 and GST ) expression levels measured, blue-
light intensity effects investigated and the influence of
sucrose in the growth medium explored.



Effect of magnetic fields in A. thaliana S.-R. Harris et al. 1195
2. MATERIALS AND METHODS

2.1. Plant materials and growth conditions

Arabidopsis thaliana Landsberg erecta wild-type seeds
were surface sterilized with 70 per cent ethanol
containing 10 per cent sodium hypochlorite (BDH,
Poole, UK) and air-dried on filter paper (Whatman,
UK). The seeds were individually sown on the surface
of agar plates (5 cm diameter and 2 cm height; Sterilin,
Caerphilly, UK) containing half-strength Murashige
and Skoog medium including vitamins, buffered to pH
5.7 using MES-KOH (Melford, Chelsworth, The
Netherlands) and 0.8 per cent agar (Sigma, St Louis,
MO, USA). All experiments were performed with
2 per cent sucrose (BDH) in the growth media, except
for those in which plants were grown under 3 W mK2

illumination, for which no sucrose was present. The
plates were sealed with Micropore tape (3M Health
Care, Munich, Germany) to allow gas exchange and to
avoid condensation, and were kept in a light-tight
container at 48C for either 48 hours (in almost all the
experiments) or else 24 hours. The seeds were then
incubated for 24 hours at 218C (G1.58C) under
homogeneous and continuous irradiation from a
fluorescent light source (L36W/21-840 Coolwhite;
Osram, Germany) at approximately 16 W mK2 before
being transferred to darkness at 218C (G1.58C) until
the radicles (the embryonic roots) had emerged
(typically 40 hours with 2% sucrose; 20 hours with-
out). The plates were then exposed to continuous blue-
light irradiation for 72 hours at 218C (G0.58C) in a
temperature-controlled plant growth chamber, either a
Microclima 1000 (Snijders Scientific, Tilburg, The
Netherlands) or an E-30 light-emitting diode (LED;
Percival Scientific, Boone, IA, USA). This contrasts
with the study of Ahmad et al. (2007) in which the
exposures were performed on a bench in an air-
conditioned room. Other minor differences in
procedure are that in the original study, a temperature
of 58C was used for the initial 48 hours dark period and
the plates were irradiated for ‘typically 24 hours’
during a 48 hours dark period at room temperature
to induce germination (Ahmad et al. 2007).

In our study, the seeds were harvested from plants
grown individually on peat plugs (Jiffy-7; Jiffy Inter-
national Products, Kristansand, Norway) in a green-
house in Oxford at 218C (approx. G48C), with
supplemental lighting. All the seeds used in this study
were harvested within the space of a year and showed
synchronized 100 per cent germination in every
experiment. Except where indicated, replicates of
each measurement were performed sequentially under
identical conditions using seeds harvested from the
same plant. When comparing the hypocotyl lengths of
seedlings grown in 50 and 500 mT magnetic fields,
measurements were repeated using seeds harvested
from several individual plants to ensure that the results
were not specific to parental growth conditions.

The seedlings used for RNA preparation were grown
as described above. The gene expression data are
the means of three biological replicates comprising
10 seedlings each, harvested from the same plate.
J. R. Soc. Interface (2009)
2.2. Light sources

For the measurements in which the magnetic field was
generated with Helmholtz coils (§2.3), monochromatic
blue light (470G10 nm) was provided by arrays of
LEDs (LXHL-MBJA 18 LED Flood; Luxeon, CA,
USA). A homogeneous light intensity of 20 W mK2

across the surface of the 5 cm plate was obtained using
diffusers placed between the light source and the plate
(see below for details). Initial experiments used arrays
of blue LEDs (465G10 nm; Conrad) identical to those
of Ahmad et al. (2007), but were replaced at an early
stage by the Luxeon LED arrays which delivered more
homogeneous illumination and had better long-term
output stability. To achieve a light intensity of
20 W mK2 from the Conrad LED arrays, we required
currents in excess of the maximum recommended for
these diodes. This was probably the origin of the
reduced light output measured at the end of a 72 hours
experiment compared with that at the beginning.
Given that the flavin absorption band of crypto-
chrome, centred at approximately 450 nm, has a
width of approximately 100 nm, it seems very unlikely
that the different, but strongly overlapping, wave-
length bands of the two types of diode could make a
significant difference.

