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Objective: To validate the reliability and efficiency of clinical diagnosis in practice based
on a well-established system for the automatic segmentation of cerebral microbleeds
(CMBs).

Method: This is a retrospective study based on Magnetic Resonance Imaging-
Susceptibility Weighted Imaging (MRI-SWI) datasets from 1,615 patients (median
age, 56 years; 1,115 males, 500 females) obtained between September 2018 and
September 2019. All patients had been diagnosed with cerebral small vessel disease
(CSVD) with clear cerebral microbleeds (CMBs) on MRI-SWI. The patients were divided
into training and validation cohorts of 1,285 and 330 patients, respectively, and another
30 patients were used for internal testing. The model training and validation data
were labeled layer by layer and rechecked by two neuroradiologists with 15 years of
work experience. Afterward, a three-dimensional convolutional neural network (CNN)
was applied to the MRI data from the training and validation cohorts to construct a
deep learning system (DLS) that was tested with the 72 patients, independent of the
aforementioned MRI cohort. The DLS tool was used as a segmentation program for
these 72 patients. These results were evaluated and revised by five neuroradiologists
and subjected to an output analysis divided into the missed label, incorrect label, and
correct label. The interneuroradiologists DLS agreement rate, which was assessed using
the interrater agreement kappas test, was used for the quality analysis.

Results: In the detection and segmentation of the CMBs, the DLS achieved a
Dice coefficient of 0.72. In the evaluation of the independent clinical data, the
neuroradiologists reported that more than 90% of the lesions were directly detected and
less than 10% of lesions were incorrectly labeled or the label was missed by our DLS.
The kappa value for interneuroradiologist DLS agreement reached 0.79 on average.

Conclusion: Based on the results, the automatic detection and segmentation of CMBs
are feasible. The proposed well-trained DLS system might represent a trusted tool for
the segmentation and detection of CMB lesions.
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INTRODUCTION

Cerebral microbleeds (CMBs) are radiological constructs that
were first observed and defined on MRI (1). T2∗-weighted
gradient-recalled echo (GRE) and susceptibility-weighted
imaging (SWI) are commonly used to detect CMB in clinical
practice (2). On GRE images or SWI, a CMB is a small elliptical
or circular lesion of 2–5 mm but sometimes up to 10 mm
(3). According to previous studies, SWI is usually the main
modality recommended for quantifying numbers of CMBs, as
it shows higher sensitivity and reliability for CMB detection
than GRE imaging. The pathophysiology of CMB has not yet
been fully elucidated. Histopathologically, microbleeds represent
the perivascular focal collection of hemosiderin deposits (1–5).
Vitreous degeneration of small vessels and vascular amyloidosis
are considered to be the two main pathological mechanisms.
They might damage the small vascular wall and cause the
destruction of the blood-brain barrier. The focal remnant
deposits of hemosiderin are most likely secondary to such
arteriolar and capillary damage caused by multiple mechanisms,
which result in blood product leakage in the perivascular
space (6). A group of risk factors for CMB has been reported,
including age, hypertension, cholesterol, diabetes mellitus, and
smoking (7–9). CMB is associated with an increased risk of
several diseases and conditions. CMBs increase the risk of
subsequent ischemic stroke and intracranial hemorrhage (ICH)
(2, 3, 10, 11). CMBs are associated with small vascular disease
(SVD) and are thus more likely to accompany strokes with
lacunar infarction than infarction caused by cardioembolism
or atherosclerosis (12). CMB is also expected to cause ICH (8,
13). Therefore, CMB was considered a predictor of future stroke
and hemorrhage in patients receiving thrombolytic therapy or
long-term antithrombotic treatment for ischemic stroke (3).

