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Abstract

Eutrophicated waters frequently support bloom-forming cyanobacteria, many of which produce potent cyanobacterial toxins
(cyanotoxins). Cyanotoxins can cause adverse health effects in a wide range of organisms where the toxins may target the
liver, other internal organs, mucous surfaces and the skin and nervous system. This review surveyed more than 100 studies
concerning the cardiovascular toxicity of cyanotoxins and related topics. Over 60 studies have described various negative
effects on the cardiovascular system by seven major types of cyanotoxins, i.e. the microcystin (MC), nodularin (NOD),
cylindrospermopsin (CYN), anatoxin (ATX), guanitoxin (GNTX), saxitoxin (STX) and lyngbyatoxin (LTX) groups. Much
of the research was done on rodents and fish using high, acutely toxin concentrations and unnatural exposure routes (such as
intraperitoneal injection), and it is thus concluded that the emphasis in future studies should be on oral, chronic exposure of
mammalian species at environmentally relevant concentrations. It is also suggested that future in vivo studies are conducted
in parallel with studies on cells and tissues. In the light of the presented evidence, it is likely that cyanotoxins do not constitute
a major risk to cardiovascular health under ordinary conditions met in everyday life. The risk of illnesses in other organs, in
particular the liver, is higher under the same exposure conditions. However, adverse cardiovascular effects can be expected
due to indirect effects arising from damage in other organs. In addition to risks related to extraordinary concentrations of
the cyanotoxins and atypical exposure routes, chronic exposure together with co-existing diseases could make some of the
cyanotoxins more dangerous to cardiovascular health.
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Introduction

Cyanobacteria (blue-green algae) are ubiquitous prokary-
otes which developed the aerobic atmosphere of the Earth
through oxygenic photosynthesis (Yadav et al. 2011; Car-
dona et al. 2018). They are commonly found throughout
the world in eutrophicated freshwater lakes, rivers and res-
ervoirs, and in brackish and marine environments. They
also colonize surfaces of rocks and buildings and the top
layers of soils. Cyanobacterial populations can form mass
occurrences known as cyanobacterial blooms in water-
bodies under favorable environmental conditions. Visible
scums on water surfaces, and mats in shallow waters and
along waterbody margins, may be formed by certain gen-
era of cyanobacteria (Chorus and Bartram 1999; Whit-
ton and Potts 2012; Huisman et al. 2018). Anthropogenic
eutrophication is one of the major factors contributing to
cyanobacterial dominance in many aquatic ecosystems
(Blaha et al. 2009). Global climate change is expected
to favor cyanobacterial populations, i.e. to increase their
magnitude and promote their geographical spread, and to
extend their growth periods (Codd et al. 2005; Blahova
et al. 2008; Huisman et al. 2018).

Some cyanobacterial secondary metabolites have
been identified as potent toxins (cyanotoxins), which
have significant adverse bioactivities at environmentally

Table 1 General information on cyanotoxins

encountered concentrations. Cyanotoxins can cause illness
and mortality of humans and terrestrial animals, with fur-
ther toxicities to aquatic vertebrates and invertebrates, and
consequent negative impacts on ecosystems (Codd et al.
1999, 2005; Sivonen and Jones 1999; Metcalf and Codd
2012; Janssen 2019; Chorus and Welker 2021).

Acutely lethal cyanotoxins can be divided into groups
depending on their main targets in (mammalian) organisms
(Meriluoto et al. 2017). These include hepatotoxins (micro-
cystins—MCs and nodularins—NODs), cytotoxins (cylindros-
permopsin and analogues—CYNs), and neurotoxins (ana-
toxin-a and analogues—ATXs, anatoxin-a(S)-ATX-a(S), and
saxitoxin and analogues—STXs). Nota bene, the new name
guanitoxin—-GNTX has been introduced for ATX-a(S) by
Fiore et al. (2020). There are also irritants of various potency
(lyngbyatoxin and analogues—LTXs and lipopolysaccha-
rides—LPSs). In addition, cyanobacteria contain neurotoxic
di-amino acids (e.g. p-N-methylamino-L-alanine-BMAA
and 2,4-diaminobutyric acid—-DAB). The long-term effects
of BMAA and DAB are under investigation (Dunlop et al.
2021). The general characteristics of common cyanotoxins
are summarised in Table 1.

The toxicity of MCs is mainly mediated via the inhibi-
tion of serine/threonine protein phosphatases PP1 and PP2A
activities, with PP4 and PP5 also being susceptible to inhi-
bition (Mackintosh et al. 1990; Hastie et al. 2005; Metcalf
and Codd 2012) and modulation of PP2A expression (Chen

Cyanotoxins

Chemical structure

Number of known
variants

LDs, to mice (intra-
peritoneal, pg/kg)

Cellular/biochemical
toxic mechanism

Most commonly
reported toxicity

Microcystins (MCs)

Nodularins (NODs)

Cylindrospermopsins
(CYNs)

Anatoxins (ATXs)

Guanitoxin (GNTX),
previously anatoxin-
a(S) (ATX-a(S))

Saxitoxins (STXs)

Lyngbyatoxins (LTXs)

Cyclic heptapeptides

Cyclic pentapeptides

Alkaloids

Alkaloids

Organophosphate

Alkaloids

Alkaloids

279 (Bouaicha et al.
2019)

10 (Du et al. 2019)

5 (Kokocinski et al.
2017a)

14 (Bruno et al. 2017)

1 (Metcalf and Bruno
2017)

57 (Ballot et al. 2017)

3 (van Apeldoorn
et al. 2007)

50 — > 1200 (Harada
et al. 1990)

30 — > 150 (Chen
et al. 2021a)

200 — 2100 (Ohtani
etal. 1992)

260 (Stevens and
Krieger 1991)

40 (Mahmood and
Carmichael 1987)

8 — 10 (Wiberg and
Stephenson 1960)

250 — > 300 (Ito et al.

2002)

Inhibition of eukary-
otic protein phos-
phatases, oxidative
stress, apoptosis

Inhibition of eukary-
otic protein phos-
phatases

Inhibition of protein
synthesis, DNA
damage, cell death

Agonist of nicotinic
acetylcholine recep-
tors at neuromuscu-
lar junctions

Inhibition of acetyl-
cholinesterase

Blockage of voltage-
gated sodium chan-
nels of neurons

Binding to protein
kinase C

Hepatotoxicity, neuro-
toxicity, reproductive
and developmental
toxicity, cardiovascu-
lar toxicity

Hepatotoxicity

Cytotoxicity, cardio-

vascular toxicity

Neurotoxicity

Neurotoxicity

Neurotoxicity

Tumour-promoting
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and Xie 2016). Protein phosphatases, together with protein
kinases, have key roles in the regulation of cardiac function,
including the central contractile apparatus in heart muscle
cells (Lorenzen-Schmidt et al. 2016). Perturbations in the
fine regulation of PP1 and PP2A activities may contribute
to heart pathophysiology and disease (Nicolaou et al. 2009;
Lubbers and Mohler 2016). These enzymological and car-
diac tissue-based observations on cardiac regulation support
consideration of the potential effects of MCs and NODs on
cardiac function and disease.

An increased level of reactive oxygen species (ROS)
generation after MC exposure causes oxidative stress which
can result in apoptosis or cell damage and genotoxicity
(Svircev et al. 2010; Zegura et al. 2011b; Chen and Xie
2016). Exposure to MCs also leads to the disturbance of
cytoskeleton elements (microfilaments, intermediate fila-
ments and microtubules). Through regulation of transcrip-
tion factors and proto-oncogenes, MCs also act as tumour
promoters (Svircev et al. 2010; Zegura et al. 2011b; Valério
et al. 2016; Zegura 2016).

