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ABSTRACT
Transcriptomics studies the set of RNA transcripts produced by the genome using high-throughput
sequencing and bioinformatics. This growing field has revolutionized our understanding of host-pathogen
interactions, revealing new insights into the host response to influenza infection and vaccination. Studies
using transcriptomics have identified a unique immunosignature for influenza discernable from other
bacterial and viral pathogens, key transcriptional factors that discriminate early from late, mild versus severe,
and symptomatic versus asymptomatic infection. Recent studies evaluating the host response to influenza
vaccines have revealed key differences in live versus inactivated influenza vaccines, identified early tran-
scriptional signatures that predict hemagglutinin antibody production following vaccination, increased our
understanding of how adjuvants enhance the immune response to influenza vaccine antigens, and demon-
strate biologic variability in the response to vaccination due to host factors. These studies demonstrate the
potential for influenza transcriptomics to be applied to clinical care, understanding the mechanisms of
infection, and informing vaccine development.
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Transcriptomics is the study of the complete set of RNA
transcripts that are produced by the genome (under specific
circumstances or in a specific cell or group of cells) using high-
throughput sequencing. Comparing transcriptomes within
groups enables the identification of genes that are differentially
expressed in specific cell populations or in response to different
treatments. Technologies used to conduct transcriptomics include
microarrays and RNA sequencing. Microarrays are a fixed-probe
technology, while RNA sequencing is more dynamic, and mea-
sures both known as well as new transcripts in a given sample.
Microarrays measure the relative amount of mRNA activity of
target genes with existing sequences. RNA sequencing uses high-
throughput sequencing to record all transcripts and provides
information regarding the gene sequence in addition to the
expression level. Such tools generate a transcriptional profile
(gene expression signature), representing a snapshot of genes
expressed at a specific point in time. The steps involved in tran-
scriptomics utilizing RNA sequencing are outlined in Figure 1.
Briefly, after sample collection, cells of interest are isolated, RNA is
extracted, and converted to a library consisting of cDNA frag-
ments. Each molecule is then sequenced with or without amplifi-
cation. The resulting reads are then aligned to a reference genome
or transcripts (or assembled de novo) to produce a genome-scale
transcription map that consists of the level of expression for each
gene. RNA sequencing data can produce over 109 short DNA
sequences, which must then be analyzed using bioinformatics.

Transcriptomics has revolutionized our understanding of
how genes are expressed, by providing a comprehensive,

unbiased and integrated analysis of the complexities of cellu-
lar activity. However, transcriptomic analyses require signifi-
cant computation and proper experimental design to produce
meaningful data, and this technology assumes that mRNA
transcription is a proxy for protein products of a cell, which
is not always the case. Not only is RNA unstable, but post-
transcriptional modifications further modulate protein synth-
esis, such that mRNA and protein abundance do not always
correlate. Further, gene expression is highly tissue-specific,
and caution is needed in interpretation of gene expression
patterns from a mix of cell populations.

Transcriptomics is emerging as an important tool in
immunological and infectious diseases research. The tran-
scriptomic study of peripheral blood mononuclear cells –
including B cells, T cells, monocytes, dendritic cells, and
natural killer cells – can provide a comprehensive summary
of the immune response to infection. More recently, newer
platforms enable whole blood analysis and single cell sorting
to allow for a more comprehensive analysis, and immune cells
found in respiratory secretions are being used to study the
local host response to influenza infection.

Immunopathology of influenza infection

Complex co-ordinated immune responses are triggered in the
host following an acute influenza infection, involving both
innate and adaptive immunologic processes.
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Innate immune response

The first mechanisms of defense against influenza infection
come into play at the portal of entry in the respiratory tract.
The virus must cross the mucous layer that covers the respira-
tory epithelium in order to attach to the cell membrane and
invade the cell. Infected epithelial cells, tissue macrophages and
plasmacytoid dendritic cells (pDC) identify the viral RNA as
a foreign element through pattern recognition receptors (PRRs),
which activate an innate immune cascade resulting in the down-
stream secretion of type I interferons, other inflammatory cyto-
kines, and chemokines.1-3 The type I interferons stimulate
hundreds of genes collectively known as interferon-stimulated
genes (ISGs) in the surrounding cells, establishing potent innate
local antiviral activity.4 The inflammatory mediators released at
this stage of infection may result in systemic symptoms includ-
ing fever and malaise. They also instruct the adaptive immune
response. The chemokines released by epithelial cells and local
immune cells attract natural killer cells (NKs), monocytes and
neutrophils at the site of infection. These recognize the virally
infected cells and eliminate them through NK-mediated cyto-
toxicity followed by monocyte and neutrophil phagocytosis of
the dead cells.5 This process is generally sufficient to eliminate
the virus in most immune-competent individuals.6,7