Cerebral microbleeds (CMBs) are also associated with an
increased risk of cognitive impairment and dementia in patients
with normal cognitive function, mild cognitive impairment,
and dementias such as Alzheimer’s disease (4, 14–16). In
addition, CMBs may be present in individuals with some genetic
diseases, such as cerebral autosomal dominant arteriopathy
with subcortical infarcts and leukoencephalopathy (CADASIL)
or Moyamoya disease (17, 18). The risk and extent of CMB,
which is considered a biomarker of SVD, has been used as an
index for evaluating the status of underlying diseases and might
influence the management of these diseases (12). Thus, a systemic
and quantitative evaluation of CMB with high accuracy and
efficiency is essential in assessing disease prognosis. At present,
visual scoring systems are used in CMB evaluations, including
the Microbleed Anatomical Rating Scale (MARS) (19) and the
Brain Observer MicroBleed Scale (BOMBS) (20). However, the
reliability of these methods in assessing the number and location
of CMBs is relatively low without the use of evaluation tools.
In recent years, automated or semiautomated brain imaging
analysis methods have been applied to evaluate CMBs (21–23).
A deep learning system (DLS) for automatic CMB detection
was developed and analyzed in terms of reliability to support
clinical work with consistent and efficient CMB identification
and simplify the clinical workflow of CMB marking. We invited

five clinical neuroradiologists to assess the performance of the
proposed DLS, especially the number and location of CMBs based
on SWI sequences. This study aimed to validate an appropriately
trained DLS that could be trusted by a neuroradiologist with
sufficient experience.

MATERIALS AND METHODS

Standard Protocol Approvals, and
Patient Consent
This study was approved by the ethics committee of Beijing
Tiantan Hospital and fulfilled the Declaration of Helsinki.

Image Dataset
We retrospectively obtained MRI-SWI data with good SWI image
quality from 1,615 patients, and all the data were obtained
from Beijing Tiantan Hospital. According to the SWI acquisition
protocol used clinically, scans were obtained using multiple
different scanners with a field strength of 1.5T or 3T. In this
dataset, we labeled 10,525 lesions, including 9,387 small size
lesions ranging in size from 2 to 5 mm and 1,138 large lesions
ranging in size from 5 to 10 mm. The basic information of the
patients and manufacturers is provided in Table 1, and more
detailed information about lesion sizes is presented in Table 2.
The clinical evaluation dataset (test data) included MRI-SWI
images from 72 patients with CMBs in the Third China National
Stroke Registry (CNSR-III), a nationwide registry of ischemic
stroke or transient ischemic attack (TIA) in China based on
etiology, imaging, and biological markers that recruit consecutive
patients with ischemic stroke or TIA from 201 hospitals that
cover 22 provinces and four municipalities in China. This dataset
is independent of the previous 1,615 patients.

Data Quality Control
Minor artifacts or mildly reduced signal-noise ratios with no
effects on diagnosis or no artifacts and optimal artifacts were
selected for the evaluation of image quality in this retrospective
study. Diagnostic Screening: All patient electric health records
(EHRs) were reviewed and reanalyzed by medical doctors before
preprocessing the images, labeling, and generating ensemble
models. The segmentation labels with CMBs were based on a
manual slice by slice analysis of the MRI-SWI data. After labeling
all images with CMBs, all data were rechecked and endorsed by
two radiologists with 15 years of clinical experience, which were
used for DLS training and validation.

Network Architecture
The SWI image is a three-dimensional (3D) axial slice, and the
image size is Z∗X∗Y. Z represents the number of slices and X∗Y
represents the length and width of each slice. Microbleeding is
a disease with contextual information. The normal network used
two-dimensional (2D) U-net and 3D U-net for prediction, but the
number of slices of the SWI was quite different. If 3D U-net and
resampling are used, some slice information will be missing, and
a simple 2D U-net will lack the upper and lower slice information.
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TABLE 1 | Basic information of the patients, manufacturers, and
parameters of scanners.

