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Muscle protein is constantly “turning over” through the breakdown of old/damaged

proteins and the resynthesis of new functional proteins, the algebraic difference

determining net muscle gain, maintenance, or loss. This turnover, which is sensitive

to the nutritional environment, ultimately determines the mass, quality, and health of

skeletal muscle over time. Intermittent fasting has become a topic of interest in the

health community as an avenue to improve health and body composition primarily via

caloric deficiency as well as enhanced lipolysis and fat oxidation secondary to attenuated

daily insulin response. However, this approach belies the established anti-catabolic effect

of insulin on skeletal muscle. More importantly, muscle protein synthesis, which is the

primary regulated turnover variable in healthy humans, is stimulated by the consumption

of dietary amino acids, a process that is saturated at a moderate protein intake.

While limited research has explored the effect of intermittent fasting on muscle-related

outcomes, we propose that infrequent meal feeding and periods of prolonged fasting

characteristic of models of intermittent fasting may be counter-productive to optimizing

muscle protein turnover and net muscle protein balance. The present commentary will

discuss the regulation of muscle protein turnover across fasted and fed cycles and

contrast it with studies exploring how dietary manipulation alters the partitioning of

fat and lean body mass. It is our position that intermittent fasting likely represents a

suboptimal dietary approach to remodel skeletal muscle, which could impact the ability

to maintain or enhance muscle mass and quality, especially during periods of reduced

energy availability.

Keywords: intermittent fasting, muscle protein metabolism, dietary protein, muscle mass, weight loss, muscle

protein synthesis/breakdown, lean body mass, time-restricted eating

INTRODUCTION

Skeletal muscle’s central role is the production of contractile force. However, this tissue also serves
as the primary site of postprandial glucose disposal (1) and is the largest contributor to resting
energy expenditure (2), which collectively positions it as a vital tissue for the maintenance of
health and function. Muscle is a dynamic tissue in a constant state of turnover as characterized by
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rates of muscle protein synthesis (MPS) and muscle protein
breakdown (MPB). These processes are responsive to nutrients
and contractile activity with changes in MPS andMPB ultimately
influencing muscle tissue mass, quality, and health, all of which
can influence physical performance (3), injury prevalence (4),
and disease risk and/or progression in clinical populations (5).

MPB, which is primarily influenced by the suppressive effect
of insulin (6), serves to eliminate old, damaged, mutated and/or
redundant proteins through breakdown into their constituent
amino acids (AA) (7). These liberated AA enter the muscle’s free
intracellular pool whereby they may serve as a fuel source (e.g.,
oxidative phosphorylation) or precursors to be recycled back into
protein synthesis. Intramuscular free AA can also be released into
circulation to be used by other tissues for synthesis, oxidation
or as substrates for gluconeogenesis or ketogenesis (e.g., in the
liver), the latter of which is irreversible and contributes to net
AA loss. The prevailing view is that MPB plays a relatively minor
role in the regulation of muscle mass in healthy humans (7),
although whole body protein breakdown that is influenced by
higher turning over non-muscle protein pools may play a greater
role in whole body net protein balance (8).

MPS is the sequencing of individual AA, made available
through protein breakdown or exogenous sources (e.g., digestion
and absorption of dietary protein/AA), into polypeptide chains
that form the functional protein of muscle tissue. When MPS
exceeds MPB, a positive muscle net protein balance and, by
extension anabolic environment, occurs. In healthy adults, MPS
is generally the more responsive variable and is the primary
mediator of muscle net protein balance (7) and long-term
changes in muscle mass (9). However, MPS is also important for
replacing old, damaged, and mutated tissue proteins to maintain
muscle quality (10). Thus, the optimal stimulation of MPS
ultimately influences the mass and quality of skeletal muscle,
which may impact a variety of health and/or performance related
factors including glucose utilization (1), resting and activity
energy expenditure (11), and disease risk and mortality (12).

