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Abstract: Lynx1, membrane-bound protein co-localized with the nicotinic acetylcholine receptors
(nAChRs) and regulates their function, is a three-finger protein (TFP) made of three β-structural
loops, similarly to snake venom α-neurotoxin TFPs. Since the central loop II of α-neurotoxins is
involved in binding to nAChRs, we have recently synthesized the fragments of Lynx1 central loop,
including those with the disulfide between Cys residues introduced at N- and C-termini, some of
them inhibiting muscle-type nAChR similarly to the whole-size water-soluble Lynx1 (ws-Lynx1).
Literature shows that the main fragment interacting with TFPs is the C-loop of both nAChRs and
acetylcholine binding proteins (AChBPs) while some ligand-binding capacity is preserved by analogs
of this loop, for example, by high-affinity peptide HAP. Here we analyzed the structural organization
of these peptide models of ligands and receptors and its role in binding. Thus, fragments of Lynx1
loop II, loop C from the Lymnaea stagnalis AChBP and HAP were synthesized in linear and Cys-
cyclized forms and structurally (CD and NMR) and functionally (radioligand assay on Torpedo
nAChR) characterized. Connecting the C- and N-termini by disulfide in the ws-Lynx1 fragment
stabilized its conformation which became similar to the loop II within the 1H-NMR structure of
ws-Lynx1, the activity being higher than for starting linear fragment but lower than for peptide with
free cysteines. Introduced disulfides did not considerably change the structure of HAP and of loop C
fragments, the former preserving high affinity for α-bungarotoxin, while, surprisingly, no binding
was detected with loop C and its analogs.

Keywords: nicotinic acetylcholine receptors; three-finger proteins; peptide fragments; spatial struc-
ture; nuclear magnetic resonance; circular dichroism; radioligand assay

1. Introduction

α-Neurotoxins from the snake venoms having a three-loop (or three-finger) spatial
structure (three-finger proteins, TFPs) are well-recognized tools in the research on the
nicotinic acetylcholine receptors (nAChRs) [1–3]. In humans and other organisms, there
are also TFPs of the Ly6 family: these proteins are either water-soluble or attached by the
glycosylphosphatidyinositol anchor to the membranes and some of them are targeting
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distinct nAChRs subtypes, thus affecting their multiple physiological functions [4–6].
According to the biochemical data, NMR, cryo-electron microscopy and X-ray structures,
the central loop II in TFPs plays an important role in binding to nAChRs, while the
loop C contributes much to the binding from the side of the receptor [1,7–9]. Synthetic
peptides covering a part of loop II in neurotoxins have a sufficiently high affinity for the
nAChRs indicating their possible utility in drug design [7]. Recently a similar activity in
the recognition of distinct nAChR subtypes was demonstrated for the first time for the
loop II synthetic fragments of several TFPs of the Ly6 family, where Cys residues were
added at the N-and C-termini and were left free or connected by disulfide [10]. What
concerns the nAChR synthetic fragments, the capacity to bind the snake venom TFPs was
earlier shown for the fragments of α1 and α7 subunits encompassing the loop C and for
combinatorial peptides homologous to its part [11–15]. Interestingly, one of the latter,
so-called high-affinity peptide (HAP) could bind α-bungarotoxin (α-Bgt) with the same
nanomolar affinity as the whole-size muscle-type nAChR [15]. Structural studies of HAP
or its variants have shown that in complexes with α-Bgt these linear peptides acquire an
ordered form, similar to the C-loop structures in the nAChRs or AChBPs [16–20], that may
explain their high affinity for the toxin. However, there is still no complete clarity as to the
dependence of the functional activity of peptide fragments of both TFPs and loop C from
nAChRs or AChBPs on formation of secondary structure elements, leaving a hypothetical
solution of this question for computer simulation and for further structural studies.

Until the publication in 2020 of the cryo-electron microscopy structure of a native Tor-
pedo californica ray nAChR in complex with α-Bgt [18], there was no spatial structure of the
whole-size nAChR in complex with any TFP, but the X-ray and NMR structures of the snake-
venom TFPs associated with the synthetic fragments of the α1 subunit [14,21,22], with the
ligand-binding domains of the α1, α7 and α9 subunits [19,23,24] and with AChBP [20]
were available. Interestingly, the X-ray structure of the loop C in AChBP was used to model
the TFP binding to nAChRs, although this loop was not synthesized and its binding to
TFPs was not analyzed [25].