For the experiments performed with permanent
magnets, monochromatic blue light (470G10 nm) was
provided by the LEDs supplied with the Percival E-30
LED chamber. Homogeneous light intensities (12 and
3 W mK2; G10%) were obtained by varying the
distance of the plates from the light source and by
interposing a layer of filter paper (Whatman, UK).

Light intensities were measured with SKP 200
photometers (Skye-Instruments, Powys, UK) before
and after every 72 hours exposure. No differences were
found for the Luxeon LED arrays.
2.3. Magnetic fields

Two identical pairs of Helmholtz coils (for simultaneous
exposure and sham measurements) were wound on
formers manufactured from the hard, non-magnetic
plastic Delrin. Each Helmholtz pair consisted of two
doubly wound coils of copper wire, 2!150 turns, 44 cm
diameter and 22 cm separation. These dimensions
ensured a uniform magnetic field (to within 98%)
throughout the two Petri dishes placed in the centre of
the coils. The intensities of the static magnetic fields
were set at fixed values between 0 and 1000 mT (to a
precision of G10 mT) by supplying the appropriate
direct current to each coil (typically approx. 1 A). The
exposure and sham conditions were generated by
running identical currents in parallel or antiparallel,
respectively, through the doubly wound coils, to ensure
that any small heating effects were the same for the two
sets of coils. The LEDs irradiated the plates from a fixed
height of 9 cm above the sample stage. The light passed
through three diffusers: two thin plastic discs placed
1 cm below the LED array and, 2 cm below them, a
white Perspex plate of thickness 2 mm, allowing
homogeneous irradiation (95%) across the 5 cm dia-
meter plates. The currents supplied to the LEDs were
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calibrated to ensure identical irradiation intensities in
the two sets of coils. The magnetic fields had no
measurable effect on the light output of the LEDs.
Magnetic fields were measured using fluxgate magneto-
meters (Macintyre Electronic Design Associates, Inc.,
Dulles, VA, USA) and a gaussmeter (F. W. Bell, model
4048003 fitted with a 1778 Hall probe sensor) before and
after every experiment. Magnetic field intensities close
to that of the Earth were measured with a mMAG series
handheld fluxgate magnetometer (Meda Inc., Dulles,
VA, USA) sensitive to G1 nT. The two sets of coils
(with an approx. 60 cm centre-to-centre horizontal
separation) were magnetically shielded from one
another by a vertical 1 mm sheet of mu-metal
(Magnetic Shield Ltd, Surrey, UK). No field (to within
10 mT) was detectable at the centre of one coil as a
result of its neighbour. The time-dependent magnetic
fields in the frequency range of up to 100 Hz at the
positions of the samples, e.g. from the compressor in
the base of the Microclima chamber, were measured
and found to be weaker than 5 nT. Two plates were
stacked in the centre of each pair of coils; the upper
was irradiated with blue light while the lower,
wrapped in aluminium foil, served as a dark control.
The aluminium foil produced no attenuation of the
applied magnetic field.

The magnetic field inside the Microclima chamber,
with no current flowing in the coils, was found to be
0G10 mT, implying efficient shielding from the Earth’s
magnetic field (approx. 50 mT), and allowing
control experiments to be performed in zero field.
For these experiments, the currents supplied to the
two Helmholtz pairs were either parallel, denoted as
(CA, CA), or antiparallel, denoted as (CA, KA), the
former being the exposure condition and the latter the
zero-field control. To obtain a 500 mT (exposure)/50 mT
(control) condition, (CA,CA) was used for the former
and (CACa, KA), with a/A, for the latter. This
ensured that the two coil sets carried very similar
currents so that any temperature differences were kept
to a minimum. Temperatures were measured over a
72 hours period at the position of the plates. The two
sets of coils were found to have identical and stable
temperatures (21G0.58C) when the currents were
flowing. In the experiments of Ahmad et al. (2007),
the coils were tilted to ensure that the applied field was
collinear with the local geomagnetic field. Given the
efficient magnetic shielding afforded by our Microclima
chamber, this alignment was not felt to be necessary.
However, all experiments reported here were performed
with the coil axes tilted (by 248 from the vertical) in
case the effects of the applied field depended on its
direction with respect to gravity. Ahmad et al. (2007)
do not specify the tilt angle or whether different angles
were used in Paris and Frankfurt. We chose 248 to
match the geomagnetic inclination in Frankfurt (Ritz
et al. 2004; Thalau et al. 2005), where the coils appear to
have been constructed.