The dietary strategy of intermittent fasting (IF) has become a
topic of interest as an avenue to improve health (13, 14) and is
often divided into three subclasses: alternate-day fasting, whole-
day fasting, and time-restricted eating (TRE) (14). Alternate-day
fasting involves alternating between ad libitum feeding days and
very low energy intake (e.g., a single meal containing ∼25% of
daily calorie needs) or complete fasting days. Whole-day fasting
typically consists of 1–2 days of either complete abstinence from
calories or severe restriction on fasting days plus ad libitum
eating on the other days. Finally, TRE, which arguably is the
“mildest” form of IF, consists of restricting one’s eating window
to a certain number of hours per day often ranging from 4 to
8 h (14) with a suggested frequency of 1–3 meals (13). Thus,
these IF strategies ultimately have a marked influence on the
availability of postprandial dietary AA to support MPS and
insulin to attenuate MPB.

Many of the health promoting effects of IF are mediated by
its effectiveness to induce weight loss (15). For example, when IF
is compared to controls with no intervention it generally results
in weight loss (16, 17), although when compared to continuous
energy restriction it is not superior in this outcome (18). By first

principles, this suggests that IF may be an elementary means of
inducing energy deficiency with no further diet modifications,
which may in the short term enhance dietary adherence (19).
This proposition is supported by the observation that skipping
meals for up to 12 weeks is not compensated for by an
increase in energy intake at subsequent meals consumed ad
libitum (20). Additionally, 18 h compared to 12 h fasting has
demonstrated significantly lower ghrelin levels, which could
contribute to the reported reduced desire to eat and increased
fullness over a 24 h period (21). Thus, as reduced energy
availability can influence MPS rates (22, 23), IF strategies would
need to consider the impact of total energy intake as a potential
confounder contributing to the postprandial regulation of muscle
protein turnover.

The following discussion outlines the current understanding
of muscle protein metabolism in relation to the anticipated effect
of IF as a dietary strategy on muscle mass and remodeling.

NUTRITIONAL REGULATION OF MUSCLE
PROTEIN BREAKDOWN

The breakdown and removal of muscle proteins is regulated
by the ubiquitin-proteosome, calpain, and autophagy systems.
While some benefits of IF are suggested to be mediated by
increased autophagy (24), induction of this system with short
term fasting (i.e., up to 36h) is not readily apparent in human
skeletal muscle, unlike with exercise (25, 26). In contrast, the
ubiquitin-proteosomal and calpain systems are the primary
systems regulating nutrient and contraction-induced changes in
MPB in humans (7) and therefore will be the primary focus of
the present review. MPB is sensitive to feeding indirectly via the
nutrient (i.e., carbohydrate and/or AA)-induced release of insulin
from the pancreas (27). Maximal reductions in MPB require
only modest elevations in plasma insulin concentrations (i.e.,
∼15–30 mU/L) (6, 28), which can be stimulated with a modest
carbohydrate or protein intake (i.e., ∼20–30g) (29, 30). Thus,
the postabsorptive state when insulin is low is characterized by
the highest rates of MPB to supply free AA, which are primarily
“stored” in skeletal-muscle proteins (31), for other tissues (32–34)
and as gluconeogenic precursors (31, 35, 36). This enhancement
in MPB is demonstrated both with an overnight (∼10 h) fast
(31, 35) and prolonged (60–72 h) fasting (36–38). Given that
IF typically involves a relatively prolonged fasting period (i.e.,
≥16 h) as a primary means to reduce systemic insulin and
promote lipolysis, MPB would be greater over a 24 h period with
IF as compared to more typical meal feeding (i.e., 3–5 meals
over ∼16 h postprandrial period). With the contraction-induced
anabolic stimulus of resistance exercise there is an increase in
MPB, although this primarily serves to provide AA precursors
to support MPS in the fasted state (39, 40). Thus, resistance
exercise may help retain muscle mass with IF by attenuating
the negative muscle protein balance of fasted, rested muscle.
However, the exercise-induced increase in MPB is completely
ablated with exogenous AA (41), highlighting an important role
for dietary AA to support muscle anabolism via attenuated
catabolism as well.
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NUTRITIONAL REGULATION OF MUSCLE
PROTEIN SYNTHESIS