The cyclic pentapeptide, NOD, is very similar to MCs
in its modes of action. There is, however, one fundamental
difference between NOD (which does not bind covalently
to active site cysteine residues of protein phosphatases)
and the covalently binding MCs such as the common vari-
ant, microcystin-leucine-arginine, MC-LR (which binds
covalently to protein phosphatases, Bagu et al. 1997). In
analogy with NOD, a dehydrobutyrine-containing MC was
found to inhibit PPs but it did not bind covalently to protein
phosphatases (Hastie et al. 2005). The inhibition of PP1 and
PP2A triggers a cascade of cellular events associated with
oxidative stress and can thereby cause a disintegration of cel-
lular structure, cell proliferation, hepatomegaly, liver dam-
age and hepatic hemorrhage, accompanied by an increase in
phosphorylated ERK1/2, p90RSK, p70/p85S6K and p38, as
well as the induction of caspase activities and anti-apoptotic
Bcl-xL (Batista et al. 2003; Dittmann and Wiegand 2006;
Ufelmann and Schrenk 2015; Chen et al. 2021a).

The guanidine alkaloid toxin, CYN, can be cytotoxic,
immunotoxic, neurotoxic, genotoxic and carcinogenic (Fal-
coner and Humpage 2006). It may express endocrine- and
developmental toxicity (Moreira et al. 2012). CYN acts
mainly through the inhibition of protein synthesis, interac-
tion with cytochrome P450 (CYP450) and the generation
of oxidative stress and DNA strand breaks. It also binds to
estrogen receptors and affects acetylcholinesterase (AChE)
activity (Yang et al. 2020).

The alkaloid neurotoxin, ATX-a, can passively cross
most biological membranes (gastrointestinal membranes,
blood—brain barrier, placenta) and quickly reach its target:
nicotinic acetylcholine receptors (nAChR) in the nervous
system (Hyde and Carmichael 1991). ATX-a is an agonist
of these receptors, and after binding, it causes constant

nAChR opening. This action compromises communication
between neuronal and postsynaptic cells, leading to detri-
mental effects on brain, muscles, the respiratory tract and
cardiovascular system (Christensen and Khan 2020; Colas
et al. 2021).

GNTX (formerly, ATX-a(S); Fiore et al. 2020) is an
organophosphate compound that inhibits acetylcholine ester-
ase activity resulting in acetylcholine not being hydrolyzed
at the synapse. The characteristic symptom in mammals is
hypersalivation and death is due to respiratory arrest. GNTX
is structurally unrelated to ATX-a.

The mode of action of the alkaloid, STX, is based on the
blocking of Na™ channels in neuronal cells and of Ca** and
K™ channels in cardiac cells (Ballot et al. 2017). In this man-
ner, the propagation of electrical transmission is inhibited
within the peripheral nerves and skeletal or cardiac muscles
(Kao 1993; Wang et al. 2003; Su et al. 2004; Testai et al.
2016b; Christensen and Khan 2020).

LTXs are highly inflammatory and vesicatory, derma-
totoxic alkaloids, with a cytotoxic action (Osborne et al.
2001). They are also tumour promoters which induce protein
kinase C (PKC) activity (Fujiki et al. 1981; Basu et al. 1992;
Jiang et al. 2014; Du et al. 2019).

A recent review (SvirCev et al. 2019) identified 1118
observations of cyanotoxins in 869 freshwater ecosystems
in 66 countries throughout the world. Among the listed
cyanotoxin occurrences were 183 verified or strongly sus-
pected associated, and in some cases causative, cyanotoxin
poisonings involving humans and/or animals. It is likely that
cyanobacteria-related ecotoxicological and health problems
are present in many more ecosystems than those mentioned
in the literature in this context.

Cyanobacteria are easily observed with the naked eye
in environments when they occur in higher numbers.
Cyanobacterial mass occurrences, blooms, scums and
mats, have a striking appearance and the cyanobacterial
biomass often produces tastes and odours which may reach
consumers in tap water. Poisonings of mammals, birds and
fish exposed to toxic cyanobacteria have been reported
from many aquatic ecosystems (Metcalf and Codd 2012;
Svircev et al. 2019). Human exposure to cyanobacteria and
their toxins in either recreational or drinking waters can
cause multiple symptoms including irritations and general
symptoms (irritation of skin and mucous membrane of the
eyes, nose and throat, weakness, fever), gastrointestinal ill-
nesses (abdominal pain, nausea, vomiting, diarrhoea, gas-
troenteritis, liver damage), neurological disorders (muscle
tremors, nausea, tingling in fingertips and toes, blurred
vision, headache, dizziness, paralysis) and cardio-pulmo-
nary problems (asthma-like symptoms, hypoxia, cyano-
sis, respiratory or cardiac arrest) which may have a fatal
outcome (Moore 1984, 1996; Chorus and Bartram 1999;
Metcalf and Codd 2012). The toxic effects can appear
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within minutes (neurotoxins) to days (cytotoxins) after
exposure. The severity of the poisonings is dependent on
several factors: the particular cyanotoxins and their con-
centrations, the exposure media and routes involved, and
body weight and age of the exposed animals or persons.
Chronic exposure to cyanobacteria and their toxic metabo-
lites, in particular to MCs, is acknowledged as a potential
factor in carcinogenic processes. Epidemiological data and
experimental knowledge associate cyanobacterial blooms,
together with other risk factors, with a higher cancer inci-
dence. Epidemiological studies indicate causative asso-
ciations between exposure to (toxic) cyanobacteria and
primary liver cancer, colorectal cancer, retroperitoneal and
peritoneal cancer, kidney cancer, gastric cancer, brain can-
cer, heart, mediastinum and pleural cancer, ovarian cancer,
testicular cancer, leukemia and malignant skin melanoma
(Yu 1995; Ueno et al. 1996; Fleming et al. 2002; Zhou
et al. 2002; Svircev et al. 2013, 2014).

Although at least 279 structural variants of the cyclic hep-
tapeptide MCs are now known (Meriluoto et al. 2017; Bouai-
cha et al. 2019; Chen et al. 2021b), most of the toxicological
investigations using purified MCs have been performed with
MC-LR. This variant is among the most commonly found
and abundant of the MCs in environmental surveys and is
also one of the most toxic variants according to animal bio-
assays. Several organs or tissues have been reported as tar-
gets of MC toxicity (Kankaanpii et al. 2005; McLellan and
Manderville 2017). These include liver (Falconer et al. 1983;
Hou et al. 2015; Chen et al. 2016b, 2017; Yang et al. 2018),
gastrointestinal tract (Ito et al. 2000; Cao et al. 2019a), kid-
neys (Piyathilaka et al. 2015), reproductive organs (Chen
et al. 2013, 2016a; Zhang et al. 2019), the nervous system
(Caban-Holt et al. 2005; Feurstein et al. 2010), the cardio-
vascular system (Zhao et al. 2008) and the endocrine sys-
tem (Chen et al. 2018b, 2021c). MC-LR induces germ cell
apoptosis and has a connection with a mitochondrial-reliant
apoptotic pathway (Chen and Xie 2016; Li et al. 2016). MC
genotoxicity has also been observed (Li et al. 2008; Zegura
etal. 2011a; Zegura 2016).

While the primary target of MC-LR and other MCs in
vertebrates is the liver, chronic or acute exposure to MCs
also shows toxic effects on the heart (LeClaire et al. 1995;
Milutinovi¢ et al. 2006; Wang et al. 2008; Qiu et al. 2009).
Human cardiovascular health is thought to be affected by
MCs as there is solid evidence of positive associations
between MC exposure and cardiotoxicity in animal stud-
ies (Cao et al. 2019b; Alosman et al. 2020). There is, how-
ever, a scarcity of human data on the cardiovascular toxicity
of MCs and other cyanotoxins. The potential impairment
of cardiovascular health by cyanotoxins is thus a partially
uncharacterized and underestimated risk in humans. Because
of the wide distribution of toxic cyanobacteria in aquatic
environments and the in vivo evidence from animal studies,

@ Springer

the possibility of cyanotoxin-induced cardiovascular health
effects in humans fully merits investigation.