Adaptive immunity – T cell response

If the influenza virus overcomes the innate protective immune
responses and establishes a successful infection in the respira-
tory tract, the ultimate clearance of the virus requires the
participation of the adaptive immune system. The adaptive
immune response is generated in the lymphoid tissue.
Typically, conventional dendritic cells (cDC) carry antigen
to the draining lymph node where both T cells and B cells
become primed. Primed CD4+ and CD8+ T cells differentiate

into T helper 1 (Th1), T follicular helper (Tfh) and cytotoxic
T cells (CTL), all of which contribute to the clearance of
influenza infection.8 Regulatory T cells (Treg) and other
types of T helper cells may also be generated, but they con-
tribute to the overall outcome of the viral clearance process
mostly through their interactions with the influenza-specific
Th1, CTL, Tfh and B cells.9,10 T cells migrate to the site of
infection where they continue to proliferate and differentiate,
activate themselves and local NKs and phagocytes until the
virus is eliminated. The process of viral clearance is accom-
panied by tissue destruction and systemic inflammation. Once
the foreign antigenic stimulus disappears, T helper cell pro-
liferation ceases, effector T cells die or differentiate into
memory cells and the tissue repair process predominates.
Influenza-specific tissue-resident memory T cells (Trm) have
been recently recognized.11 While these cells lack the recep-
tors necessary to leave the lung, they have a relatively long life
and high replicative capacity like memory T cells, but also
have the ability to accelerate cytokine production after
encountering cognate antigens, similar to effector T cells.
These T cells will quickly generate an adaptive immune
response upon re-exposure to influenza viruses. It is impor-
tant to note that T cells recognize small epitopes that are
shared not only by homotypic, but also by heterosubtypic
influenza viruses, thus enabling cross-protection against dif-
ferent influenza subtypes. Treg are another important compo-
nent of the antiviral process. They are essential in quenching
the effector immune response and redirecting the Th1 cell
differentiation from effector to memory. They also play an
important role in tissue repair that has only recently been
recognized.12 The T cell response must strike a fine balance
between tissue destruction and viral elimination.

Adaptive immunity – antibody response

Tfh and Th1 cells cross into the germinal center of the lymph
node where they provide support for the influenza-specific
plasmablasts to differentiate into memory B cells and long-
lived plasma cells, which are the main producers of high-
affinity antibodies against influenza. Antibodies against the
major glycoproteins of the viral envelope, including the
hemagglutinin (HA), neuraminidase (NA) and matrix protein
2 (M2), mediate several adaptive immune mechanisms.
Antibodies against the HA block the influenza virus attach-
ment to the target cell thus neutralizing the virus. Most anti-
bodies generated against the HA recognize the variable
portion of the HA. These antibodies confer protection against
influenza A and B homotypic viruses but very limited protec-
tion against heterosubtypic viruses. There are conserved areas
in the HA of influenza A viruses that have been extensively
studied because they generate broadly neutralizing
antibodies.13,14 However, broadly neutralizing antibodies are
rarely synthesized by the host during infection. The NA has
a critical role in the release of newly formed viruses from the
infected cells that controls the spread of the infection. The NA
contains a higher proportion of conserved amino acid
sequences compared with the HA and; therefore, anti-NA
antibodies can neutralize a larger spectrum of viruses.15,16

Anti-M2 antibodies do not induce neutralizing antibodies,
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Figure 1. Steps involved in transcriptomic analyses using RNA sequencing.
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but are expressed in abundance on the surface of the infected
cells and may be an important target for viral clearance
through phagocytosis or antibody-mediated cellular cytotoxi-
city through the recruitment of NK cells, monocytes, macro-
phages, and phagocytic DC.17-19

What have we learned about influenza pathogenesis
through transcriptomics?