Permanent neodymium magnets (2.5 cm diameter,
1 cm height, First4magnets, Birmingham, UK) were
used for experiments at higher magnetic field strengths.
The two plates were stacked as described above, with
the magnet sandwiched between them. The mean
J. R. Soc. Interface (2009)
magnetic field at the position of the seedlings was
approximately 100 mT. For the control experiments,
the magnet was replaced by a non-magnetic austenitic
stainless steel 304L disc of identical dimensions.

In contrast to the study of Ahmad et al. (2007), all
plant growth and reverse transcriptase polymerase
chain reaction (RT-PCR; §2.4) measurements were
performed with the experimenter blind to the magnetic
exposure/sham control conditions (which were inde-
pendently and randomly chosen for each experiment)
until after the analysis had been completed. In some
experiments, the two sets of coils were interchanged to
check for any unexpected asymmetry.
2.4. RNA preparation and semi-quantitative
RT-PCR

RNA was prepared using QIAshredder and RNeasy
miniprep columns (Qiagen, Hilden, Germany) according
to the manufacturer’s protocol. cDNA was synthesized
using the TaqMan reverse transcriptase system (Applied
Biosystems Inc., Foster City, CA, USA). Each RT
reaction contained cDNA, 2 pmol of each primer and
1!PowerSYBR Green (Applied Biosystems Inc.) in a
final volume of 10 ml and the RT-PCR was performed in
an ABI PRISM 7300 Sequence Detection System
(Applied Biosystems Inc.). Primers used were as
follows. Tubulin5 (At1g20010; forward (5 0-TGAATG
CATGGTCCTCGACA-3 0) and reverse (5 0-GCAAGTCA
CACCGCTCATTGT-3 0)); CHS (At5g13930; forward
(50-GGCTCAGAGAGCTGATGGAC-30) and reverse (50-CAT
GTGACGTTTCCGAATTG-30)); HY5 (At5g11260; forward
(50-ATCAAGCAGCGAGAGGTCAT-30) and reverse (50-CGA
CAGCTTCTCCTCCAAAC-3 0)); and GST (At1g10370;
forward (50-AACCGGTGAGTGAGTCCAAC-30) and reverse
(5 0-AGCGACAAACCACTTTTCGT-3 0)). Primers were
designed over an intron to avoid detecting the genomic
DNA fragments. Baseline data were collected between
cycles 3 and 15 and an Rn threshold of 0.35 was used for
all amplification plots to obtain CT (threshold cycle)
values. Standard curves were obtained by the dilution of
every cDNA sample. In order to compare the data from
different PCR runs or cDNA,CT values were normalized
to the CT values of tubulin5 and were used to calculate
the relative gene expression per 1 ng RNA.
2.5. Anthocyanin accumulation

Anthocyanin accumulation was measured using seed-
lings grown under 12 W mK2 blue light for 48 hours at
21G0.58C in the presence of 50 or 500 mT magnetic
fields. Anthocyanin was extracted by grinding 20
seedlings in 300 ml 1 per cent HCl in methanol and
incubating at room temperature in darkness for more
than 6 hours. Twice-distilled H2O (200 ml) was added to
the extract and chlorophyll was extracted using an equal
volume of chloroform. The relative amount of antho-
cyanin in the aqueous phase was estimated using
measured values of the optical absorption at 530
and 657 nm according to A530K0.25A657 (Rabino &
Mancinelli 1986). Each experiment comprised at least
three measurements using 20 seedlings each time. Minor
differences in the procedure from Ahmad et al. (2007)
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are: a smaller solvent volume was used to obtain a more
concentrated sample, and thus a more precise
determination of the anthocyanin concentrations; a
longer incubation time was used to ensure that all the
pigment was extracted; fixed (48 hours instead of
48–55 hours) seedling growth times and fixed (6 hours
instead of 3–4 hours) dark incubation times were used. It
is very unlikely that any of these small differences would
significantly have affected the results. Nor does it seem
probable that the difference in the temperature at which
the seedlings were grown (218C instead of 25–268C) is
important. The anthocyanin accumulation in blue light
is 0.13G0.01 at 218C (arbitrary units) and 0.11G0.02 at
258C. It therefore seems unlikely that the different
growth temperatures would result in very different
magnetic field effects.
Figure 1. Apparatus used for the exposure of A. thaliana
seedlings to 0–1000 mT magnetic fields, showing (a) the
assembly that houses the light-emitting diode array and
diffusers, (b) the plates of seedlings, and (c) the Helmholtz
coils tilted at 248 to the vertical, inside the plant growth
chamber. Parts of the other set of coils are visible on the left.
The mu-metal screen between the two sets of coils has been
removed for this photograph.
2.6. Statistical analysis