Patients characteristics (training/validation dataset) Patient
(images)
metric

Number of patients 1285/330

Female to male ratio 405:880/95:235

Different macufacturers (numbers in the training/validation
datasets)

GE 287/72

Siemens 356/88

Philips 642/170

Field strength (numbers in the training/validation datasets)

1.5T 174/34

3T 1111/296

Scanner model (numbers in the training/validation datasets)

Verio 89/25

Ingenia 429/116

Achieva 77/13

Trio Tim 110/33

Signa HDxt 71/10

DiSCOVERY MR750 205/70

Ingenia CX 133/33

Skyra 16/2

Avanto 100/18

Aera 43/6

SIGNA Explorer 12/2

Prisma 0/2

Resolution (numbers in the training/validation datasets)

512 × 384 96/15

432 × 432 459/157

512 × 512 326/60

256 × 192 183/47

256 × 232 62/15

480 × 480 21/7

768 × 624 9/3

256 × 224 42/9

224 × 256 10/2

320 × 320 9/1

384 × 264 3/0

320 × 260 18/3

640 × 520 13/2

310 × 320 1/0

352 × 352 9/1

256 × 256 21/8

260 × 320 1/0

560 × 560 2/0

Therefore, in this article, we adopted a new approach. In the
training process, three consecutive layers of slices were used as
input. The size was X∗Y∗3, and the output was X∗Y. The middle
slice of the positive sample had microbleeds, and the middle slice
of the negative sample had no microbleeds. Bleeding was not set
for the analysis of whether microbleeds were present in the upper
and lower layers. Here, the ratio of positive to negative was 1:1.

TABLE 2 | Data distribution.

patients Small lesions Large lesions

Training dataset 1,285 (79.6%) 7,461 (79.5%) 927 (81.5%)

Validation dataset 330 (20.4%) 1,926 (20.5%) 211 (18.5%)

Summary 1,615 9,387 1,138

During the test, the entire image was input into the network in
sequence according to the scanning order.

We implemented a 3D CNN to extract representative features
for complicated CMBs based on the MRI-SWI sequences.
Specifically, we designed a full CNN architecture composed
of encoder and decoder paths to conduct the segmentation
task. More specifically, our network was based on the widely-
used modified 3D U-Net architecture with 3 layers. The
detailed network architecture is shown in Figure 1, which
provides a detailed description of the segmented network
used to detect CMBs.

Establishing the Deep Learning
Algorithm
Before feeding the model, all MRI-SWI data were preprocessed by
scaling the global (3D) image intensities and were standardized
across the acquisition parameters to increase the convergence
rate of network training. We performed the normalization and
alignment based on the histogram peaks to the white matter
content in the MRI. All images were cropped into squares
according to the shortest side, and the size was cropped or resized
to 384× 384 pixels. According to the histogram, we deleted fewer
points (less than 1e-4), and the window width was determined
and then max-min normalized. Lesions with sizes other than
2–10 mm were deleted.

The training set and validation set consisted of CMB data
(n = 1,285 positive volumetric scans and 330 positive volumetric
scans, respectively). The model was trained using 3D axial SWI
slices. The SWI data from all patients were preprocessed, resized,
and normalized to have a uniform size of 384 × 384 × 3
pixels and pixel intensities in the range of 0–1. Using these
data, the network was trained using binary cross-entropy loss
and the Adam optimizer with an initial learning rate of 10−3.
During training, model training progress was monitored using
a validation set Dice score. The learning rate was reduced by
a factor of 0.1. An early stopping criterion was implemented if
the validation Dice did not improve for 30 consecutive epochs
to avoid model overfitting. Training stopped if the validation
Dice score did not improve for 60 consecutive epochs. At the
end of the training, the model with the highest Dice score for
the validation set was retrieved. Its performance was evaluated
on the test dataset. The training was stopped when the training
loss was less than 10 and the validation scores reached 0.8, as
we presumed that the DLS reached the optimal performance at
this time. The dataset was augmented in the training process,
including image vertical, rotation, translation, contrast changes
and other parameters, to increase the robustness of the model.
Thus, it forms a more diverse dataset with slight differences.
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FIGURE 1 | Network architecture of the proposed three-dimensional (3D)
convolutional neural network (CNN). The network has 28 layers integrating six
residual blocks. Bilinear interpolating arrows indicate upsampling operations
to provide dense predictions for the segmentation task. Skip connections are
used to fuse low- and high-level features in the network. Batch normalization
is a linear transformation of the features to reduce covariance shift and
accelerate the training process. The convolution bar represents the
convolution operation that computes features. The number 64 indicates the
number of channels in that layer, and 3 3 3 3 3 denotes the size of the 3D
CNN kernels.