In the present communication, we carried out the structural studies (CD spectra and
NMR data) of several synthetic peptides, corresponding to the loop II of the Ly6 protein
Lynx1, the loop C of Lymnaea stagnalis AChBP and peptide HAP in a linear form and
cyclized by disulfide bridge between additional flanking cysteines.

Lynx1 belongs to the family of Ly6 proteins where their protein part is structurally
similar to the snake venom “three-finger” toxins containing 3 β-structural loops with the
overall structure stabilized by 5 disulfides. Some of these proteins are secreted, but like
many other members of this family, Lynx1 is attached to the membrane by a glycosylphos-
phatidyl inositol (GPI) tail [1,2]. The earlier work was focused on the Lynx1 heterologously
expressed in E. coli and built of 74 amino acid residues, not having a GPI tail, and desig-
nated as ws-Lynx1, water-soluble Lynx1 [26]. In our recent work, keeping in mind relevant
research on the activity of synthetic fragments of snake venom α-neurotoxins, we synthe-
sized central loops of several Ly6 proteins, including that of ws-Lynx1, connected their
N-and C-termini by the attached disulfide, and analyzed the activity against the muscle-
type and several neuronal nAChRs [10]. Since the most similar affinity between the whole
protein and its fragment was achieved in the case of ws-Lynx on binding to the Torpedo
californica nAChR, in the present communication we analyzed by 1H-NMR the spatial
structure of this peptide and compared it with the structure of the central loop within the
whole structure of ws-Lynx1. The activity and conformation of a similar peptide with the
Cys residues introduced at the N-and C-termini, but not closed into a disulfide, were also
studied. In addition, since the competition with α-bungarotoxin reflects binding of the
ws-Lynx1 and of its fragments to the orthosteric sites of the nAChRs and of its models,
in the present work we also checked whether the introduction of a disulfide, connecting
the N-and C-termini, to such peptides as combinatorial peptide HAP or fragment of the
C-loop of the AChBP, resembling the nAChR orthosteric sites, influences their binding
characteristics.
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Thus, we were interested what effects might be introduced by a fixing disulfide on
the structure and activity of the fragments both of the cholinergic ligand and of the ligand-
binding site. It was found that the linear form of the synthetic fragments of TFPs of the
Ly6 family is disordered, while the disulfide-cyclized form has a more stable conformation
and is very similar to the respective portion of loop II within the ws-Lynx1 [26]. However,
this property does not strongly affect the ability of both forms to bind to the nAChR from
T. californica. The disulfide in loop C of AChBP had slightly increased the stability of the
peptide but no ordered structure and no toxin binding was found. The additional disulfide
did not strongly change a quite high secondary structure in HAP and did not affect its high
affinity for α-Bgt.

2. Materials and Methods
2.1. Synthesis of Linear and Disulfide-Stabilized Fragments of Human Lynx1, of the Lymnaea
Stagnalis AChBP Loop C and of the Combinatorial Peptide HAP

Linear peptides were prepared by solid-phase peptide synthesis using Fmoc/t-butyl
strategy on tritylchloride-polystyrene resin (Intavis, Cologne, Germany) mostly as in [10].
Polypeptide chain assembly was performed on Syro I automatic peptide synthesizer (Mul-
tiSynTech AG, Witten, Germany). Disulfides formation was carried out under conventional
oxidation conditions: prolonged incubation on air in 50% aqueous acetonitrile at room
temperature in the presence N-ethyldiisopropylamine (pH 8.0). In the case of formation of
vicinal disulfide in peptide Ls202–214C-C, the reaction proceeded extremely slowly with
predominant formation of by-products, the best yields of target product being achieved by
adding 20% dimethylsulfoxide to the peptide solution. All peptides were purified by high-
performance liquid chromatography (HPLC) on a 250 × 30 mm C8 column (Dr. Maisch,
Ammerbuch-Entringen, Germany) in linear gradient of acetonitrile from 10% to 40% and
then lyophilized. The peptides purity was confirmed using analytical HPLC and the
respective molecular masses were determined by MALDI-MS using Bruker Ultraflex I
mass-spectrometer (Bruker Daltonik GmbH, Bremen, Germany) (Table 1).