Dietary AA are the primary stimulators of and precursors for
the synthesis of new muscle proteins (42). The equivalent of
∼0.25 g/kg of leucine-enriched dietary protein in a single meal
generally provides a saturating dose of AA for the postprandial
stimulation of MPS (43–45), which persists for up to 6 h with the
ingestion of whole foods (e.g., egg, beef and dairy proteins) (46–
52). Importantly, after attainment of peak MPS (i.e., ∼1.5–3h
after protein feeding) (46, 47, 49, 51, 53), MPS gradually reverts
back to basal levels even in the presence of sustained plasma
aminoacidemia (54, 55). This is referred to as the “muscle full”
effect (56) and demonstrates that there is a refractory period
following ingestion of a protein bolus with the MPS pathway not
able to be stimulated sequentially for∼3–5 h. Resistance exercise
can prolong this postprandial muscle protein synthetic response
(i.e., >5 h) (particularly of the myofibrillar fraction) (57, 58),
although the maximal stimulatory protein dose is similar to what
is sufficient at rest (i.e., ∼0.3 g/kg) (45). There is some evidence
that energy deficiency may increase the acute meal protein intake
required to maximize MPS (22, 59) with estimates of ∼0.4–0.5
g/kg being potentially sufficient (45). While protein and AA may
have an insulinogenic effect (29), insulin only has a permissive
effect for supporting maximal rates of MPS at rest and after
exercise (29, 30, 60). Thus, manipulating the amount and timing
of dietary AA ingestion represents themost important nutritional
variable to optimize MPS.

NUTRITIONAL REGULATION OF AMINO
ACID OXIDATION

AA oxidation is generally low after an overnight fast but can
increase with the duration of the fast (i.e., up to 3 d) (37),
which during a period of acute starvation would contribute to
a negative whole body (61) and muscle protein balance (38).
While meal protein ingestion initiates a normal postprandial
increase in AA oxidation (62), dietary AA consumed in excess of
their ability to be incorporated into new body (especially muscle)
proteins are further irreversibly oxidized and their nitrogen
excreted (43–45). It has been suggested that the protein dose
required to enhance whole body anabolism may be substantially
greater than that required at the level of the muscle (63, 64).
Accordingly, it is theorized that AA may be sequestered in
splanchnic tissue (primarily the gut) to be later broken down and
made available for synthesis of other tissues including muscle
(63), although this has yet to be demonstrated. Thus, it is
arguably more beneficial to consume acute meal protein intakes
that maximize MPS yet minimize AA oxidation in order to
optimize the daily dietary protein efficiency. In support of this
notion, a recent study (21) comparing a 6 h feeding window
with 3 meals to a 12 h feeding window with three meals (protein
intake of ∼0.3 g/kg per meal), the 6 h feeding window had
significantly increased rates of 24 h protein oxidation by∼13 g/d
(∼85 vs.∼71 g/d).

DISCUSSION

Research on IF is growing exponentially with ∼34 and ∼45%
of the >600 and >200 references since 2010 occurring in the
past calendar year for the search terms “intermittent fasting”
and “time-restricted eating,” respectively (source: Pubmed R©;
accessed December 11, 2020). A current limitation to the field
of IF research is that no study, to the best of our knowledge,
has measured muscle protein kinetics with alternate-day fasting
or TRE. However, information may be gleaned from studies
investigating the impact of daily feeding pattern on protein
metabolism. For example, consuming a balanced pattern of
moderate protein-containing meals (i.e., 3–4 meals at ∼0.25–
0.3 g/kg per meal) supports greater rates of myofibrillar and
mixed muscle protein synthesis (65, 66) as well as whole body
net balance (67) at rest and during recovery from resistance
exercise in energy balance as compared to larger less frequent
meals or in a skewed distribution (i.e., majority of protein in
a single meal). These longer acute trials (i.e., 12–24 h) support
the “muscle full” concept (56) that is exemplified by a maximal
muscle protein synthetic response to acute protein ingestion (68).
Collectively these acute studies support the concept that meal
feeding pattern, irrespective of total protein intake, can influence
whole body and muscle protein remodeling with large protein-
containing meals stimulating postprandial AA oxidization rather
than muscle tissue synthesis (Figure 1). Thus, based on the acute
research to date, we argue that the lost opportunity for AA-
induced MPS with more feedings may not be compensated for
with fewer feedings at higher doses, as what is likely to occur
with IF.