In this paper, evidence of the cardiovascular toxicity
of MCs and other cyanotoxins is accounted for and evalu-
ated. Attention has been paid to understanding whether
the reported research has been representative and relevant
regarding: i) type of bioassay, ii) route of exposure, iii)
length of exposure and dose and iv) the animal models used
in studies of cardiovascular toxicity of cyanotoxins. Detailed
biochemical, physiological and medical background is pre-
sented in Tables 2, 3, 4, 5, 6 and numerical facts related to
i—-iv are described in Tables 7, 8, 9, 10.

Cardiovascular toxicity of cyanotoxins

Studies on cardiovascular toxicity of cyanotoxins
in vertebrates

In this section, we summarize current knowledge of the car-
diovascular toxicity of cyanotoxins (Tables 2, 3, 4, 5, 6).
A wide range of environmental, medical and other scien-
tific literature was explored via the Scopus database which
includes PubMed, Web of Science and ScienceDirect. The
search strategy was the following: (cardiotoxicity OR heart)
AND (microcystin OR nodularin OR cylindrospermopsin
OR anatoxin OR saxitoxin OR lyngbyatoxin). The searches
resulted in an internal database from which Tables 2, 3, 4,
5, 6 were manually constructed.

Many of the most comprehensive in vivo studies concern-
ing cyanobacterial/cyanotoxin toxicology were done dur-
ing the 1990s and earlier (e.g. Falconer et al. 1994; Fawell
et al. 1999). In 1995, for the first time, LeClaire et al. (1995)
proved that MC-LR could be cardiotoxic. MCs are well
described and systematized in their action regarding car-
diovascular toxicity (Cao et al. 2019b; Alosman et al. 2020).
Here, we summarize the cardiovascular actions of all of the
widely recognised cyanotoxins, including MC, NOD, CYN,
ATX, GNTX, STX and LTX.

Tables 2, 3, 4, 5, 6 show the reviewed results of the influ-
ence of cyanotoxins on heart function and changes in blood
vessels of various vertebrates (mammals, fishes, amphibians
and birds). The influence of these toxins is shown through
acute and chronic action at the level of cell biochemistry
and morphology and tissues of the heart and blood ves-
sels. The activity of cyanotoxins has been followed through
in vivo and in vitro exposures. Generally, cyanotoxins may
have an effect on myocardial cells, specific cells of the car-
diac conduction system and pericardial cells. Pathological
remodeling of the extracellular matrix and adverse effects
on vascular cells and blood itself can also occur.

The cardiotoxicity of cyanotoxins is observed at sev-
eral cardiovascular levels: at the genetic, biochemical,
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24 antioxidant system in human erythrocytes (Sicinska et al.
kS é 2006; Shi et al. 2017). In addition to erythrocytes, the
- § ; importance and role of platelets in the cardiovascular sys-
= 2| .‘E tem is recognised (Mahdi et al. 2021). MCs may be risk
a — Z| §% factors for disease because they cause reduction in circu-
Q © = | = .
et 3 g 2 2 lating platelets (Beasley et al. 2000). Several papers have
8= S | E& . .
= . o <
2| s = 5| =8 presented the effect of cyanotoxins on different types of
B %" 5 g ga leukocytes: an immunotoxic effect of MCs on peripheral
2| E 3 2| 2R blood lymphocytes (Lankoff et al. 2004); loss of neutro-
“o.
S E phil membrane integrity and increases in intracellular Ca®*
LadZ % = E level in neutrophils and reactive oxygen species formation
%c_%‘)g E - g 8. T)E by rat and human neutrophils exposed to MCs (Kujbida
> %% f, % .?é é § et al. 2008, 2009). NOD can cause lymphocyte apoptosis
223392 5L 53 (Zhang et al. 2012, 2013).
&b 2 g qg gﬁ 5 5 &E Indirect effects on the cardiovascular system can be
A= g 5 . . . . .
E ELE<oBERE E| EQ achieved through changes in the function of liver, gastroin-
sE55% 75 g8 g & g
== 5 = = = = . . . . .
. § E E ’; E E = ‘g £| 8% Festmal tract, brain and kldnf?y. MCs are p.rlmarlly hepatotox-
é g3 g < E SEE g = E ins and thus cause pathological changes in the structure and
R L o = . .
ol = -§ = ke g g -2 -a ﬁf S function of the liver (Falconer et al. 1981; Huang et al. 2013;
< - O = -~ . . . . .
El = ié 'g g =23 T§ % % Alosman et al. 2020). These toxins trigger hepatic intersti-
17} == ° = . .
S1E7 g 20 2523 5 K’ tial hemorrhage (LeClaire et al. 1995). When the overall
S| F e == 2| g . . . . . .
22273 g E = @ £ z g E hem(?rrhage in the liver (Qll'l et al. 2909) is sufﬁc1ently'ser1
O | o i3 ZR IR ous, it causes a hypovolemic shock in the affected animal.
3 g However, MCs also cause injury in other organs (Wang et al.
3 N 2008; Papadimitriou et al. 2012) and even malformation
25 of body parts (Qi et al. 2016; Li et al. 2021). Pathological
= 15 = 9
g 2 E % changes due to MCs in the structure and/or function of the
Ei & E 55 gastrointestinal tract and kidney have been reported (Alos-
2| o = S| €€ 1. 2020 11 as induction of cerebral h h
Ald = ~| 5% man et al. ) as well as induction of cerebral hemorrhage
) %E (Wang et al. 2019). At the molecular/cellular level, severe
&b =8 oxidative damage has been observed (Li et al. 2021). The
2 z 2 g
S S E consumption of oxygen and production of carbon dioxide
P yg P
S e Sa . . .
oo: ) B § have been reported to decrease in affected animals (LeClaire
= > . . .
o S S g et al. 1995), coupled tq a progres's1.ve hypther'mla'(LeCIa.lre
2 = © = et al. 1995). CYN can increase lipid peroxidation in the kid-
E s é% ney and liver, and protein oxidation in the liver (Gutiérrez-
v . . .
E g 2 g Praena et al. 2011). A reduction in glutathione (GSH) con-
(=) = . . .
IS N g = centrations in the liver can also be observed. ATX has been
- (e @ .
=] = £ 5 reported to reduce renal and mean blood flow (Siren and
a2 | S =3 £8 Feuerstein 1990). STX binds to the Na* and Ca?* channels
Al o S = > £ of the nerve axon membranes, thus blocking the propagation
= z C % = of nerve impulses in cardiac muscles (Wang et al. 2003; Su
. 3 . . . .
5 % £ 2 £ & et al. 2004). LTX-exposed mice died from bleeding in the
é Tj Z 8 Tg 5 g small intestine where severely damaged capillaries of the
2 = 2| OSKE intestinal villi could be observed (Ito et al. 2002).
g o2 9 [:: A
g ; § CRISE-I) Several papers report that neither MC nor CYN caused
S| = —E £|3gg% changes in heart function at the examined concentrations and
5| & £S5 L|z:2E X
slol 8 E8 E| 852 routes of exposure (Theiss et al. 1988; Rabergh et al. 1991;
o | = 2 I e 5 25 p g
ERLS a z° 213 =3 Carbis et al. 1996; Tencalla and Dietrich 1997; Humpage
S| e ;’E § and Falconer 2003; Lei et al. 2008a, b; Huang et al. 2013;
= | 2 4 g Wau et al. 2016; Li et al. 2021). Moreover, the tissue distribu-
m [ 3 o @ . . .
2 % z v j § &a tion of both cyanotoxin types showed clear organotropism to
AN} S % 5] 2ES the liver (and in some cases in other organs such as kidney
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=R and gonads) but not to the heart (Norris et al. 2001; Lei et al.
S & £
B=—alse]
;= 2008a, b).
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o 28 =
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£ |8 §E4 Involvement of different cyanobacteria
S Z 23 and cyanotoxins in cardiovascular toxicity studies
- o & >
= 5 0 —
2 S SEE . . .
3 o & - § = § According to a recent global survey of published find-
= e . - .
5 & .%‘)E (§5 C= é ings (SvirCev et al. 2019) the most commonly found toxic
= g g % & g 3 = cyanobacterial genera worldwide were Microcystis spp. (669
‘? = 842 Z ;S; 2 reports), Anabaena spp. (397), Aphanizomenon spp. (100),
2 |52 E 22 % £ g Planktothrix spp. (98) and Oscillatoria spp. (75 reports).
& [FE°EE| SEE Among the 112 studies in Tables 2, 3, 4, 5, 6 that exam-
o é 23 ined effects on the cardiovascular system (Table 7), most
g E < 2 were based on the use of purified cyanotoxins (67 studies,
) . .
s |, 2 2 60%): MCs (39 studies), NOD (3 studies), CYN (13 stud-
s |z SEE ies), ATX-a (5 studies), GNTX (1 study), STX (5 stud-
< |< = .
g £ 2 ies) and LTX (1 study). Natural blooms as crude sources
% § ol of cyanotoxins were used in 7 (6%) of the 112 examined
g G studies, principally containing Microcystis spp. (includ-
s g E ing M. aeruginosa), consistent with species of this genus
E 3 % being often encountered in natural and controlled freshwa-
s |& = E ot ters. When culture collections were considered as a source
= Q O . . . . .
5 g % 25 of toxic materials (20 studies, 18%), again M. aeruginosa
a ch g ; g was the most frequently listed (14 studies). Although also
EEgx often present, Aphanizomenon ovalisporum as a source of
2 % g cyanotoxins was represented in only three studies. Cylin-
- . ) y X
~ 8 g drospermopsis raciborskii was the third most often recorded
R (2 studies), perhaps acknowledging the high interest in this
=5 <
Z E E 5 species as a highly invasive organism which is increasing its
" = E, %D g distribution range from tropical and subtropical to temperate
Q y —_— . . . .
é 8 é = -é regions, and presenting a spreading environmental health
z &~ g &8’ risk to aquatic ecosystems and humans due to the cyano-
£ i = ;“ " toxins which it releases (Kokociniski et al. 2017b). Finally,
g g é 2 = é Oscillatoria spp., despite occurring in several environmental
& £ S g4 g cyanotoxin surveys (SvirCev et al. 2019), and as a source of
g g = 2 culture material was represented in only one study.
g2 § = Over the last 2 decades there has been a considerable
= O . . . .
g £ ': 8 7 growth of interest in the analysis and ecotoxicology of
_‘-é % i = é cyanotoxins. A global geographical and historical assess-
o g8z &9 ment (of 468 articles, including 1118 cyanotoxin identi-
2 z. g2 g y
W /(2 o vl . . .
= g > 3 fications, 869 freshwater ecosystems and 66 countries
s >E— & y
QS = S . . . . . . .
2 8 2252 of cyanotoxin distribution and cyanobacterial poisonings
= N = _g 8 ‘;? revealed that, of the cyanotoxins included, MCs were the
2 3 EE ‘: most often recorded worldwide (63%; 669 of 1118), fol-
S| ZLE g g > = lowed by CYN (10%; 107), ATXs (9%; 100) and STXs (8%;
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223 ChS s E 93), while NODs were the least-often detected cyanotoxins
= < - @ .
g | E ; § g < (2%; 19). However, it should be noted that there were also
i’ 2 ;‘ % E‘é _';S 2 blooms or poisoning reports where cyanotoxins were not
2 % 8 | 2 E% & analysed or specified (9%) (Svircev et al. 2019). Similarly,
= B= == . . . .
E10515 Z 8828 Du et al. (2019) determined that the most widely distributed
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Table 5 Summary of studies on cardiovascular toxicity of cyanobacterial cells and extracts containing cyanotoxins in amphibians in vivo and