If the prediction mask and the reference mask intersected, a
value greater than the threshold value was considered predicted
correctly; otherwise, prediction error was considered. Similarly, if
the reference mask and forecast masks intersect, a value greater

than the threshold value was considered correctly predicted;
otherwise, the prediction miss was considered. The threshold was
set to 0.4 obtained from the optimized model results. Computed
precision and recall were analyzed using this method. After
the establishment of the model, 90 healthy patients without
CMBs were used as the control to test the model, and no
false-positive CMBs were detected. Then, the model entered the
evaluation phase.

Evaluation Dataset and Reference
Standard
Commonly used metrics known as the Dice score, precision,
recall, and accuracy were used to evaluate the performance of the
proposed segmentation networks (24). Pixel level dice score was
the primary model performance criteria and it was calculated as
follows:

TPpixel =
∣∣Pixels correctly predicted as positive

∣∣
= |Predicted Mask ∩ Ground truth mask|

FPpixel =
∣∣Pixels wrongly predicted as positive

∣∣
FNpixel = |Pixels wrongly predicted as negative|

Dicepixel =
2 ∗ TPpixel

2 ∗ TPpixel + FPpixel + FNpixel

Along with the dice score, the pixel level precision and recall
were also calculated as follows:

Presicionpixel =
TPpixel

TPpixel + FPpixel

Recallpixel =
TPpixel

TPpixel + FNpixel

Also, along with the pixel-level computations, to understand
how good the model is in identifying isolated lesions, the lesion
level precision and recall were computed. For this computation,
first, the individual lesions were identified as a set of continuous
positive pixels from both the predicted and ground truth mask.
Next, the overlap between the predicted lesions and the ground
truth lesions was computed and the lesions were termed as
TP lesions if this overlap was greater than 40% of the true
lesion. Following this, the lesion-level precision and recall were
computed as follows:

TPlesion =
∣∣Correctly predicted as lesions

∣∣
Predictedlesion =

∣∣Predicted lesions
∣∣

Truelesion =
∣∣Ground truth lesions

∣∣
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Presicionlesion =
TPlesion

Predictedlesion

Recalllesion =
TPlesion
Truelesion

We count the data level and patient level at the same time, and
the data level is calculated on the entire data set. The patient level
is calculated for each patient first and then averaged.

Furthermore, based on the condition of whether the model
was able to identify at least one correct lesion, the patients were
also classified into the TP, TN, FP, and FN categories. Based on
this data, the patient-level FP rate (FPR), FN rate (FNR), and TP
rate (TPR) were calculated as follows:

FPR =
FP

TN + FP

FNR =
FN

TP + FN

TPR =
TP

TP + FN

The FP rate indicates the model’s tendency for wrongly
identifying a patient as having infarction (Type I error rate)
whereas, FNR indicates the possibility of the model missing a
patient with infarction (Type II error rate). Based on the FPR
and TPR, the receiver operating characteristics (ROC) curve was
constructed: the abscissa was FPR and the ordinate was TPR.
Then the area under the ROC (AUC) was calculated. Pixel-level
ROC and lesion-level ROC were defined as follows:

Pixel-level ROC: taking each pixel as a sample, the ROC
curve is calculated from the pixel prediction probability
and ground truth.