2.2. Activity of Synthetic Fragments of Lynx1 and of Nicotinic Receptor Loop C Models in
Radioligand Assay

In these studies, we used radiolabelled α-Bgt (125I-α-Bgt) with specific radioactiv-
ity of 500 Ci/mmol prepared as described in [27]. Competition experiments with Lynx1
fragments (compounds (1)–(3)) were performed mostly as described in [10]. Briefly, the
membranes from T. californica ray electric organ (0.6 nM of α-bungarotoxin binding sites)
were incubated in 50 µL of binding buffer (20 mM Tris-HCl buffer, pH 8.0, containing
1 mg/mL BSA) for 90 min with different concentrations of the Lynx1 peptides, followed by
an additional 5-min incubation with 0.5 nM of 125I-α-Bgt. The membranes were applied to
glass GF/C filters (Whatman, Maidstone, UK) pretreated with 0.3% polyethylenimine. The
samples were then washed (3 × 4 mL) with cold 20 mM Tris-HCl buffer, pH 8.0, contain-
ing 0.1 mg/mL BSA and bound radioactivity was measured with a Wallac 1470 Wizard
Gamma Counter (PerkinElmer, Waltham, MA, USA). Nonspecific 125I-α-Bgt binding was
determined in the presence of 200-fold excess of α-cobratoxin. The results were analyzed
using ORIGIN 7.5 (OriginLab, Northampton, MA, USA) fitting to one-site dose-response
competition curves.

For the loop C fragments, HAP and its analogs (compounds (4)–(7)) we applied the
same radioligand assay protocol, although in this case the observed decrease in binding of
the 125I-α-Bgt to the T. californica nAChR is caused not by direct competition of radioligand
with the studied compounds (representing in this case the receptor model), but by their
interaction with the 125I-α-Bgt itself. In these experiments we incubated the Torpedo mem-
branes (0.6 nM of α-bungarotoxin binding sites) for 180 min with 10 µM of the studied
peptides, followed by an additional 5-min incubation with 0.5 nM of 125I-α-Bgt and similar
washing and counting.
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Table 1. Synthetic fragments of Lynx1 central loop, L. stagnalis AChBP loop C and HAP with their abbreviations and
measured molecular masses.

Protein Fragment Sequence
Theoretical

Mass/Measured Mass,
Da

Abbreviation

(1) Human Lynx1 fragment 29–43 (Loop
II). TTRTYYTPTRMKVSK 1833.0/1832.9 Ly29–43

(2)
Human Lynx1 fragment 29–43 with
cysteines at N- and C- termini, linear

form.
CTTRTYYTPTRMKVSKC 2039.0/2039.0 Ly29–43C,C

(3)
Human Lynx1 fragment 29–43 with

cysteines at N- and C-termini,
cyclized form.
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214C,C, mLs202–214C-C) were dissolved in water (50 mM NaCl, pH 5.5). All NMR spectra
were recorded at 30 ◦C using the Bruker Avance 700 and Bruker Avance III 600 spectrome-
ters (Bruker Biospin Gmbh, Ettlingen, Germany), with proton working frequencies equal to
700 and 600 MHz, respectively. Complete 1H, 13C and 15N chemical shift NMR assignment
was obtained using the set of homo- and heteronuclear NMR spectra acquired at natural
abundance: 2D NOESY, 1H,13C-HSQC-TOCSY, DQF-COSY, 1H,13C-HSQC, 1H,15N-HSQC,
1H,15N-HMBC, 1H,15N-HMBC. The obtained chemical shifts were analyzed using the
RCI-S2 software [28] to estimate the backbone mobility, SSP software to calculate the sec-
ondary structure propensities [29] and TALOS-N software to obtain the dihedral angle
restraints for the relatively stable peptide Ly29–43C-C [30]. Spatial structure of this peptide
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was calculated using the CYANA 3.98 software [31]. The obtained chemical shifts were
deposited to the BMRB data base under the accession numbers 50,606 (Ly29–43C-C), 50,607
(Ly29–43C,C), 50,608 (mLs202–214C,C) and 50,609 (mLs202–214C-C). The data for the spatial
structure of Ly29–43C—C are in a Supplementary data File S1.

To assess the backbone dynamics of the peptides, the steady-state 1H, 13C nuclear
Overhauser effect (NOE) and 13C longitudinal relaxation rates (R1) were measured for all
available Cα-H groups. Obtained values were converted to the order parameters of Cα-H
vectors (S2) and characteristic times of internal motions τi using the formalism described in
the works [32,33]. Overall rotational diffusion correlation times and hydrodynamic radii of
the peptides were assessed using the Stokes-Einstein relationship from the coefficients of
translational diffusion, D corrected for the peptide concentration [34]. The latter were mea-
sured by NMR using the PGSTE-watergate pulse sequence with simultaneous suppression
of the convection effects and solvent signal [35].