in vitro
Cyanobacterial Amphibian models Route Doses Duration Acute/chronic  Cardiovascular References
cells, extracts puri- effects
fied toxins
Cylindrospermop-  Cane toad tadpoles Immersion 200 pg cylin- 48,96,168h Acute Heart: thickened ~ Kinnear et al.
sis raciborskii drospermopsin walls, blood cells  (2007)
(CYN)/L clumping, pres-
ence of smaller,
pink casts, pos-
sibly cellular or
proteinaceous
Extracts of C. Cane toad tadpoles Immersion 107 pg CYN/L 48,96,168h Acute Heart: thickened ~ Kinnear et al.
raciborskii walls, blood cells  (2007)
clumping, pres-
ence of smaller,
pink casts, pos-
sibly cellular or
proteinaceous
CYN Excised Pelophy- Immersion 1 uM 60 min Acute No significant Chichova et al.
lax ridibundus changes of heart (2021)
heart contractions
Table 6 Summary of studies on the cardiovascular toxicity of cyanobacterial cells containing cyanotoxins in birds in vivo
Cyanotoxins Birds Route Doses Duration  Acute/chronic Cardiovascular References
effects
Microcystis aerugi- Chicken ip 80 mg cyanobacte- 12 h Acute Petechial haem- Konst et al. (1965)
nosa NRC1 ria /kg orrhages in
myocardium,
welling, loss of
cross-striation and
pigmentation of
myocardial fibres
M. aeruginosa Chicken Oral 2.2,8,16gcyano- 24.5h Acute Petechial haem- Konst et al. (1965)
NRC1 bacteria /kg orrhages in
myocardium,
swelling, loss of
cross-striation and
pigmentation of
myocardial fibres
M. aeruginosa Duck ip 80,320 mg cyano- 12h Acute Petechial haemor-  Konst et al. (1965)
NRC1 bacteria /kg rhages in myocar-
dium
M. aeruginosa Duck Oral 2.2,16 gcyanobac- 12h Acute Petechial haemor-  Konst et al. (1965)
NRCl1 teria /kg rhages in myocar-
dium
M. aeruginosa Japanese quail Oral 0.2,2.24,22.46, 10, 30 days Sub-chronic  Heart: ERODT, Paskova et al. (2008)
224.6 ug MC/kg/ GST1, GSHY,
day GR1, LPO?
M. aeruginosa 90%, Japanese quail () Oral about 210 yg MC/ 30 days Sub-chronic ~ Heart: GSHt, GR?T Paskova et al. (2011)
M. ichthyoblabe kg/day

10%

1 increased, i.p. intraperitoneal, EROD 7-ethoxyresorufin O-deethylase, GSH glutathione, GR glutathione reductase, GST glutathione S-trans-

ferase, LPO lipid peroxidation, MC microcystin

@ Springer
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Table 7 Sources of surveyed cyanotoxins and their numerical representation in studies on cardiovascular effects

Sources

Toxin/species/strains

Number of papers Total

Cyanobacterial blooms

Cyanobacterial cultures

Microcystis aeruginosa PCC 7806

Microcystis aeruginosa LE-3

Microcystis aeruginosa FACHB-905
Cylindrospermopsis raciborskii PHAWT/M
Cylindrospermopsis raciborskii (strain not specified)
Aphanizomenon ovalisporum LEGE-X001
Oscillatoria sp. FACHB-528

Microcystis spp. (including M. aeruginosa)

Extracts of cyanobacterial blooms

Extracts of cyanobacterial cultures

Microcystis aeruginosa HUB 5.3

Microcystis aeruginosa HUB 5-2-4

Microcystis aeruginosa PCC 7813

Microcystis aeruginosa KMF

Microcystis aeruginosa RST9501
Cylindrospermopsis raciborskii AWQC CYP-026 J
Cylindrospermopsis raciborskii (strain not specified)
Anabaena flos-aquae UTEX 2383

Microcystis aeruginosa FACHB-905

Exudates of cyanobacterial cultures
Pure cyanotoxin Microcystins
Nodularin
Cylindrospermopsin
Anatoxins
Guanitoxin
Saxitoxin
Lyngbyatoxin

Total

Microcystis spp. (including M. aeruginosa)

Microcystis aeruginosa NRC1

Microcystis aeruginosa 228

7
20

—

o e R e R e R e s 00 = ) R e e e e e ]
o)

%]
]

67

W = = W
[O%]

112 112

cyanotoxins analyzed were also MCs (57 of 60 countries),
then CYN (31), STXs (29), ATX (26), BMAA (16) and
NOD (13 of 60). A comparable order of identified cyano-
toxin prevalence is also observed in the overall literature,
with MCs encompassing more than half (56%; 2971 of
5293) of the available literature, succeeded by STXs (27%;
1439), ATXs (9%; 467), NODs (9%; 452), CYN (7%; 364),
BMAA (2%; 112), LTX (2%; 101) and aplysiatoxin (APTX)
(1%; 70) (Merel et al. 2013).