Each stage of the immune response against influenza infection
may be characterized through its gene expression, cytokine
release, and cell activation signatures or patterns, which can
be studied using transcriptomics.20 Transcriptomics has
helped elucidate immune pathways specific to influenza infec-
tion, and has delineated immune profiles that differentiate
asymptomatic from symptomatic infection, mild from severe
disease, and early versus late infection. Further, transcrip-
tional profiling enables the detection of infection prior to
the onset of peak respiratory symptoms and has identified
strain-specific differences in the host response to infection.
A summary of the most recent findings from studies using
transcriptomics to study influenza infection and vaccination
and their potential clinical and research applications are pro-
vided in Table 1. A summary of study methodology and main
findings from studies evaluating the host response to influ-
enza infection are provided in Table 2.

Immune profiling of host PBMCs can differentiate bacter-
ial versus viral infections in febrile adults with 89% sensitivity
and 94% specificity.21 Moreover, transcriptional profiling can
also identify signatures unique to influenza infection,22-24

which can be distinguished from uninfected individuals with
94% accuracy. Compared with other viral pathogens, infection
with influenza was associated with a higher magnitude and
longer duration of the illness biosignature, which reflected
upregulation of interferon pathway and innate immunity
genes. Gene expression patterns 21 days post-infection were
identical to baseline gene expression.23 A unique molecular
signature consisting of eight gene clusters was shown to
correlate with symptomatic disease. This included genes cod-
ing for innate viral RNA sensors (TLR7, RNA helicases, and
interferon induced with helicase C domain 1), which were
transcribed 36 h before the peak symptoms. The expression of
suppressor of cytokine signaling genes (SOC) 1 and 3 (which
are important inhibitory modulators in limiting the inflam-
matory effect of interferon signaling during viral infection)
declines early among asymptomatic individuals but strongly
increases among symptomatic individuals. Further, ribosomal
protein gene transcription was upregulated in asymptomatic
compared with symptomatic individuals.25

Several key immune pathways have been found to discriminate
early from late phases of infection. For example, a large increase in
components of the type-1 interferon antiviral response and innate
immunity were upregulated, whereas the expression of genes
involved in translational elongation and protein synthesis were
decreased during acute infection in one study.23 Four days later,
there was a characteristic recovery phase, with the upregulation of
genes involving antigen binding and antibody secretion, and
genes regulating cell morphogenesis.

Several transcriptional patterns associated with the out-
come of infection have also been described. Signatures char-
acterized by decreased type I interferon and ubiquitination
gene transcription were associated with a more severe out-
come of influenza A infection.26 In contrast, transcription of
interferon-induced transmembrane protein genes were asso-
ciated with less severe disease.

Transcriptomics studies have the additional advantage of
identifying infection based on immune signatures prior to the
onset of symptoms. In a study of adults experimentally
infected with influenza A H1N1 or H3N2, there was
a specific genomic signature for infection that was present as
early as 53-h post viral exposure, over 24 h before the onset of
symptoms. Predictive genes included interferon response ele-
ments, the myxovirus-resistance gene MX1, and cytokine
response pathways.27 When applied to a population visiting
the Emergency Department, this signature differentiated
H1N1 pdm-infected from other patients with 92% accuracy.

There is evidence of strain-specific variability in gene sig-
natures involved in the host response to influenza infections.
Seasonal influenza A H1N1 and H3N2 infections result in
gene expression profiles that share 44 out of the top 50
expressed genes but significantly differ from the transcrip-
tional profile of the avian H5N1. Infection with H7N9 induces
a gene transcription profile that was more similar to seasonal
than avian influenza infection indicating better adaptation of
H7N9 to human hosts compared with other avian viruses.28