Lesion-level ROC: taking each lesion as a sample, the average
pixel probability of each lesion is counted, and the ROC curve is
calculated from the average probability and ground truth.

Compared with pixel-level ROC, lesion-level ROC is more
clinically relevant. So we constructed the lesion-level ROC to
evaluate the performance of the system.

We generated predictions for 72 patients randomly chosen by
a doctor among patients who had SWI sequences in their records
from the CNSR-III research group to evaluate the performance
of the model and assess whether it would meet the clinical
requirements. The clinical diagnosis must meet the inclusion
criteria, and all of these patients are independent of the previous
training and validation datasets.

The clinical doctors included in this study are top experts
neuroradiologists with at least 15 years of clinical experience.
After DLS prediction, we asked them to categorize the prediction
results into three subgroups: correct label, missed label, and
incorrect label. Each of these terms was defined as follows:

Correct label: the label was accurate compared with
the ground truth.

Missed label: compared with the ground truth, the model did
not produce the corresponding label.

FIGURE 2 | Flowchart of the patients’ distribution in training and clinical
evaluation sets. Model training and clinical evaluation steps use the
distribution and classification of all samples in each step.

Incorrect label: the model assigned additional labels that were
not in the ground truth label during the test.

Ground truth: two different chief physicians double confirmed
the ground truth label in the test dataset (72 patients).

Doctors were requested to perform the segmentation to the
best of their abilities, without any constraint on time or duration
to ensure that they evaluated the data in its best state. They
revised the prediction results obtained from DLS when the
prediction results were missing or incorrect.

Statistical Analysis
The clinical evaluation was performed by five clinical medical
doctors to assess the deep learning segmentation results. The
interradiologist agreement test was performed for each validation
case using the SPSS software (version 20.0) (IBM, Armonk, NY,
United States). The statistical significance was set to P< 0.05, and
a kappa value >0.21, based on the ground truth.

RESULTS

Patient Demographic Characteristics
In Figure 2, we present the entire method for the DLS setup.
A total of 1,615 MRI examinations with l0,525 lesions identified
in 1,615 patients were included. We randomly distributed these
data into a training cohort and a validation cohort; thus, no
significant differences in sex or age were observed.

Additionally, our dataset comprised an adequate number
of CMBs, and the distribution of the lesion data had no
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FIGURE 3 | (A) Overall framework for the testing stage. (B) Segmentation
receiver operating characteristic (ROC) curve and area under the curve (AUC)
score in the lesion level analysis.

bias. The parameters of these data were obtained from a
similar investigator and scanner. We confirmed the scanner
parameters of pixel and thinness. The brightness and contrast
were normalized before being input into the DLS system.

DLS Set-Up and Performance of the DLS
Contouring Method
A total of 10,525 lesions were manually labeled to establish the
DLS. Briefly, we manually labeled approximately 9,387 small
size lesions (2–5 mm, 7,461 lesions for the training set and
1,926 lesions for the validation set) and 1,138 large lesions (5–
10 mm, 927 lesions for the training set, and 211 lesions for the
validation set) for training and validation (Table 1). The network
architecture of the proposed 3-dimensional convolutional neural
network is shown in Figure 1, and more detailed information
about the network is presented in the methods section. After
training and validation, the DLS was tested using the testing
dataset. The average pixelwise DSC, precision, and recall of
the proposed DLS reached 0.72, 0.718, and 0.765, respectively.

TABLE 3 | Model performance obtained from the testing dataset.

DSC Precision Recall Sensitivity Specificity

Small lesions 0.71 0.707 0.762 84.4% 78.07%

Large lesions 0.73 0.729 0.768 93.51% 83.72%

In average 0.72 0.718 0.765 / /

TABLE 4 | Clinical evaluation.