Immediately after the 72 hours magnetic field exposure,
all the seedlings on the experimental plates were laid
flat on the surface of a new agar plate. Hypocotyl
lengths were measured (G0.02 mm) from a scanned
image of the seedlings using IMAGEJ (http://rsb.info.
nih.gov/ij/) software. The mean hypocotyl length for
each dish was used in a two-tailed paired t-test analysis
to compare the growth of seedlings exposed to the
magnetic field with those grown simultaneously under
the control conditions, using a 95% confidence level
(p!0.05) to judge statistical significance.
3. RESULTS

3.1. Hypocotyl growth in 50 and 500 mT fields

Experiments in which wild-type A. thaliana seedlings
were grown in 50 mT (‘control’) or 500 mT (‘exposure’)
static magnetic fields were performed at 218C using two
identical sets of doubly wound Helmholtz coils, placed
side by side in a temperature-controlled plant growth
chamber (figure 1). The effect of the magnetic field on
seedlings grown in darkness was tested using a Petri
dish covered with aluminium foil placed immediately
beneath the dish exposed to the blue light. Except
where otherwise stated (see also §2), experimental
conditions were as close as possible to those of
Ahmad et al. (2007).

Three sets of experiments, denoted A, B and C, were
performed, comprising 3, 3 and 5 replicates, respect-
ively, each using seeds from a different plant, grown and
harvested at different times of the year. The results are
shown in table 1. In contrast to the study of Ahmad
et al. (2007), the mean hypocotyl lengths at 500 mT in
these 11 measurements were not consistently shorter
than those at 50 mT. The differences in the mean
lengths in the two fields (control minus exposure)
varied from C8 to K10 per cent under blue-light
conditions and were considerably smaller than the
approximately C30 per cent change found previously
(Ahmad et al. 2007). Two-tailed paired t-tests were
performed on the 11 measurements taken together,
using the mean hypocotyl length per dish as the
measure (table 2). There was no statistically significant
J. R. Soc. Interface (2009)
effect of the field on the dark-grown seedlings
(pZ0.535), in agreement with Ahmad et al. (2007).
The differences in seedling growth in the two fields
under blue-light conditions were also not significant
(pZ0.396). When the three sets of data were analysed
separately (table 2), set B alone was found to have a
p!0.05 (pZ0.013); for these experiments, the mean
hypocotyl length was 5 per cent longer at 500 mT than
at 50 mT, i.e. in the opposite direction to that found by
Ahmad et al. (2007). When these four analyses were
repeated using a one-tailed paired t-test to judge
whether the mean hypocotyl lengths are significantly
shorter (instead of significantly different) at 500 mT,
only set C had p!0.05 (pZ0.043).
3.2. Anthocyanin accumulation in 50 and
500 mT fields

The accumulation of the flavonoid compound antho-
cyanin is cryptochrome dependent under blue-light
irradiation (Briggs & Olney 2001; Ahmad 2003) and
was found to be enhanced by up to 40 per cent in
the presence of a 500 mT magnetic field (Ahmad
et al. 2007). Five independent experiments were
performed comparing anthocyanin levels in seedlings
exposed to 500 mT fields, with 50 mT as the control
(table 3). A two-tailed paired t-test revealed no
significant difference between the two magnetic field
conditions (pZ0.531).
3.3. Gene expression in 50 and 500 mT fields