3. Results
3.1. Synthesis of Linear and Disulfide-Stabilized Fragments of Human Lynx1 Loop II, of the L.
stagnalis AChBP Loop C and of the Combinatorial Peptide HAP

All linear peptides were synthesized using the standard Fmoc-strategy. To obtain
the target peptides Ly29–43C-C, Ls202–214C-C, mLs202–214C-C and HAPC-C, the disulfide
bonds formation was performed by oxidation with air oxygen, giving a final yield of
cyclized peptides at this stage from 30 to 40%, and did not cause difficulties with the
exception of Ls202–214C-C. In the case of Ls202–214C-C product, even under the optimally
selected conditions, the yield of the target peptide with vicinal disulfide did not exceed 3%.
According to analytical HPLC data, the purity of the obtained target peptides was >95%
and their masses closely corresponded to the calculated ones (Table 1). In order to prevent
the formation of disulfides in peptides Ly29–43C,C, mLs202–214C,C and HAPC,C, they were
stored always in the lyophilized form and dissolved immediately before the experiments.

3.2. Activity of Synthetic Fragments of Lynx1 and of Nicotinic Receptor Loop C Models in
Radioligand Assay

The biological activity of Lynx1 fragments Ly29–43, Ly29–43C,C and Ly29–43C-C (pep-
tides (1)–(3), respectively) was evaluated as their ability to compete with radioactive
α-bungarotoxin (125I-α-Bgt) for binding to the muscle-type nAChR from T. californica ray
electric organ. All of them displaced the radioligand from the receptor in the range of µM
concentrations (Figure 1A). Herewith the linear peptide Ly29–43 and cyclized Ly29–43C-C

showed approximately equal inhibition efficiency (the respective IC50 values were 7.9 ±
0.2 and 6.0 ± 0.2 µM). Interestingly, the linear form of Lynx1 fragment 29–43 with free
cysteines at N- and C- termini was the most efficient with IC50 = 1.1 ± 0.1 µM, with the
activity considerably surpassing that of the ws-Lynx1.

The same competitive radioligand assay was used to evaluate the binding activity
of L. stagnalis AchBP loop C and HAP analogs, although in this case, not the degree of
competition between 125I-α-Bgt and the tested peptides for binding to the target (T. cali-
fornica nAChR) was evaluated, but the ability of these peptides to bind the radioligand
itself, thus preventing its association with the receptor. This method allowed us to demon-
strate the high efficiency of HAP analogs; at 10 µM they have completely bound 125I-α-Bgt
(Figure 1B). The effectiveness of this binding did not depend on whether HAP was in a
linear (peptides (8), (9)) or cyclized form (peptide (10)). Interestingly, the native L. stagnalis
AChBP loop C (which served as the basis for the design of HAP) in both linear and cyclized
forms (peptides (4)–(7)) did not reveal any ability to bind the radioligand at the same
concentration (Figure 1B).
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Figure 1. Characterization of binding activity of synthesized peptide fragments by com-
petitive radioligand analysis using 125I-α-Bgt as a radioligand. (A) Inhibition curves for
Lynx1 loop II fragments on T. californica nAChR. Crosses, full circles and open circles
indicate the data points for compounds (1)–(3), respectively. Each point is the mean ±
SEM value of two measurements for each concentration in two independent experiments.
The calculated IC50 values (mean ± SEM) for peptides 1-3 were 7.9 ± 0.2, 1.1 ± 0.1 and 6.0
± 0.2 µM, respectively. For comparison, the inhibition curve for ws-Lynx1 (no symbols)
on the same receptor under the same conditions (IC50 24 µM) is shown [26]. (B) Bar graph
presentation of the decrease in specific binding of 125I-α-Bgt to T. californica nAChR in
the presence of L. stagnalis AChBP loop C and HAP analogs. Concentration of peptides
(4)–(10) was 10 µM at which no “inhibition” for loop C fragments (102 ± 7 % of specific
binding) and complete “inhibition” for HAP analogs (0.6 ± 0.1 % of specific binding) was
revealed. The specific binding in the absence of peptides is accepted as 100%. Data are
presented as mean ± SEM.