Observer
1

Observer
2

Observer
3

Observer
4

Observer
5

Average

Correct
label

787
(94.4%)

770
(92.8%)

790
(94.6%)

784
(93.3%)

761
(91.2%)

778.4
(93.3%)

Incorrect
label

27 (3.2%) 44 (5.3%) 24 (2.9%) 30 (3.6%) 53 (6.4%) 35.6 (4.3%)

Missed
label

20 (2.4%) 16 (1.9%) 21 (2.5%) 26 (3.1%) 20 (2.4%) 20.6 (2.5%)

The 3D lesionwise precision and recall reached 0.751 and
0.852, respectively. A lesion level analysis was performed on the
independent test set, and the results showed that the sensitivities
of detecting the small and large lesions were 84.4 and 93.51%,
respectively. Additionally, in the lesion level analysis, the AUC
score of the proposed DLS system was 0.861, and the ROC
curve is shown in Figure 3B. The patient level analysis was also
performed with the FP, FN, TN, and TP of 10, 2, 84, and 93,
respectively. And the FP rate and FN rate were 0.106 and 0.021,
respectively. The detailed results of the model are presented
in Table 3.

The data show the relabeling results after a comparison
between the DLS tool and expert labeling results. From the
data, we found that the labels attained from the model were
accurate and perfectly matched the contour of the real signal.
However, the labeling tools and pixels did not adequately control
the manual labeling, and the Dice score did not adequately
reflect the DLS segmentation results. These data could only
support DLS training and validation. Visually, we examined all
the data and found that our DLS and human experts had strong
consistency in the lesion contour, but the Dice score was low, as
described above.

Assessment of DLS-Generated Contours
by Human Experts
Figure 3A presents the overall framework for data prediction
and the clinical evaluation process. Based on the labeling
sensitivity and Dice score, the sensitivity of labeling small
lesions was approximately 84.47% and that of large lesions
was approximately 93.51%, with an average Dice score
of approximately 0.72. The specificity of labeling was
approximately 78.07% for small lesions and 83.72% for large
lesions (Table 3).

However, in the clinical evaluation, the doctors evaluated
the output labeling results and revised the labeling results
to “missed label,” “incorrect label,” and “correct label.” The
missed label group included approximately 20.6 lesions on
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FIGURE 4 | Representative cases of manual cerebral microbleeding (CMB) labeling and labeling with the deep learning system (DLS) system (A,B) along with the
data distribution (C).

average and 2.5% in total, and the incorrect-label group
included approximately 35.6 lesions on average and 4.3%
in total. We concluded that using DLS as a contouring

accuracy evaluation criterion is reliable and provides accurate
lesion quantification. The average kappa value for the
internal agreement between observers and DLS prediction
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was 0.79. Detailed information in the clinical evaluation
is presented in Table 4. Several examples obtained from
the DLS are shown in Figure 4 and compared with those
obtained manually.

DISCUSSION

Cerebral microbleed (CMB) is closely related to many diseases,
including SVD, AD, and CADASIL. A previous study has shown
that in addition to the location of the CMB, the number is also
an independent predictor of the severity of cognitive impairment
and dementia in multiple fields (25). Therefore, systematic and
accurate quantification of CMB is of great clinical significance.

Based on the SWI data from 1,615 patients with a total
of 10,525 lesions, we established a DLS that automatically
and objectively segmented CBMs. Compared with other
studies (26–28) that automatically recognized CMBs using
deep convolutional networks, our DLS was trained with a
larger dataset, and the sensitivity and specificity of the model
were high, suggesting that it was reliable and would better
serve clinicians. Previous studies usually adopted 2D CNNs to
construct automatic detection systems, but they lacked upper
and lower slice information. In our study, the FN rate of the
DLS was low, and we used the widely-used modified 3D U-Net
architecture. It made full use of the spatial information of
biomarkers and accelerated the computing speed. In addition
to studies that used 2D/3D CNNs to detect CMBs on MRI-
SWI, Chesebro et al. (29) presented an algorithm for microbleed
automated detection using geometric identification criteria
(MAGIC) to detect CMBs automatically. It has reasonable
precision on both T2∗-weighted GRE images and SWI and
had high sensitivity in longitudinal identification, with 50%
of longitudinal microbleeds correctly labeled. Limited to the
algorithm, this study was unable to discriminate between edge
artifacts and true positives better than other studies using deep
convolutional networks.