Measurements of cryptochrome-regulated expression
of chalcone synthase (CHS ), which encodes an enzyme
for anthocyanin biosynthesis, and of HY5 were made
in an attempt to find a more sensitive response to
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Table 3. Anthocyanin accumulation in 50 and 500 mT
magnetic fields. (DZ100!(mean control valueKmean
exposure value)/mean control value. A two-tailed paired
t-test analysis of these data gave pZ0.531.)

replicate control (50 mT) exposure (500 mT) D/%

1 0.212 0.210 C1
2 0.134 0.126 C6
3 0.195 0.215 K10
4 0.164 0.139 C15
5 0.115 0.105 C9
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the applied magnetic field. The HY5 gene encodes a
bZIP transcription factor that binds to the G-box
element in the promoter (Chattopadhyay et al. 1998)
and regulates a group of blue light and cryptochrome-
regulated genes including CHS (Ma et al. 2001;
Ohgishi et al. 2004; Kleine et al. 2007). Accordingly,
semi-quantitative RT-PCR was performed on
seedlings grown for 72 hours under blue light in a
500 mT field using 50 mT as the control. The results
(table 4) indicate that the mean expression levels of
both CHS ( pZ0.863) and HY5 ( pZ0.639) are
indistinguishable for seedlings grown under the two
magnetic field conditions.
3.4. Hypocotyl growth in 0, 50 and 1000 mT fields

Radical-pair reactions investigated in vitro at different
intensities of the applied magnetic field show a dose-
response curve that is often not monotonic or even
monophasic (Timmel et al. 1998). If the conditions of
our experiments were subtly different from those
employed in Paris and Frankfurt (Ahmad et al. 2007),
it is conceivable that the Oxford seedlings had, by
chance, essentially identical non-zero responses to 500
and 50 mT applied fields. There are also situations in
which very long-lived radical pairs can respond rather
differently at 50 and 0 mT (Timmel et al. 1998). To
explore the field dependence of hypocotyl growth in a
little more detail, we compared, separately, 50 and
1000 mT exposures with 0 mT controls (table 5). As
shown in table 6, no significant differences were found,
either in blue light or darkness, using a two-tailed
paired t-test.
3.5. 100 mT magnetic field exposure

When searching for the effects of weak magnetic
fields on the product yields of radical-pair reactions
in vitro, it is often wise to perform the initial
experiments in magnetic fields much stronger than
the intrinsic magnetic interactions in the radicals
(typically 1–10 mT), on the basis that the effects are
often larger than in weaker fields. Hypocotyl growth
studies were therefore performed using a small perma-
nent magnet to provide a field of approximately
100 mT. The mean hypocotyl lengths of three replicates
grown under 20 W mK2 blue light or in darkness
(table 5) were not significantly different from those
grown in zero field (table 6). Wild-type and Cry1 and
Cry2 double-mutant seedlings, grown in 0 and 100 mT
fields, were visually indistinguishable from one other
(see figure 1 in the electronic supplementary material).

The expression of the genes CHS, HY5 and GST, a
glutathione S-transferase, was examined in the
presence and the absence of a 100 mT field. Similar to
CHS and HY5, GST is upregulated at high blue-light
intensity, a process that is mediated by Cry1 (Kleine
et al. 2007). Only GST, for which the mean expression
level was 19 per cent lower at 100 mT than in the zero
field, had a p!0.05 (pZ0.021).
J. R. Soc. Interface (2009)
3.6. Light-intensity dependence

The effects of 500 mT magnetic fields on hypocotyl
growth were investigated in the study of Ahmad et al.
(2007) using blue-light intensities of 3.3, 12 and
20 W mK2. The results of the experiments performed
in Paris (12 and 20 W mK2) showed a smaller scatter
than those in Frankfurt (3.3 and 12 W mK2), but
essentially similar effects were found at all three
intensities (approx. 30% reduction in mean hypocotyl
length at 500 mT compared with approx. 50 mT). Three
replicates were performed at 12 W mK2 to determine
whether there was a dependence on the light intensity
under the conditions used in Oxford (table 5).
No significant difference between 100 and 0 mT was
found (table 6).