3.3. CD Analysis of the Synthetic Peptides

The obtained CD spectra and the content of secondary structure elements formally
calculated from them allow us to make reliable conclusion about very low content of
α-helices in the studied peptides in an aqueous solution (Table 2, Figure 2). The differences
in content of other secondary structure elements, taking into account the relativity of these
values for small peptides, are too small to draw certain conclusions.

Table 2. Secondary structure of peptides (1)–(10) according to CD spectrum analysis.

Peptide α-Helix, % β-Structure,
% β-Turn, % Random, % NRMSD 1

(1) 5.2 31.5 22.6 40.7 0.02
(2) 5.1 32.6 22.5 39.8 0.02
(3) 4.1 38.5 22.5 34.9 0.03
(4) 5.9 32.4 23.4 38.2 0.02
(5) 6.1 30.9 23.7 39.2 0.02
(6) 6.4 36.1 23.0 34.5 0.03
(7) 5.9 33.6 22.4 38.0 0.02
(8) 3.3 39.5 22.6 34.6 0.03
(9) 3.9 38.5 22.3 35.3 0.03

(10) 3.7 39.9 21.7 34.7 0.05
1 According to [36], the analysis is considered to be reliable if NRMSD is < 0.1.
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and HAPC-C.

3.4. NMR Analysis of Synthetic Lynx1 Fragments

CD spectroscopy provides a quantitative view on the peptide secondary structure;
however, the results lack the atomic details. Therefore, we applied the heteronuclear NMR
spectroscopy to identify such atomic differences using the linear and cyclized forms of
a Lynx1 loop II fragment: Ly29–43C,C and Ly29—43C-C which differed in their affinities
towards T. californica nAChR (Figure 1A). For both peptides we obtained the full 1H, 13C and
15N chemical shift assignments, which were then analyzed using several approaches. As a
first step, we characterized the overall compactness of the spatial structure by measuring
the translational diffusion of the two peptides. The diffusion coefficient of Ly29–43C-C

was equal to (261 ± 2) 10−12 m2/s, corresponding to the hydrodynamic radius of 1.07 nm
and molecular weight of a globular protein of 2.1 kDa [37]. Thus, Ly29–43C-C is compact
and behaves as a globular protein, if this term is applicable for such a small peptide. In
contrast, diffusion of Ly29–43C,C is much slower, (215 ± 2)·10−12 m2/s, which corresponds
to 3.8 kDa. Therefore, Ly29–43C,C does not form a compact spatial structure and behaves
as a disordered protein.

Next, we analyzed the dynamic structure of two peptides using the concepts of
random-coil index (RCI) [28] and secondary structure propensity (SSP) [29]. RCI converts
the chemical shifts into the backbone order parameter RCI-S2. Regions with RCI-S2 greater
than 0.7 might be considered as stable and structured, while lower magnitudes of the
parameter correspond to the dynamic and partially disordered backbone. Ly29–43C,C is
characterized by low RCI-S2, 0.5 on average, reaching 0.6 close to the central Pro residue
(Figure 3A). In contrast, Ly29–43C-C RCI-S2 reveals a plateau of 0.7 on the region 4–12,
indicating that the cyclic peptide is substantially more stable, however, is still partially
disordered.

SSP is a well-established approach to describe the structure of intrinsically disordered
proteins and peptides. SSP values greater than zero indicate the propensity of the helical
conformation, while the negative SSPs reveal the possibility of β-sheet or extended (in
contrast to disordered) conformation to be formed in the region. SSPs of Ly29–43C-C

residues reveal a relatively high propensity (up to 50%) of the extended conformation in
the N- and C-terminal regions with the unstructured central part of the peptide (Figure 3B).
Comparison with the structure of the full size Lynx1 central loop (green bars in Figure 3B)
reveals that the extended conformation occurs at the same sites, where the β-structure is
observed in Lynx1.
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To further characterize the structure of Ly29–43C-C, we applied the nuclear Overhauser
effect NMR spectroscopy (NOESY). No characteristics for β-sheet backbone connectivities
are observed in the NOESY NMR spectra, mainly due to the low chemical shift dispersion.
However, two long-range side-chain contacts are seen that support the transient β-hairpin
structure of Ly29–43C-C (between the Y7 aromatic ring and V14 methyl groups and between
the Y6 ring and K13 methylenes). All aforesaid implies that at least part of the time, Ly29–
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43C-C resides in the β-hairpin conformation, close to structure of the homologous region
of the parent Lynx1 protein. In contract, Ly29–43C,C reveals the small 10–20% propensity
for the extended conformation on the whole length of the peptide, which is far from the
structure of this region within the full-length Lynx1.