We evaluated the DLS performance based on the Dice score,
which allows for minor uncertainties in the neighborhood
of a few pixels, and the region-wise F1 score, which may
not be a suitable indicator for success in evaluating lesions.
The AUC of our DLS was 0.861, revealing the excellent
performance of the system. Due to the high AUC and low
FP rate and FN rate, we propose that it accurately quantified
CMBs. Based on a manual data recheck and the variation in
lesion marking by individual neuroradiologists, we performed
a clinical evaluation based on a multicenter analysis with
a score scale. Our DLS performed favorably according to
the evaluation by neuroradiologists with an average accuracy
of 93.3%. Our marking results were directly or clinically
accepted, with most DLS-identified CMBs agreed upon by
expert specialists. Moreover, these processes were performed
much faster than the manual evaluation process [DLS 2.8
s/case vs. doctors 146 s/case (on average)], which is time-
consuming and produces systemic and quantified results,
significantly minimizing heterogeneity among neuroradiologists
in the delineation of lesions. The results in this study showed

that our model was used for the diagnosis and evaluation
of CMBs and was more reliable than manual evaluation
performed by specialists.

Limitations
First, several different MRI devices with varying scan parameters
produced all the images evaluated in this study. The use of
these images might increase the data diversity in training
the algorithm and testing interpretation subjectivity. However,
we were unable to include all the different devices or their
corresponding parameter sets for each patient. Therefore, the
further clinical application of our system may be challenging
due to this limitation. Second, due to the heterogeneity in
different neuroradiologists’ clinical backgrounds, the accurate
recognition and consistent interpretation of the number and
location of CMBs by all of these clinicians was challenging.
Notably, all annotations made in the dataset have been
endorsed by associate chief physicians with at least 15 years
of experience. As our model was trained on these data,
the limitation of clinical experience in these doctors might
affect their evaluation of CMBs and subsequently affect the
training process. Improving data quality using more experienced
doctors and rigorous training of study protocols might optimize
the reliability of training our DLS model. Third, the well-
trained DLS has advantages in overcoming the heterogeneity
of individual human interpretations with good consistency
based on the training features (30). This automated procedure
is independent of clinical experience, overcoming limitations
imposed by an individual physician’s visual sensitivity and
clinical experience. The results from the DLS report are
produced instantly by the graphical processing unit after
input with the output scanning results, which is helpful for
neuropathologists to perform the interpretation process faster.
Prospective clinical studies are needed to determine whether
this hypothesis is valid, and the interpretation should also
be modified by performing a post-DLS analysis to match
the equipment and the DLS. In addition, our DLS system
for CMBs is based only on MRI-SWI and does not include
other useful clinical diagnostic information, such as natural
history and other imaging performance in the resulting output.
Thus, the information is limited in producing a powerful and
clinically significant prediction, and differential diagnosis, such
as calcification and normal vascular fluid voids, is sometimes
needed. Currently, our DLS only serves as a method for assisting
neuroradiologists. Future studies involving more comprehensive
clinical information are necessary. Another limitation of this
study is that it is based on local and regional data. All the data
were collected in China and thus do not include data from other
countries and regions.

CONCLUSION AND CONTRIBUTIONS

In summary, we developed a DLS tool to perform the CMB lesion
segmentation. Our results show that DLS can significantly and
quickly masks CMBs in less time to reduce physicians’ repetitive
labor. Additionally, based on the DLS model, variation within
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and between neuroradiologists might be reduced. The resulting
output produced by the system will be more subjective.
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