Some of the aforementioned results on cyanotoxin occur-
rence may, unavoidably, reflect the development, economic
capacity and environmental analysis capabilities of individ-
ual regions and countries, i.e. including available methods,
analytical standards, economic factors and technical exper-
tise. Consequently, the true occurrence of cyanotoxins is
unknown. Nonetheless, based on this review (Tables 7 and
8), it can be seen that the distribution of 67 published studies
examining the effects of cyanotoxins on the cardiovascular
system approximately corresponds to the published data on
cyanotoxin occurrence, since most of the papers examined

@ Springer

the effects of MCs (39 studies, 58%) followed by CYN (13
studies, 19%), ATX-a (5 studies, 7%), STX (5 studies, 7%),
NOD (3 studies, 5%) and finally GNTX (1 study, 1%) and
LTX (1 study, 1%). Although they have been less frequently
sought or detected, additional cyanotoxins can be present
and can be harmful, but they are far less studied than MCs,
especially the MC-LR variant, so it is necessary to pay more
attention to the wider range of the environmentally occurring
cyanotoxins in future research.

Many authors have used purified cyanotoxins in their
research (67 studies; 60% of the 112 surveyed studies), an
essential contribution to understanding cyanotoxin toxi-
cology. However, the use of purified toxins also presents a
limitation in toxicity studies, since they do not represent a
natural exposure scenario presented by cyanobacteria and
their toxic metabolites. In natural conditions, cyanobacte-
rial blooms can simultaneously produce several different
cyanotoxins and other bioactive secondary metabolites.
Such natural populations can also include further environ-
mental health hazards, e.g. microbial pathogens, synthetic
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Table 8 Number of studies in the review reporting cardiovascular
effects in different groups of organisms depending on the cyanotoxin
tested

Table 9 Summary of exposure routes, duration of exposure and con-
centrations of pure cyanotoxins applied in papers examining effects
on the cardiovascular system

Total
number of
studies

Number of
studies

Toxins Groups of organisms

MCs Mammals in vivo 10 39
Mammals in vitro 9
Fish in vivo 20
Amphibians in vivo -
Amphibians in vitro -
Birds in vivo -
NOD Mammals in vivo - 3
Mammals in vitro -
Fish in vivo 3
Amphibians in vivo -
Amphibians in vitro -
Birds in vivo

CYN Mammals in vivo 13

Mammals in vitro

N

Fish in vivo
Amphibians in vivo

Amphibians in vitro 1
Birds in vivo -
ATX Mammals in vivo 4 5
Mammals in vitro -
Fish in vivo 1
Amphibians in vivo -
Amphibians in vitro -
Birds in vivo -
GNTX Mammals in vivo 1 1
Mammals in vitro -
Fish in vivo -
Amphibians in vivo -
Amphibians in vitro -
Birds in vivo -
STX Mammals in vivo 2
Mammals in vitro 1
Fish in vivo 2
Amphibians in vivo -
Amphibians in vitro -
Birds in vivo -
LTX Mammals in vivo - 1
Mammals in vitro 1
Fish in vivo -
Amphibians in vivo -
Amphibians in vitro -
Birds in vivo -
Total 67 67

Cyanotoxin  Exposure route Number of studies
Acute  Chronic  Total
MCs Intraperitoneal 3 5% 8
Oral - 3** 3
Intravenous 2 - 2
Immersion 13 4 17
Cellular, in vitro 9 - 9
NOD Immersion 3 - 3
CYN Intraperitoneal 2 - 2
Oral 5 - 5
Immersion 3 - 3
Cellular, in vitro 3 - 3
ATX Intravenous 3 - 3
Intracerebroventricular 1 - 1
Immersion 1 — 1
GNTX Intravenous 1 — 1
STX Intraperitoneal 2 - 2
Immersion 2 — 2
Cellular, in vitro 1 - 1
LTX Cellular, in vitro 1 - 1
Total 55 12 67

*7 days—8 months, **7 days —6 months, ***21-60 days

and natural chemicals, metals and microplastics. These in
combination with cyanotoxins can exert additive, synergistic
and antagonistic toxicities (Metcalf and Codd 2020; Chen
et al., 2021b). Indeed, it is probably due to these interac-
tions that crude cyanobacterial extracts containing known
concentrations of specific cyanotoxin such as MC-LR can be
more (or less) toxic than the same concentrations of the pure
cyanotoxin (Testai et al. 2016a; Metcalf and Codd 2020).
Also, accurate risk assessment of cyanotoxins is difficult
when only partially characterized samples containing cyano-
bacteria or their products are used in this type of research
(Testai et al. 2016a).

Pathways of exposure used in studies
of cardiovascular toxicity of cyanotoxins

In natural and man-made environments, humans can be
exposed to cyanobacteria and their toxins present in water,
food, air and dust, via several different pathways: by inges-
tion, intravenously, direct dermal contact and/or inhalation
(Codd et al. 1999; Drobac et al. 2013; Buratti et al. 2017,
Massey et al. 2018). One of the most frequently involved
exposure routes is the oral, with cyanotoxins being ingested
via drinking water, incidental drinking during recreation
and showering and via food (aquatic animals, edible plants,
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Table 10 List of test organisms

. Group Tested organisms and in vitro models (number of studies) Number of Number
and .correspopd.mg numbers of organisms of stud-
studies examining effects of ies
cyanobacteria and cyanotoxins
on cardiovascular systems Mammals Wistar rats (6), Sprague-Dawley rats (5), Fischer 344 rats (1), 21 46

Swiss Albino mice (1), ICR mice (4), BALB mice (1), KM
mice (1), MF1 mice (1), C57BL/6 mice (1), NIH-S mice
(1), mice (strain not specified) (2), rabbits (2), guinea pigs
(4), cross-bred pigs (1), lamb (1), calf (1), HUVECsS (9), rat
HOC2 cardiomyocytes (1), rat thoracic rings (1), NRVCs
(1), rabbit thoracic rings (1)
Birds chicken (2), duck (2), Japanese quail (2), 3 6
Fish Danio rerio (30), Oreochromis niloticus (Tilapia) (16), Cypri- 10 57
nus carpio (1), Carassius carassius (1), Hoplias malabari-
cus (1), Misgurnus mizolepis (1), Oryzias latipes (3), Salmo
trutta (2), Sinocyclocheilus grahami (1), Tinca tinca (1)
Amphibia Bufo marinus (2), frogs heart in vitro (1) 2 3
Total 36 112
Fig. 1 Organizational levels Vascular System
of cardiovascular toxicity of /
cyanotoxins
Aorta
Cardiac muscle tissue
/ Cyanotoxins \\\ \\\&(
Organ can affect: |
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cyanobacteria-based food supplements). For this reason, fur-
ther studies examining effects and consequences of cyano-
bacterial toxicity should pay increasing attention to the oral
exposure route of the test organisms to cyanotoxins. How-
ever, based on the collected data (Table 9) only around 12%
(8 from 67 studies, including 3 on MCs and 5 on CYNs) of
the studies have used oral exposure in assaying the toxicity
of cyanotoxins to the cardiovascular system.
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The most frequently used exposure route in in vivo
research has been via immersion (26 studies, 39%), and
although this is a useful strategy to monitor the effects of
toxins (immersion scenarios for the exposure of fish and of
amphibians obviously exist in natural conditions), the effects
observed may vary from those via oral exposure only. Oral
(8 studies, 12%) exposure is less represented in the litera-
ture. Only a few papers have compared the results of using
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different exposure routes (Carbis et al. 1996; Navratil et al.
1998; Ito et al. 2002; Gaudin et al. 2008; Gutiérrez-Praena
et al. 2012a). For example, Carbis et al. (1996) found dif-
ferent degrees of histological change in carp (Cyprinus car-
pio L.) tissues after exposure to MCs by i.p. administration,
gavage and immersion. Heart lesions were not observed in
the fish in any of the treatment groups. However, an i.p.
injection of 50 pg/kg of MC was lethal to all fish within
8 h, while gavaging with 250 pg/kg caused minimal damage
in the carp tissues. Navratil et al. (1998) applied purified
MC-LR, and MC-LR in cyanobacterial biomass, i.p. and
orally to juvenile carp to examine effects on red blood cells
and activities of plasma enzymes. As anticipated, the results
depended on the route of administration, character of the
material and the cyanotoxin concentrations given. Fish (tila-
pia, Oreochromis niloticus) were also exposed to an acute
high dose of CYN (200 pg/kg) by i.p. injection, and the
effects were compared to those involving oral dosing (gav-
age). The histological alterations of tissues (including heart)
were more pronounced after i.p. administration, except for
the gastrointestinal tract, where lesions were more severe in
fish exposed orally (Gutiérrez-Praena et al. 2012a). Ito et al.
(2002) investigated the pathological effects of lyngbyatoxin
A in mice. Much higher lethal doses were observed for the
cyanotoxin applied orally (no deaths at 1000 pg/kg) in com-
parison to i.p. administration (250 pg/kg for young mice).
The higher toxicity found via i.p. exposure in contrast to
oral dosing implies a difference in the bioavailability of the
cyanotoxins such as MC, as i.p. or i.v. administration leads
to a more rapid uptake into the liver (over 70%), while oral
administration results in less than 1% uptake into this organ
(Gaudin et al. 2008). Parental exposure of zebrafish (Danio
rerio) to MCs via immersion also resulted in decreased heart
rate of F1 larvae (Cheng et al. 2017; Zuo et al. 2021).