Last, we employed the NMR relaxation parameters of α-carbons to assess the in-
tramolecular mobility of the peptides’ backbone. Two parameters, 1H-13C steady-state
NOE (η) and 13C longitudinal relaxation rate R1 are sufficient to measure the order parame-
ters (S2) and characteristic times, describing the internal motions [32]. NOEs of Ly29–43C,C

are substantially higher than those of Ly29–43C-C, especially on the terminal regions of
the peptide, implying the enhanced mobility (Figure 3C). In turn, the detailed analysis of
Ly29–43C-C reveals that the peptide is relatively stable. We obtained an almost uniform S2

distribution for all the residues (0.7–0.8) in this peptide (Figure 4).
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3.5. NMR Analysis of Synthetic Analogs of the L. stagnalis AChBP Loop C

Using a similar approach, we analyzed the properties of mutated cyclic and linear L.
stagnalis AChBP loop C fragments—mLs202–214C-C and mLs202–214C,C. Similarly to the
Lynx1 loop, the linear peptide appeared less compact: (282 ± 5)·10−12 m2/s and 1.7 kDa vs.
(256 ± 3)·10−12 m2/s and 2.2 kDa. The linear peptide mLs202–214C,C is also much more
mobile than cyclic mLs202–214C-C, according to the S2 magnitudes (Figure 5C). On the
other hand, unlike Lynx1, the effect of cyclization on the structure of the loop C peptides
appeared rather subtle. RCI-S2 profiles of mLs202–214C,C and mLs202–214C-C are highly
similar and hardly approach 0.5, suggesting the dynamic behavior of two peptides. Both
mLs202–214C,C and mLs202–214C-C are mostly unstructured with SSPs in the range −0.2:
+0.1 (Figure 5A,B). The cyclic peptide reveals a higher but still subtle propensity for the
extended conformation. No long-range NOESY cross-peaks were found in NMR spectra, in
agreement with all data above. Thus, none of the peptides reveal the secondary structure of
a parent protein (Figure 5B) found in the respective X-ray structures of the parent AChBP.
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4. Discussion

The present communication is devoted to the analysis of the TFPs interactions with
nAChRs, but covers it at a “lower level”, namely by studying the interactions between
the TFP fragments and the whole-size nAChRs and, on the other hand, the associations
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between the nAChR binding site synthetic fragments or their models with the whole-
size TFPs. To date, numerous biochemical studies have demonstrated that the main
“beneficiaries” of high affinity of the most well-known snake α-neurotoxin TFPs towards
distinct nAChR subtypes are the toxin central loop II and the loop C of the receptor α-
subunit, respectively. Direct confirmation of this was obtained recently by a cryo-electron
microscopy high resolution structure of the α-Bgt complex with the Torpedo nAChR [18]
(Figure 6A), while earlier the relevant information was based on the X-ray structures of
α-neurotoxins in complexes with AChBPs [20,23] (Figure 6B) and with the monomeric
ligand-binding domains of the α1 and α9 subunits [19,24].
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These X-ray and cryo-electron microscopy data are extremely important both for
fundamental research and for practical purposes. In particular, our recent paper [10]
was initiated by the well-known facts that synthetic fragments of the central loop II of
some snake venom TFPs possess a partial activity of the starting neurotoxins against
nAChRs, especially when their structure is stabilized by the two disulfide-joined Cys
residues grafted at the N-and C-termini (conventionally such peptides can be named as
“cyclized”) (see, for example review [7]). The novelty of that communication was the
synthesis and analysis of binding of such fragments of those TFPs of the Ly6 family which
are endogenous regulators of the nAChRs in human and other organisms. Interestingly,
against the T. californica nAChR, the fragment of the water-soluble Lynx1 revealed the
activity quite close to that of the starting protein. Another our paper [38] was devoted
to a short combinatorial peptide HAP which is homologous to the nAChR loop C and
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binds α-Bgt with a surprisingly high affinity (2–4 nM), which is virtually the same as for
α-Bgt binding to the whole-size nAChRs [15]. Kudryavtsev et al. [38] confirmed this result
with a considerably extended arsenal of methods for the analysis of HAP binding. After
these publications we had several questions: what determines the activity of the synthetic
fragments of Lynx1 and of loop C models, what is the real structure of these peptides, how
close they are to the conformation of their parent ligands and receptors and what is the
role of disulfides?