Immunity conferred by influenza vaccines

Vaccination is the primary strategy for protection against influ-
enza infections. Although there are multiple influenza vaccine
preparations, they can be largely grouped into live attenuated
(LAIV) and inactivated vaccines (IIV). In addition, selective IIV
are adjuvanted but currently are not licensed for use in children.
LAIV and IIV differ in their immune mechanisms and correlates
of protection. Influenza vaccines are licensed based on the hemag-
glutination inhibition antibody (HAI) titers that they generate.
This is based on an older study in adults that showed that HAI
titers ≥1:40 after vaccination were associated with 50% decrease in
the incidence of symptomatic influenza infections.29 Recent stu-
dies have challenged this dogma, but this continues to be
a licensure criterion of influenza vaccines and is also considered
the main mechanism of protection of IIV. IIV also generate T cell
responses and IgA antibodies that are not measured by the HAI
assay but may contribute to protection against influenza infection.
Inactivated vaccines generate demonstrable, but limited hetero-
subtypic protection against influenza A and B viruses. The most
obvious reasons for the decreased cross-protection potential of
IIV are the low T cell responses and the emphasis on the anti-
bodies against the highly variable HA at the expense of the more
conserved NA or M2.30 The addition of adjuvants increases the
antibody production and/or decreases the amount of antigen that
is needed to generate HAI titers ≥1:40 in response to vaccination.
Less is known about CMI responses to adjuvanted IIV but they
arguably confer higher cross protection than non-adjuvanted IIV,
suggesting that they may also generate higher CMI responses. It is
important to understand that HAI antibodies are not necessary
nor sufficient for protection against influenza infection.31 This
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was well demonstrated by studies in children and older indivi-
duals in whom CMI or nasal IgA correlated with protection
against influenza and HAI titers did not.32-35 Conversely, hema-
topoietic stem cell transplant recipients have regular infusions of
HAI-containing IVIG for the first 6 months after transplantation
but continue to be at high risk of severe influenza infection. LAIV
exemplifies best this paradigm. HAI titers generated by LAIV are
low and do not correlate with protection against influenza infec-
tion. Conversely, LAIV generates stronger CMI responses and
broader cross-protection compared with IIV. LAIV is more effi-
cacious in children than in adults.

Insights into the immunobiology of influenza
vaccines using transcriptomics

Recent studies have described gene expression signatures asso-
ciated with influenza vaccination. Advanced bioinformatics
analytical tools allowed classifying the gene expression patterns

in modules characteristic for activation and proliferation of
different immune cells, such as B cells, T cells, NK cells, and
dendritic cells.36 Differences have been observed in the immune
profiles of IIV compared with LAIV recipients.37-39 IIV has
generally been associated with increased transcription of
B cells, plasmablasts, plasma cells, and conventional DC
modules.40,41 Furthermore, the early transcriptional signatures
(involved in interferon signaling, antigen processing, and pre-
sentation and IL-6 regulation) of IIV recipients predicted HAI
production after vaccination.40 The molecular signatures asso-
ciated with antibody responses to IIV have been reproduced in
different populations and seasons, utilizing different techniques,
underscoring the solidity of the data.37,42

The addition of adjuvants to IIV may create signature
patterns specific for each adjuvant in addition to the antigen.
This is suggested by initial studies of MF59- and ASO3-
adjuvanted vaccines.43-45 ASO3 induces NK cell division
activity and interferon signaling and antigen processing and

Table 1. Transcription profiles of host responses to influenza infection and vaccination with potential clinical and research applications.

Outcome measure Genes/immune pathways involved Potential clinical/research application References

Differentiate influenza from other
respiratory viral infections

Type I interferon (IFI44, IFI44L, OAS2, IRF7) and type II
interferon (IFI35, IFITM1–3) were overexpressed in children
with influenza compared to children with RSV or HRV LRTI

Diagnosis of influenza infection; potential
for elucidating the main pathogen in viral
co-infections
Target antiviral therapy

Mejias et al.21

Parnell et al.22

Zhai et al.23

Andres-Terre
et al.24

Differentiate influenza infection from
bacterial pneumonia and systemic
inflammatory response syndrome

Influenza gene-expression profile -upregulation of genes
from cell-cycle regulation, apoptosis, and DNA-damage-
response pathways, e.g. Cell cycle mitosis, Cell cycle core,
Proteolysis Ubiquitin-proteasomal proteolysis, Cell cycle
S phase, Cell cycle G2M

Identification of presence or absence of
secondary bacterial infections
Target therapy

Parnell et al.22

Differentiate symptomatic from
asymptomatic infection

Asymptomatic infection characterized by transcriptional
regulation of the inflammasome genes; transcriptional
activation of suppressor of cytokine signaling (SOCS) family
genes and downregulation of JAK-STAT signaling;
transcriptional activation of virus interacting proteins, anti-
oxidant and cell-mediated innate immune responses.