Intraperitoneal (12 studies, 18%), intravenous (6 studies,
9%) and intracerebroventricular (1 study, 1%) exposures
are less represented in the literature. Human hemodialysis
patients in a treatment clinic (at Caruaru, NE Brazil) were
accidentally exposed intravenously to cyanotoxins in an
ineffectively treated dialysate water originating from locally
sourced surface waters contaminated with cyanobacteria
(Azevedo et al. 2002). Also, dermal and intranasal expo-
sure have been observed during training and recreational
activities in blooming waters (e.g. Turner et al. 1990; Vidal
et al. 2017).

In recent years more research has been performed on the
cells and tissues of the cardiovascular system (14 studies,
21%; Table 9). Animal and human cells are helpful tools
in elucidating complex interactions and signaling path-
ways involved in MC toxicity at cellular and molecular lev-
els (Campos and Vasconcelos 2010; Chen and Xie 2016).
Nonetheless, cells used in bioassays in vitro cannot directly
characterize the toxicity of compounds towards multicellular

organisms, and thus cyanotoxins still need to be tested
in vivo (Orbach et al. 2018; Khoshnamvand et al. 2020).

Duration of exposure and toxicologically relevant
concentrations of cyanotoxins, with special
consideration of human toxicology

The division between acute and chronic exposure is not clear
in all of the papers examined. Most of the so-called chronic
exposure experiments (7-14 days) could be rather classi-
fied as subchronic. To obtain data on the relative toxicity
arising from a single dose or a brief exposure (e.g. to deter-
mine LDs;), acute toxicity tests are the first ones to be used
(Bhardwaj and Gupta 2012). Repeated dosing is typically
done to establish the resulting effects from repeated admin-
istration of a toxin at lower concentrations than those applied
in acute toxicity studies. In these chronic tests, organisms
may be dosed for weeks or months, or even for 1 to 2 years,
making the exposure a considerable part of a subject's life.
Chronic toxicity tests are similar to the subchronic tests
except that they may span over a longer time period and
include larger groups of organisms (Bhardwaj and Gupta
2012). In research conducted on the effects of cyanotoxins
on the cardiovascular system, these types of studies are very
disproportionately represented, with single exposure tests
accounting for most of the research. Only 12 studies have
included chronic exposure (18%; with study lengths from 1
week to 8 months). Accordingly, it is clear that the accumu-
lated bulk of research does not extend to the actual human
situation which would typically involve repeated oral expo-
sure, contrary to a single i.p. injection (Testai et al. 2016a).

Another important issue is the relevance of applied con-
centrations: the principle propounded since the fifteenth
Century by Paracelsus is that “the dose makes the poison”
(e.g. Grandjean 2016; Chen et al. 2018a). Too high or too
low concentrations may be misleading, making health risks
presented by cyanotoxins to be overestimated or underes-
timated. The WHO-proposed provisional guideline value
for MC-LR in drinking water (Chorus and Welker 2021)
includes an estimate of the tolerable daily intake (TDI) and
the amount of MC-LR as a harmful substance, which can
be consumed daily over the lifetime of a human adult, with
a negligible risk of adverse health effects. According to a
13-week mouse oral study with pure MC-LR and conse-
quential liver histopathology and serum enzyme changes,
a no-observed adverse effect level (NOAEL) of 40 pg/kg
body weight (b.w.) per day was derived (Fawell et al. 1994,
1999; WHO 1998; Chorus and Bartram 1999). By apply-
ing a total uncertainty factor of 1000 (X 10 for inter-species
variability, X 10 for intra-species variability and X 10 for
limitations in the database: in particular a lack of data on
chronic toxicity and carcinogenicity), and assuming an aver-
age daily water intake of 2 L for a human adult, with 0.8 of
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the water requirement derived from the drinking water, a
TDI of 0.04 ng MC-LR/kg b.w. per day was derived. This
TDI was supported by a 44-day study, in which groups of
five pigs were given extracts of M. aeruginosa in their drink-
ing water at dose levels calculated from potency estimates
using the mouse i.p. bioassay to be equivalent to 280, 800
or 1,310 pg/kg b.w. per day of MCs (assuming an average
1.p. LDs;, for MCs of 100 ug/kg b.w.) (Falconer et al. 1994;
WHO 1998; Chorus and Bartram 1999). The dosed extracts
contained at least seven MC variants, with MC-YR tenta-
tively identified by high-performance liquid chromatography
(HPLC) as the major constituent. After the exposure of the
pigs, a comprehensive postmortem examination followed.
Histopathological tissue samples were collected from the
oesophageal and pyloric ends of the stomach, the duode-
num, upper small intestine, colon, cecum, three regions of
liver, kidney, testis, lung, heart and brain. There were no
changes in the appearance of the organs in the exposed pigs.
No changes related to cyanotoxin exposure could be seen by
histopathological examination of samples of gastrointestinal
tract, kidney, testis, lung, heart or brain. The liver samples
showed damage at cell and tissue level in a dose-dependent
manner. A lowest-observed adverse effect level (LOAEL)
of 280 ug/kg b.w. per day of MCs was identified, with gen-
eral liver injury (evident from histopathology and changes
in serum enzymes) observed at the two higher dose levels,
of 800 and 1,310 pg/kg b.w. per day. At the lowest dose
level, 280 pg/kg b.w. per day, one pig was affected. The
authors determined the potency of their extract by mouse
1.p. LDs, bioassay, HPLC analysis and by in vitro protein
phosphatase inhibition assay (Falconer et al. 1994). Sum-
mation of the peak areas from the HPLC identification of
MC variants, standardised against MC-LR, indicated that
the LOAEL equated with 100 pg MC-LR equivalents per kg
b.w. per day. To this LOAEL an overall uncertainty factor of
1,500 was applied, arrived at using 3 rather than 10 for inter-
species variability (because pigs physiologically resemble
humans more closely than rodents), 10 for intra-species vari-
ability, 5 for extrapolating from a LOAEL to a NOAEL (10
was considered inappropriate due to the low incidence of
effects in the lowest dose group and the deduced shape of
the dose-response curve) and 10 for the less-than-lifetime
exposure. This resulted in a provisional TDI of 0.067 pg/
kg b.w. per day. The lower of these two values, 0.04 pg/kg
b.w. per day, has been used in deriving a provisional WHO
drinking water guideline value (Chorus and Bartram 1999;
Chen et al. 2018a; Chorus and Welker 2021).