To answer these questions, we synthesized an additional set of fragments. Keeping
in mind that the disulfide introduction at the peptide termini of the TFP loop II in several
cases increased the affinity for the nAChRs, we decided to apply such an approach to the
synthetic receptor models (HAP and fragment of loop C from the L. stagnalis AChBP). That
is why we synthesized the analogs of fragments of the Lynx1 central loop II, the loop C
from L. stagnalis AChBP and the high-affinity peptide HAP, which spatial structures were
stabilized by a disulfide bond formed between the additional cysteine residues introduced
at the N- and C-termini of these fragments: Ly29—43C-C, mLs202–214C-C and HAPC-C,
respectively. The control samples in the biological tests were their linear (non-oxidized)
forms—Ly29–43C,C, mLs202–214C,C and HAPC,C, as well as two original fragments without
flanking cysteines—Ly29–43 and HAP. In the case of the loop C fragment, its mutant form
was also used with the replacement of vicinal cysteines with serines to avoid the formation
of mis-folded Cys-isomers. In addition, it was previously shown that the presence of vicinal
disulfide in the corresponding fragments of the nAChR α1-subunit does not strongly affect
the binding of snake venom neurotoxins [39,40]. The natural loop C with vicinal cysteines
closed in disulfide (Ls202–214C-C) or in linear form (Ls202–214C,C) were characterized for
their activity as well. The chemical structures of all synthesized peptides were confirmed by
mass spectrometry (Table 1) and their biological activities were evaluated by competitive
radioligand assay on T. californica nAChR.

The biological activity of fragments of several other Ly6 proteins, namely, their ability
to compete with radioactive α-Bgt for binding to different nAChRs and such their models
as AChBPs and ligand-binding domains of individual subunits, as well as the ability of
these fragments to inhibit currents in certain nAChR subtypes, was described by us in
detail earlier [10]. The present study confirmed the micromolar affinity of fragments of the
central loop II of the Lynx1 protein towards the T. californica nAChR (IC50 values were in the
range 1.1–7.9 µM), showing that the inhibitory activity was higher than that of the full-size
protein for the same receptor or AChBPs from L. stagnalis and Aplysia californica [25] and
does not strongly depend on whether the fragment is linear or cyclized (Figure 1A).

These AChBPs, which are structural homologues of ligand-binding domains of
nAChRs and often reproduce the nAChR pharmacological profiles, are still actively used
in the X-ray crystallography in complexes with various cholinergic ligands. After these
structural studies, it became possible to clarify the mechanism of nAChRs functioning and
the detailed spatial structure of their orthosteric binding sites, although information about
the key amino acid residues of the receptor binding site already existed. In particular, the
important role of loop C of the α-subunits of nAChRs was known, which was used for
the combinatorial design of a short 13-member peptide that mimics this fragment of the
T. californica receptor. This peptide was called a high-affinity peptide (HAP) because it
showed a nanomolar affinity for α-Bgt, a blocker of distinct nAChR subtypes [15], and it
mimicked the structure of the receptor loop C in complex with this toxin [16]. Interestingly,
the HAP sequence combines the amino acid residues of the α-subunit of T. californica
nAChR and L. stagnalis AChBP.

In the present study, for the first time, we intended to evaluate the influence of spatial
structure on the activity of the L. stagnalis AChBP loop C fragment in linear and cyclized
forms and to compare it with those for HAP and its analogs. The introduction of additional
flanking cysteines into the HAP sequence and their cyclization did not affect the high
ability of this peptide to bind 125I-α-Bgt, thus preventing association of this radioligand
with T. californica nAChR (Figure 1B). To our surprise, neither linear nor cyclized forms
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of loop C where two vicinal Cys were substituted for Ser (as in HAP) could bind the
radioligand. This result cannot be explained by the mutation introduced into the loop C
structure, since a similar lack of ability to bind 125I-α-Bgt was detected for the fragment
with vicinal disulfide (Figure 1B).