Disease surveillance
Host transmission studies
Identify desired host immune responses
for new vaccine development

Huang et al.25

Identify transcription profiles
associated with more severe
clinical outcomes

Decreased type I interferon and ubiquitination gene
transcription associated with severe outcome of influenza
A infection
Transcription of interferon-induced transmembrane protein
genes associated with mild disease

Identify patients at high risk of developing
severe disease and design early
interventions to ameliorate the outcome

Hoang et al.26

Identify infection prior to the onset of
symptoms

Transcription of genes coding for innate viral RNA sensors,
interferon response elements and cytokine response
pathways 24–36 hours before symptoms

Studying outbreaks, illness clusters,
epidemiologic surveillance, transmission
studies

Hoang et al.26

Distinctive biosignatures that
represent acute and recovery
phase of infection

Acute phase- activation of gene transcription on the
interferon pathway and innate immunity; decreased
translational elongation and protein biosynthesis gene
transcription
Recovery phase – activation of genes involved in antigen
binding, antibody secretion and cell morphogenesis

Devise and monitor response to novel
therapeutic interventions

Zhai et al.23

Huang et al.25

Human cell responses to avian
influenza viruses

H7N9 infection of human epithelial cells generates
a transcriptional profile intermediate between H3N2 and
H5N1

Identify the potential of avian influenza
viruses to spread in humans

Josset et al.27

Genome-based identification of
influenza-specific immune
modifiers

Kinase inhibitor SB-203580, genistein, troglitazone,
minocycline, and LY-294002- capable of reverting gene
transcription induced by avian influenza viruses

Identifying novel therapeutic
interventions

Josset et al.27

Differences in IIV- and LAIV-induced
responses

LAIV activates gene transcription of the interferon pathway
TIV generates plasmablast activation and antibody
response gene transcription

Novel vaccine design based on attributes
of existing vaccines

Nakaya et al.28

Cao et al.29

Cole et al.30

Adjuvant-specific signatures Adjuvanted vaccine induced higher magnitude of gene
expression compared with non-adjuvanted vaccine,
including antiviral interferon, dendritic cell signature, Toll-
like receptor (TLR) and inflammatory signaling pathways

Identify adjuvants that elicit most
protective immune response

Nakaya et al.31

Olafsdottir et al.32

Early Transcriptional signature that
correlates with HAI responses to
vaccines

Early upregulation of Interferon response and antigen
presentation pathways is associated with a higher antibody
response

Development of new vaccines and
adjuvants

Tan et al.33

Bucasas et al.34

IIV, inactivated influenza vaccine; TIV, trivalent influenza vaccine; LAIV, live attenuated influenza vaccine; HAI, hemagglutinin antibody inhibition; RSV, respiratory
syncytial virus; HRV, human rhinovirus; LRTI, lower respiratory tract infection.
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presentation several days after vaccination.45 However, the
relationship between the adjuvant signature and protection
conferred by the vaccines still needs to be elucidated.

The transcriptional signature of LAIV was characterized by
increased activity of plasmacytoid DC, T cell and NK cell
modules. Interferon-signaling pathways were induced 7 days
after vaccination.38 Transcriptional signatures in LAIV reci-
pients differed from those of IIV recipients and were not
associated with the magnitude of the HAI responses to the
vaccine.38,39 The LAIV signature revealed five upregulated
genes that represented an interferon-stimulated gene
response. It is interesting to note that the transcriptional
signature of LAIV more closely resembled that of yellow
fever vaccine, which is also a live attenuated virus vaccine,
than the IIV signature. The transcriptional signature of yellow
fever, however, is predictive of the antibody response to this
vaccine which also correlates with protection against yellow
fever viral infection.

Finally, transcriptional signatures following influenza vacci-
nation differ among children, young adults and older adults,43,46

racial groups47 and between men and women.48,49 Further
research is required to understand key differences in the
immune response among our more vulnerable populations.

Conclusion

Transcriptomics is a rapidly evolving discipline that provides
an unbiased, accurate and sensitive method to study host-
pathogen interactions. This approach requires significant
computation, and thoughtful experimental design and data
interpretation are required to ensure that meaningful conclu-
sions can be reached. The studies presented in this review
demonstrate the potential for transcriptomics to provide valu-
able applications for research and clinical use. This technology
has provided novel insights into the host response to influ-
enza natural infection and vaccination, which can help guide
the development and selection of future influenza vaccines
and therapeutics. Further, combining pathogen detection with
the host immune response can improve interpretation of
pathogens identified in a biological sample and enhance the
classification of disease states. Currently, transcriptomics
techniques are labor intensive and require high-level bioinfor-
matics support, limiting their clinical application. However,
further advancements in this technology may allow for faster
acquisition of transcriptomic profiles in the clinical setting, in
order to enhance diagnostics, monitor response to therapy,
and identify markers of severity.
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