No significant effect of the magnetic field was found
on the expression of CHS, HY5 or GST (table 4).
3.7. Sucrose dependence

The presence of sucrose in the growth medium influences
the inhibition of hypocotyl growth in Arabidopsis under
far-red light conditions and induces anthocyanin
accumulation and CHS expression (Whitelam et al.
1993; Dijkwel et al. 1997). To test for similar effects on
cryptochrome-dependent hypocotyl growth inhibition,
seedlings were grown without sucrose, with and without
a 100 mT magnetic field, under 3 W mK2 blue light.
Low light intensities were used to avoid saturation of
the blue-light response, which is more sensitive in the
absence of sucrose. With three replicates, the difference
in mean hypocotyl lengths gave pZ0.028 in a two-tailed
paired t-test (tables 5 and 6). No significant effect of the
magnetic field was found on the expression of CHS, HY5
and GST (table 4).
4. DISCUSSION

Ahmad et al. (2007) reported consistent enhancements
of A. thaliana blue-light responses in a 500 mT field
relative to controls in the ambient magnetic field,
including approximately 30 per cent reduction in
hypocotyl lengths and up to 45 per cent increase in
anthocyanin production. The six blue-light growth
experiments performed in Frankfurt (three each at 20
and 3.3 W mK2) and the six in Paris (three each at 20
and 12 W mK2) all showed shorter hypocotyls at the
higher field. Although the absolute differences between
the mean hypocotyl lengths were reasonably clear, the



Table 4. Gene expression levels. (DZ100!(mean control valueKmean exposure value)/mean control value. *p!0.05.)

magnetic field
control/exposure

light
intensity/W mK2

sucrose
conc./% gene

control
expression level

exposure
expression level D/% p-value

50/500 mT 20 2 CHS 1.274 0.977 C2 0.863
1.193 1.335
0.996 1.071

HY5 0.345 0.265 C2 0.639
1.563 1.585
0.229 0.235

0/100 mT 20 2 CHS 2.710 4.663 K47 0.390
1.628 0.736
2.433 4.585

HY5 0.094 0.097 K3 0.572
0.093 0.101
0.092 0.088

GST 0.522 0.599 K19 0.021*
0.476 0.602
0.534 0.627

0/100 mT 12 2 CHS 2.110 2.551 K11 0.560
1.524 1.482

HY5 0.140 0.145 K1 0.844
0.085 0.082

GST 0.560 0.659 4 0.894
0.476 0.337

0/100 mT 3 0 CHS 0.329 0.203 12 0.294
0.396 0.353
0.619 0.625

HY5 0.090 0.142 K16 0.282
0.198 0.212
0.144 0.145

GST 0.476 1.008 K40 0.465
0.451 0.410
0.299 0.302
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statistical levels of significance reported were based on
an inappropriate number of degrees of freedom. This is
because individual seedlings were used as replicates
although they were grown within the same Petri dish
and were therefore not independent of one another.
Treating them as such violates a key assumption of the
statistical tests used and leads to inflated type 1 error
(Hurlbert 1984).

In the light of this uncertainty, we reanalysed the
Paris and Frankfurt data using a paired t-test, treating
Petri dish means as independent data points (table 2).

Both of the Paris measurements (20 and 12 W mK2)
gave a p!0.05 (0.005 and 0.007, respectively) for a
two-tailed test. However, neither of the experiments
performed in Frankfurt (20 and 3.3 W mK2) showed
statistically significant differences (pZ0.107 and 0.221,
respectively, in a two-tailed paired t-test; pZ0.053 and
0.110, respectively, in a one-tailed paired t-test).
Ahmad et al. (2007) noted that, compared with the
Paris experiments, the seedlings grown in Frankfurt
show greater variation in the state of germination from
one replicate to the next and thus a larger spread of
responses to the magnetic field.