This difference in biological activity between the native loop C and its combinatorial
variant—HAP—may be due to the difference in their spatial structure. Therefore, we
estimated the content of secondary structure elements by circular dichroism for all syn-
thesized peptides. The application of CD to small peptide molecules to characterize their
secondary structure may raise questions, but there is a sufficient number of examples in the
literature when a disruption, for example, of the disulfide bond in a small peptide leads to
a noticeable change in the CD spectrum [41–43]. We expected that the introduction of two
Cys at the ends of the peptide termini with the subsequent closure of the disulfide could
affect the content of secondary structure elements and possibly lead to stabilization of the
spatial structure. However, in our case the CD measurements did not reveal substantial
difference between the linear and cyclized forms (Figure 2, Table 2).

In order to obtain more precise information about the spatial structure and stability
of peptides under investigation, we applied the solution NMR approaches to four ob-
jects: Ly29–43C,C, Ly29–43C-C, mLs202–214C,C and mLs202–214C-C. All the peptides under
investigation were partially disordered, thus we had to utilize the secondary structure
propensity techniques and NMR relaxation analysis to describe the structural ensembles
present in solution. Among all the peptides, the ws-Lynx1 fragment fixed by a disulfide
Ly29–43C-C was the most stable, with SSP up to 50% in several regions, which allowed us
to apply the conventional NMR approaches to solve the structure of the peptide in solution
(Figure 7). Although being in general more mobile than the respective loop in the ws-Lynx1,
the Ly29–43C–C has a very similar conformation to the respective part of ws-Lynx1.
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On the contrary, the linear peptide Ly29–43C,C was highly flexible and disordered.
However, it revealed even higher nAChR-binding activity as compared to the cyclized
variant (Figure 1A). This is an unexpected result, implying the conformational selection
mechanism of nAChR binding. In addition, it is impossible to ignore the presence in the
linear form of two active sulfhydryl groups, which can form additional hydrogen bonds in
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the receptor binding site, or even participate in disulfide exchange with vicinal cysteines of
the C-loop of the receptor α-subunit thereby increasing the affinity.

A markedly different result was obtained for the synthetic L. stagnalis AChBP loop C
fragments in linear or cyclized forms (mLs202–214C,C, mLs202–214C-C). According to 1H-
NMR analysis (see Figure 5) none of these peptides had a fixed three-dimensional structure.
We had already mentioned that the X-ray structures of complexes of various agonists and
antagonists with the AChBPs, where the loop C of the latter was always playing a major role
and was used to model the interactions with the whole-size nAChRs. What concerns the
interactions with α-neurotoxins, it was earlier demonstrated for some fragments covering
the loop C of the α1 nAChR subunit and containing vicinal cysteines that toxin binding
was not extremely sensitive to the state (free or oxidized) of these cysteines [39,40]. In the
present communication the AChBP loop C fragments were synthesized and tested in their
interaction with α-Bgt for the first time and we still cannot explain why they were inactive
and why the stabilization of the loop C spatial structure by disulfide closure did not give
any promising results.

Summarizing, we have shown the effect of disulfide on the structure and stability
of peptide fragments in one case (for loop II of Lynx1), sometimes (for loop C of AChBP
and for HAP) it is absent, while the structuring of the peptides in solution does not
necessarily correlate with their activity: the most active was the linear peptide Ly29-43C,C,
that contrasts with the least active but the most structured ligand—the full-size ws-Lynx1.
Anyway, because for various Ly6 proteins such as ws-Lynx1 or SLURP-1 are carried out
versatile tests against cancer and neurodegenerative diseases [44,45] we believe that a set
of obtained and characterized synthetic fragments can also be useful.

5. Conclusions

The main result is that a set of the synthetic fragments of the loop II of Ly6 TFP was
prepared, including those where the additional Cys residues were introduced at the N-
and C-termini and left free or oxidized to the disulfide. The inhibitory activity of these
peptides was tested against Torpedo nAChR and some linear forms or those “cyclized“ by a
disulfide were found to be more active than the ws-Lynx1. By 1H-NMR we found that the
disulfide-fixed Lynx1 fragment has a three-dimensional structure very similar to the loop II
within the whole-size ws-Lynx1. We also tried to apply such “cyclization” approach to the
models of the nAChR binding sites, namely to AChBP loop C and HAP. The latter retained
its binding activity in linear and cyclized forms, in contrast with the loop C which did not
reveal for both forms either the binding capacities or an ordered secondary structure.

Supplementary Materials: The following are available online at https://www.mdpi.com/2218-273
X/11/1/1/s1, File S1: The data for the spatial structure of Ly29–43C-C.
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