To our knowledge, no studies have examined whether
adaptations in MPB, MPS, and AA oxidation take place over
time to an IF protocol. Available literature suggests that following
an overnight fast, the first meal demonstrates a similar MPS
response to other meals (65), including those preceded by
a large protein containing mixed-meal 4 h prior (44). Also,
no adaptation is observed in the MPS response after 7-days
consuming a skewed distribution of daily protein intake (66),
drawing into question whether adaptation may occur with
prolonged fasting and/or a chronically altered dietary protein
intake pattern such as with IF. Therefore, while we cannot
discount that the MPS response may be greater with a meal
that breaks a prolonged fasting window and/or that MPB may
adapt to a lower set point with chronic IF, there is currently little
evidence to support this thesis.

Randomized control trials analyzing the effect of IF on fat free
mass (FFM) demonstrate similar (19, 69–81) outcomes compared
to controls. As IF often results in negative energy balance
and weight loss (16, 17), when IF is compared to continuous
energy restriction some systematic reviews suggest similar (82)
or enhanced (83) preservation of FFM. The divergence in some
of these results may be due to the differences in the types of IF
or the self-selected meal frequency by research participants. As
discussed above, there is a broad range of IF protocols and those
which result in fewer meals (e.g., whole-day) would have greater
effects than those withmoremeals (e.g., TRE). It is also important
to note that the length of the studies to date may not have been
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FIGURE 1 | Schematic representation of the effect of different types of IF on acute muscle protein kinetics. Changes in muscle protein synthesis (MPS) and

breakdown, amino acid oxidation (OX), and circulating insulin concentration over 24 h at rest with whole day fasting (A), TRE with one meal (B), TRE with two meals

over 6–8 h (C), and an unrestricted eating window (∼16 h) with balanced meal pattern (D). Size of arrows reflects the relative protein and energy content of each meal.

Shaded dark gray areas indicate time in net positive protein balance and light gray areas indicate time in net negative protein balance, which are summarized as net

24 h response in MPS, MPB, and net muscle protein balance (NB; MPS—MPB) (E).

sufficient to elucidate differences in FFM given the sensitivity
of body composition measurement modalities used and their
ability to detect changes over short (i.e.,≤12 weeks) interventions
(84–86). Of note is a relative large recent study (n = 116 adult
participants) that reported reductions in appendicular FFM by
dual-energy X-ray absorptiometry with TRE over 12 weeks (87),
which may be more representative of skeletal muscle mass than
total FFM (88). Many of the studies mentioned above prescribe
variations of IF as the independent variable but do not explicitly
control dietary intake (19, 69, 70, 72–78, 81, 89, 90) and/or
physical activity (19, 69–72, 75–78, 80, 89, 90), the latter of which
is important to consider given that spontaneous physical activity
may be modified by restricted eating (91) and can also influence
the sensitivity of skeletal muscle to dietary AA (92). When IF is
coupled with the potent anabolic stimulus of resistance exercise,
a systematic review (93) observed no significant differences in
FFM outcomes when compared to those resistance training with

a normal diet. However, given the normal diet group also did not
experience gains in FFM, as would be expected, the length (i.e., 4–
8 weeks) of the included studies may also not have been adequate
to reliably measure changes in FFM. It has been proposed that
interventions >8 weeks are required for reliable FFM differences
to become apparent with resistance training (94). In fact, a recent
study suggests that resistance training-induced gains in FFM
over 12 weeks are enhanced with a balanced as compared to a
skewed daily protein distribution in healthy young men despite
consuming a moderate (i.e., 1.3–1.45 g/kg/d) protein intake
(95), which could be lower than that which would maximize
growth (96, 97). Collectively, research to date evaluating the
impact of IF on changes in body composition in young adults
with and without prescribed exercise is equivocal. Therefore, it
is important to acknowledge that the hypothesis of IF having
consequences for muscle mass in particular may be complex.
Based on our current understanding of acute muscle protein
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metabolism, the potential effect of IF may be small relative to
other lifestyle related variables (e.g., total protein intake and
exercise) but could be meaningful when extrapolated over time.
However, we acknowledge that acute measures of muscle protein
metabolism in laboratory settings may be oversimplified and
their relationship to muscle mass and/or muscle quality need
further investigation (9).