Our attempts to replicate the Paris/Frankfurt
hypocotyl growth measurements (tables 1 and 2) and
our additional experiments using different magnetic
field intensities (tables 5 and 6) gave two apparently
significant results: (i) 500 mT exposure, 50 mT control,
J. R. Soc. Interface (2009)
20 W mK2 blue light, 2 per cent sucrose, pZ0.013 and
(ii) 100 mT exposure, 0 mT control, 3 W mK2 blue
light, no sucrose, pZ0.028. In the former case, the
hypocotyls were on average longer at the higher field; in
the latter case, they were shorter. However, given the
number of t-tests performed here, a few of the p values
are likely, by chance, to be less than 0.05 even if the
magnetic field has no effect on the growth of the
seedlings, i.e. repeated tests inflate type 1 error. Nine
sets of hypocotyl data obtained with blue-light irradi-
ation have been analysed here (tables 2 and 5, excluding
the Paris/Frankfurt data). Applying the Bonferroni
correction (Rice 1989), the 95% confidence limit should
be set at pZ0.05/9z0.0056, causing the apparent
significance of the two above-mentioned experiments to
fall away. It is, therefore, difficult to conclude that a
magnetic field response is reliably detectable under the
conditions employed in our experiments. A similar
picture emerges from the other blue-light responses
reported here. The magnetic field effect on anthocyanin
accumulation was not significant, and only 1 out of 11
gene expression analyses gave p!0.05 (GST, 100 mT
exposure, 0 mT control, 20 W mK2 blue light, 2%
sucrose, pZ0.021).

Except where otherwise stated, the experimental
conditions in Oxford were chosen to match as closely as
possible those employed in Paris and Frankfurt and
were, we believe, at least as well controlled. The only
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major differences in the procedures were that (i) we
performed the magnetic field exposures in a commercial
temperature-controlled plant growth chamber
(21G0.58C) rather than in air-conditioned rooms
whose temperatures varied between 20.5 and 22.7 8C
(Frankfurt), and between 19 and 218C (Paris; Ahmad
et al. 2007) and (ii) the set of coils used to generate the
exposure and the control conditions was chosen
randomly in each experiment, with the experimenter
blind in every case to the arrangement until the analysis
was complete. As well as avoiding unconscious bias on
the part of the experimenter, this protocol minimizes
systematic errors arising from correlations between the
intensity of the blue light and the magnetic field
strength generated by a particular combination of
LEDs and coils. It seems unlikely that there could have
been significant temperature differences between the
exposed and control seedlings in both Paris and
Frankfurt. The use of doubly wound coils should have
ensured that any heating effects were the same for the
two sets of coils.

A minor difference in conditions in the two studies is
the magnetic field strength used for the control
experiments: 50G10 mT in Oxford, compared with
44 mT in Frankfurt and 33 mT in Paris. Although,
under extreme conditions, a radical-pair reaction could
respond significantly differently to such similar mag-
netic field strengths (Timmel et al. 1998), it is unlikely
that this could explain our failure to replicate the
Paris/Frankfurt observations. Even if, by chance, the
plants grown in Oxford had responded identically
to 50 and 500 mT fields, it seems improbable that all
the other exposure conditions employed here (0/50 mT,
0/1000 mT or 0/100 mT) suffered a similar coincidence.

A possible reason for the absence of a response at
a particular magnetic field intensity would be the
fortuitous cancellation of the effects of the Dg and
hyperfine mechanisms of singlet–triplet interconversion
in the radical pair (Woodward 2002). One would expect
such a zero crossing in the response when the difference
in electron Zeeman interactions of the two radicals
in the applied magnetic field, Dn, is comparable to
the hyperfine interactions. Using the g values of flavin
(gz2.0032; Ehrenberg et al. 1967; Műller et al. 1970)
and tryptophan (gz2.0027; Un 2005) radicals (which
constitute the putative radical pair in cryptochrome),
Dn in a 100 mT applied field is approximately 700 kHz
which is small compared with the effective hyperfine
interaction in this radical pair (approx. 100 MHz). In
weaker applied magnetic fields Dn is proportionately
smaller. It therefore seems inconceivable that the Dg
mechanism could compete with the dominant hyperfine
mechanism of singlet–triplet interconversion: a field in
excess of 1 T would be required for this to occur.