Three examples of exposure that led to human poison-
ings highlight the toxicologically relevant concentrations of
cyanotoxins. In the first case, an estimated concentration of
19.5 pg MC/L of water used during haemodialysis treatment,
i.e. the patients were i.v.-exposed to MC. A total of 116
patients experienced the ‘Caruaru Syndrome’, 100 of them
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developed acute liver failure, and more than half of them
died (Azevedo et al. 2002). In the second case, long-term
consumption of cyanobacteria-based food supplements with
2.62—4.06 pg MC-LR/g dry weight (DW) by a 34-year-old
woman preceded her death due to liver failure. Although
a causal relationship was not definitely established, MC-
positive immunostaining was observed in the patient’s
liver (Dietrich et al. 2007). In the third case, a young man
manifesting nausea, abdominal pain, fever, dyspnea, respira-
tory distress, atypical pneumonia and hepatic damage was
hospitalized and received intensive care after recreational
exposure to- and immersion in a bloom of Microcystis sp.
containing 48.6 ug MC-LR/L of lake water. He finally recov-
ered completely 20 days later (Giannuzzi et al. 2011).

In one study conducted by i.v. dosing, two concentra-
tions of MC were tested (14 and 87 pg MC-LReq/kg) on
rats (Qiu et al. 2009). The 14 pg MC-LReqg/kg b.w. slightly
lowered heart rate and significantly reduced blood pressure,
enhanced GST activity, slightly increased the cytosolic
MDA level (malondialdehyde as a measurement of lipid
peroxidation) and caused myocardial damage in the form of
enlarged cells with enlarged and abnormally shaped nuclei,
occasional cytoplasmic vacuolization and partially degener-
ated muscle fibres in the exposed rats. The heart rate was
significantly decreased by 87 MC-LReq/kg. The authors
(Qiu et al. 2009) concluded that the cardiotoxic effects of
MC aggravated the pathogenesis of hypovolemic shock, and
could thus present a new contributory factor in the haemo-
dialysis patient deaths in Caruaru. The human poisoning
case (Dietrich et al. 2007) of long-term oral consumption of
dietary supplements containing 2,620-4,060 ng MC-LR/kg
DW is comparable to the 28 days’ exposure of rats to feed
containing 700-25,000 pg MCs/kg feed (Palikova et al.
2013). Significant changes in the red blood cell parameters
were induced in the MC-exposed rats. The exposure also
especially influenced the innate immune system represented
by natural killer cells and by gamma-—delta T cells, which
were significantly increased in number in peripheral blood in
the MC-exposed group (Palikova et al. 2013). Other human
studies have been based on acute exposure: e.g. immersion
in 48.6 ug MC-LR/L of recreational water resulting in acute
intoxication (Giannuzzi et al. 2011) is within the range
of one study in which brown trout (Salmo trutta L.) were
exposed to 5-500 pg MC-LR/L. The concentration of 50 pg
MC-LR/L caused increased heart rate, stroke volume and
cardiac output of fish (Best et al. 2001). In general, the com-
parisons are rather difficult because the methods of research
varied greatly, including the type of toxin, dose, manner and
duration of exposure and the range of organisms used (i.e.
inter-species variation should also be taken into account).

The acute i.p. toxicity of MC-LR is about 50 pg/kg in
mice. Assuming the same toxic potency in humans, a 60-kg
person would thus die from a 3000 pg i.p. dose of MC-LR.
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As the typical concentration of MC in pelagic lake water
is less than 10 pg/L (Fastner et al. 1999) the 60-kg person
would thus need to be i.p. injected with a minimum of 300
L of lake water to die. The WHO-derived provisional guide-
line value of MC-LR in drinking water is 1 pg/L. The same
person would thus need to be i.p. injected with 3000 L of
such safe drinking water to die. The oral toxicity of MCs is
even much lower than the i.p. toxicity (Falconer et al. 1994;
WHO 1998; Chorus and Bartram 1999). These examples
illustrate the need to conduct exposure studies at environ-
mentally relevant concentrations to understand the true risks
of cardiovascular diseases and other health problems caused
by cyanotoxins.

Animal models used in studies of the cardiovascular
toxicity of cyanotoxins

Since animal species differ in their responses to toxins, ide-
ally at least two species (e.g. a rodent and a non-rodent)
should be used in toxicity tests. If both express a similar
adverse effect, it is possible that such an effect could appear
in humans also. On the contrary, if the effect is exhibited
in one species only, the reaction could be species-specific
(Bhardwaj and Gupta 2012). Due to the behavioural prac-
tice of wild and domestic animals of drinking from natu-
ral and controlled water resources (i.e. the untreated water
of lakes, rivers etc.) they may be more frequently and/or
severely exposed to cyanobacteria and cyanotoxins than
humans, making them good sentinels for potential human
exposures. Resulting animal observations can give an
approximation of what humans could experience (Backer
and Miller 2016). Animal studies reported in the surveyed
publications include (Table 10) mammals (46 studies: 41%),
birds (6 studies: 5%), fish (57 studies: 51%) and amphibia
(3 studies: 3%). The studies of invertebrates were not listed
in the tables, but some studies on crustacea (Penaeus mono-
don, Daphnia magna, Daphnia similis) (Bownik and Pawlik-
Skowronska 2019; Ferrao-Filho and da Silva 2019) and on
mollusca (Elliptio complanata, Helix pomatia) (Vehovszky
et al. 2012) have been performed. Recently, mass mortali-
ties of sea otters (Miller et al. 2010), dolphins (Brown et al.
2018) and African elephants (Wang et al. 2021a) have been
attributed to cyanotoxin poisonings, although confirma-
tory investigations into the elephant deaths are required. If
cyanotoxins can cause the deaths of megafauna, it is clear
that humans can also be endangered, inter-species variabil-
ity being taken into account. Extrapolation of a dose from
animals to humans needs a consideration of the body sur-
face area and body weight, life span, water-based behavioral
characteristics and differences in toxicokinetics and toxi-
codynamics between species. Nair and Jacob (2016) have
provided a guide for dose exchange between species during
research, experiments and clinical trials.

For MC toxicity characterization the most detailed
research has been conducted on rodents (Table 2), especially
mice, since the latter have a comparatively higher sensitiv-
ity to MCs than other rodents such as rats (Fawell et al.
1999). Pigs have also been used as an experimental model
in the determination of in vivo responses to cyanotoxins,
since their gastrointestinal tract, liver and kidney functions,
metabolic rates and body weights are similar to those of
humans (Falconer et al. 1994; Swindle et al. 2012). Recent
pig studies (Greer et al. 2018) investigated the effects of
subchronic oral (gavage) exposure to MC-LR at a TDI of
0.04 pg/kg b.w. per day (98 days) and at 2 pg/kg b.w. per
day (35 days): 50 times the TDI. MC-LR was not found in
the serum of the gavaged animals, possibly due to the cyano-
toxin being rapidly processed from the blood. However, free
MC-LR was found in the large intestine and kidney, while
bound MC-LR was detected in the pig livers, indicating a
possible accumulation in human livers after oral, chronic and
sublethal exposure. Concerning research on effects of MC
and MC-producing cyanobacteria on the cardiovascular sys-
tem in vivo (22 studies, Table 2), few studies have involved
pigs (both acute, i.v. high doses) (Stotts et al. 1997; Beasley
et al. 2000), while the majority of the studies have been with
rodents, including nine investigations on mice and six stud-
ies on rats. The findings with pigs showed a rapid clearance
of MC from the blood by the liver. Only a small fraction
of the dose was rapidly secreted into the bile. At a poten-
tially lethal dose, clearance was reduced (Stotts et al. 1997).
Finally, the lethal effect from an acute MC-LR toxicosis can
be considered a consequence of hypotensive, hypovolemic
shock resulting from an obstruction of blood flow through
the liver, severe haemorrhage and the destruction of liver
parenchyma. The shock syndrome is further complicated by
areduction in circulating platelets, a partially compensated
metabolic (lactic) acidosis, reduced renal perfusion and ter-
minal hyperkalemia, as well as hypoglycemia (Beasley et al.
2000).