A limitation in evaluating the impact of IF on muscle mass
and function is the overreliance on whole body estimates of FFM,
which have been questioned as to their ability to specifically
delineate skeletal muscle mass given they include substantial
organ and non-muscle lean tissue (98, 99). While including
additional outcomes such as appendicular lean mass, muscle
thickness, or cross-sectional area, and/or fiber characteristics
would help address the consequences of IF on muscle mass,
characterizing changes in muscle protein turnover has been
suggested to be an effective means to “predict” the direction of
change in muscle mass over time, especially if measured over
days (100, 101). Therefore, future research should include muscle
specific outcomes (e.g., measures of mass and/or function) in
chronic, controlled diet trials and/or measures of muscle protein
turnover in acute trials to more clearly establish the impact of IF
on skeletal muscle quality.

If the hypothesis of more protein feedings per day being
optimal for mass and remodeling based on the acute literature
is true, IF may represent a dietary conundrum for some
populations. While IF is often employed to reduce feeding
intakes, restrict total energy intake, and maintain a low insulin
profile to help mobilize and metabolize endogenous fat (13, 14),
based on our current understanding of the acute, nutritional
regulation of muscle protein turnover it seems antithetical
to what would presumably optimize muscle protein synthesis
and net muscle protein balance (as summarized in Figure 1).
Critically, populations who may experience a level of “anabolic
resistance” to dietary protein, such as sedentary obese (102)
and/or older adults (103), may be further susceptible to the
suboptimal muscle protein turnover and anabolic environment
borne of IF. For example, older adults who consume a balanced
daily protein intake and/or consume a greater number of meals
containing adequate protein ingestion generally have greater leg
lean mass and muscle strength (104). There is also evidence that
reduced energy availability, which often occurs in tandem with
IF (16, 17, 20), increases the per meal protein intake required
to maximize muscle protein synthesis (22, 23). Thus, while
this would ostensibly favor larger protein meals that may be

characteristic of TRE in particular, it does not preclude the need
to consume proteinmore frequently, which would ultimately also
help meet the higher recommended daily protein intakes that
enhance muscle and FFM retention with weight loss (59, 105).
Finally, performance populations such as athletes and military
personnel may also be concerned with the quality of retained
muscle/FFM with or without targeted weight loss (59), which
would be important considerations for future research.

If the acute effects of IF lead to detrimental long-term
outcomes for muscle, whole-day, and alternate-day fasting would
have the greatest consequential effect on muscle mass and
remodeling. This is due to the prolonged period with greater
MPB and lowerMPS compounded by the greater energy deficient
state likely to occur (107) relative to TRE (108). In consideration
of TRE, fewer meals would likely have a greater negative
impact on muscle protein turnover (Figure 1). If TRE were
to be employed, the hypothesis to improve muscle mass and
remodeling suggests that protein intake should be consumed at
a daily intake of at least 1.6 g/kg and into the number of meals
that the feeding window allows separated by 3–5 h.

In conclusion, while IFmay represent an option for a variety of
populations to promote fat loss and improve aspects of metabolic
health, additional research needs to focus on the impact of meal
frequency on the quantity and quality of muscle mass. Inasmuch
as IF may be purported as the enemy of body fat, future research
must ensure this is not also the case for muscle. From our
current understanding of muscle protein metabolism and taking
a “muscle-centric” view for diet, we highlight that current acute
evidence suggests IF may represent a counterproductive strategy
to optimize muscle mass and, as far as protein turnover can
remodel old/damaged proteins, muscle quality. Thus, studies
that concurrently measure muscle protein metabolism and
muscle mass and function will be instrumental in resolving
these issues.
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