A further possible difference between the various
laboratories could be the amplitude of the 50/60 Hz
background fields experienced by the seedlings. We
measured an upper limit of 5 nT inside the Microclima
plant growth chamber; it is difficult to imagine how
such a weak background could abolish the effect of
a static field, which is five orders of magnitude
stronger (500 mT).
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As described in §2, there were other subtle dispar-
ities between our experimental procedures and those
of Ahmad et al. (2007; and possibly also other
unidentified differences), which might just explain the
discrepancy between the two sets of results. We think
this unlikely, but if it were the case it would never-
theless call into question the generality of the earlier
results if they require conditions that are so specific
and hard to repeat.

It is difficult to discern a systematic difference in the
hypocotyl lengths of the seedlings grown in Oxford,
Paris and Frankfurt that might shed light on our failure
to replicate the earlier results. For the plants grown in
the dark in an approximately 50 mT magnetic field, our
mean hypocotyl lengths were 7.2, 9.0 and 10.2 mm for
the three batches of seeds, and an overall mean of
9.0 mm for the 11 plates taken together (table 2). These
values are comparable with the means (over three
plates) found in Paris (9.7 mm) and Frankfurt (8.0 mm;
Ahmad et al. 2007). Four out of five experiments using
the batch of seeds labelled C (table 1) had longer
hypocotyls in the dark at 50 mT than the six labelled
A or B, and four of the five had shorter hypocotyls
under blue light at 500 mT than at 50 mT. Although
seedlings that germinate earlier and so have more time
to grow might be expected to have larger magnetic
responses, the effects for batch C (values of D; table 2)
are considerably smaller than those found consistently
in Paris and Frankfurt and were not statistically
significant. Had the hypocotyls of the plants grown in
Oxford been on average approximately 30 per cent
shorter (as they were in Paris) at 500 than at 50 mT, the
differences in all cases would almost certainly have been
judged significant. Finally, the mean reductions in
hypocotyl length produced by 20 W mK2 blue light at
approximately 50 mT (46, 52 and 66% for the three seed
batches) were also comparable with the Paris (65%)
and Frankfurt (49%) figures. There are thus no clear
differences in hypocotyl lengths at approximately
50 mT in the three laboratories. This appears to rule
out the possibility, mentioned above, that differences in
temperature between the exposed and control seedlings
could have been responsible for an apparently positive
magnetic field effect.

Similar experiments have now been conducted in
three laboratories and reported in two papers: Ahmad
et al. (2007) and here. Taking all the results at face
value after appropriate analysis (or reanalysis), it is
clear that plant growth responses to the imposed
magnetic field treatments are highly variable. This is
perhaps to be expected for biological material in which
developmental processes in planta have a stochastic
component. In cases where much the same experiments
have been performed on much the same biological
material more than once, it would seem most appro-
priate to draw conclusions on the basis of the combined
results. Viewed in this way, it is difficult to avoid the
conclusion that any case for rejecting the null
hypothesis that our experiments were designed to test
has been weakened.

Finally, we comment on the significance of our
negative results for the continued study of the magnetic
sensitivity of cryptochromes and the chemical compass
J. R. Soc. Interface (2009)
mechanism of avian magnetoreception (Ritz et al.
2000). It is evident from our unpublished work that the
magnetic responses of variousmembers of the photolyase/
cryptochrome family in vitro are strongly dependent on
experimental conditions, including solvent viscosity.
Little is known about the microscopic environment of
the cryptochromes involved in regulating hypocotyl
growth, gene expression and anthocyanin accumulation
in plants. Moreover, one can therefore only speculate
about the environment of an avian cryptochrome in a
magnetoreceptor cell, although it seems clear in the
latter case that the protein molecules must be both
immobilized and aligned in order to show the anisotropic
magnetic field effects essential for a compass detection
mechanism (Ritz et al. 2000). There is no reason to think
that the cryptochromes involved in blue-light growth
inhibition in plant cells would need to have their motions
similarly restricted. There are also no grounds for
expecting the conditions that give strong magnetic field
responses from isolated purified proteins in vitro to be
necessarily similar to those in a plant or bird cell. The
absence of detectable magnetic field responses on
cryptochrome-mediated plant growth is therefore not
incompatible with the existence of significant magnetic
responses from cryptochromes in vitro or the sensitive
detection of the geomagnetic field by cryptochromes in a
bird’s retina.
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