Although mammals should ideally be predominantly
used in research to determine risks of cyanobacteria and
cyanotoxins to humans via cardiotoxicity, the target organ-
isms most studied are fish (57 studies, Table 4). Indeed,
as aquatic vertebrates, they can serve as early sentinels
for potential adverse effects from cyanobacteria and their
toxins (Backer and Miller 2016), especially in natural
conditions. One of the most researched fish regarding the
effects of cyanotoxins on the cardiovascular system has
been the zebrafish (D. rerio; 30 studies: 53% of all 57 fish
studies), which can be considered an excellent vertebrate
model and is extensively utilized in wider toxicity assess-
ments (Shen and Zuo 2020). In the last 2 decades zebrafish
have become increasingly popular in toxicology due to
their small size, low maintenance cost, high fecundity, fast
embryonic development, embryo transparency and some
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similarities to mammalian systems (Selderslaghs et al.
2013). It seems likely that Danio spp. will continue to find
wide-scale applications in vertebrate toxicology and with
the contribution of zebrafish to characterizing cyanotoxin
cardiotoxicity already having been established (Table 10).
Another much-used fish species in this research is the tila-
pia (Oreochromis niloticus; 16 studies: 28% of all fish spp.
investigated).

Conclusions and gaps in knowledge
Specific conclusions
Involvement of cyanotoxins in cardiovascular toxicity

The best studied group of cyanotoxins with cardiovascular
effects are the MCs. Based on the reviewed papers, high
enough acute doses of MCs (and some other cyanotoxins)
have a toxic effect on myocardial cells, specific cells of the
cardiac conduction system and pericardial cells. Patho-
logical changes of the extracellular matrix and effects on
vascular cells and blood cells also occur. Human cardio-
vascular health and other aspects of health can be further
endangered during chronic exposure to low concentrations
of cyanotoxins. The effects of MCs on the heart have been
observed mainly through changes in heart rate (MCs inter-
fering with blood flow and the rhythm of blood pumping),
blood pressure (MCs increasing vascular permeability due to
endothelial injuries) and effects on the heart muscles. Upon
prolonged exposure, MCs can cause significant cytoskeletal
alterations including enlargement of cardiomyocytes, loss
of cell cross-striations, fibrosis and abnormal nuclei. Taken
together, these results suggest that long-term exposure to
relatively low doses of MCs can induce myocardial atrophy
and fibrosis. The changes in heart rate are basically caused
by mitochondrial dysfunction, whereas the changes in blood
pressure are caused by increased protein content in blood
capillaries (because of increased vascular permeability) and
the damage to heart muscles is caused by ROS production
and oxidative stress. All of these cellular and subcellular
changes, together with damage to the endoplasmic reticu-
lum caused by MCs, can lead to cardiomyopathy and heart
failure.

Although less frequently detected and investigated, fur-
ther cyanotoxins are present and can be harmful (Tables 2,
3,4, 5, 6). Other cyanotoxins are far less studied than MCs
(especially MC-LR) and it is necessary to study them more
intensively in future research.
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Purified cyanotoxins, cyanobacterial cell extracts
and cyanobacterial biomass

Purified cyanotoxins are frequently used in toxicological
research (Table 7) but this type of approach presents a limi-
tation in toxicity studies, since it does not correspond to a
natural exposure scenario where a mixture of toxic metabo-
lites (and other compounds of various characteristics) are
typically present. On the other hand, the use of cyanobacte-
rial cell extracts may lead to confusing results as the attribu-
tion of toxicity among the mixture of diverse and potentially
bioactive compounds cannot be unambiguous. Combinations
can exert e.g. additive, synergistic and antagonistic toxicities
and a certain concentration of a known toxin may have a dif-
ferent potency in a matrix. For these reasons it is encouraged
to conduct studies with both pure toxins and cyanobacterial
cell extracts.

Localization methods for cyanotoxins in cardiovascular
systems

Recognition and understanding of the involvement of cyano-
toxins in cardiotoxicity and -pathology could be aided by the
application of more modern cyanotoxin-related analytical
and localization methods to cardiac cells and tissues. For
example, by analysis for cardiac protein phosphatase-MC
covalent associations, and the subcellular localization of
cyanotoxins by immunogold-electron microscopy (Young
et al. 2005).

Exposure route

The most frequently involved natural and hitherto recognized
exposure route is the oral route, with cyanotoxins occurring
in environmental untreated- and ineffectively treated drink-
ing waters, or recreational waters, or in food items. For this
reason, further studies examining cyanobacterial toxicity
should pay more attention to cyanotoxin exposure via the
oral route. However, based on the collected data (Table 9),
only 8 of 67 studies (12%) have employed oral exposure. The
bulk of research is thus not directly comparable to the typi-
cal human exposure scenario which would typically involve
repeated oral exposure through ingestion of drinking water
and foodstuffs instead of e.g. a single i.p. injection.

Exposure to environmentally relevant cyanotoxin
concentrations and chronic exposure

Tables 2, 3,4, 5, 6 and 9 also show that research approaches
vary greatly in the type of cyanotoxin, dose, manner and
duration of exposure and the organisms used (i.e. inter-
species variation should also be taken into account). Many
of the concentrations used are much above any realistic
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concentration found in a natural setting. There is thus a need
to conduct the exposure studies at environmentally relevant
cyanotoxin concentrations if the goal is to assess the real
risks of cardiovascular and other health problems caused by
cyanotoxins. There is also no real consensus about which
durations of exposure should be understood as chronic and
subchronic.

Human epidemiological research

The majority of the tested organisms have been rodents and
fish (Table 10), while further species which are phyloge-
netically and physiologically closer to humans should also
be included. Such an approach is needed to obtain a rel-
evant picture of cardiovascular toxicity to humans. There
are only a few case studies of human health problems known
to have been associated with-, or caused by contact with
cyanobacteria and their toxins. Medical professionals have
not been employed in most cases to an optimal extent. Some
cases have been described by non-medical professionals and
postmortem and other pathological examinations are mostly
missing. As there are plenty of populations which are nat-
urally exposed to cyanotoxins in their drinking water one
way forward in understanding the cardiovascular toxicity of
cyanotoxins is to conduct epidemiological research.

Gaps in knowledge

Whilst this review has focused on the impacts of cyanotoxins
on cardiovascular structure and function, it is recognised that
these toxins can cause damage to multiple structural and
physiological systems in the vertebrate body (causing hepa-
totoxicity, nephrotoxicity, neurotoxicity, genotoxicity, etc.).
The degree to which these multiple outcomes are interlinked,
with cardiovascular toxicity being a direct consequence of
cyanotoxin exposure, or as part of a cascade of damage to
the body’s physiological systems requires investigation.

Whether the adverse effects of MCs, and potentially of
NOD, on vertebrate cardiovascular structure and function
arise only from an initial inhibition of protein phosphatases
in vivo by these cyanotoxins also requires investigation.
Indeed, understanding of whether such actions do include
mechanisms without involving protein phosphatase inhi-
bition is needed: in vitro studies have shown that purified
MC-LR and NOD cause pore formation, weakening and
electrical conductivity changes in synthetic lipid bilayer
membranes (Petrov et al. 1991; Mellor et al. 1993), with no
protein phosphatases in the assay systems.

Organic anion transporter polypeptides (OATPs) are
expressed in several tissues including kidney, liver and
brain (Nigam et al. 2015). They have a crucial role in the
uptake and excretion of many xenobiotics and endogenous
substances. It has been shown that the isoforms OATP1B1

and OATP1B3 mediate the uptake of MCs in hepatocytes
(Fischer et al. 2010). As OATP1B1 and OATP1B3 are selec-
tively expressed in the liver (Roth et al. 2012) and other
OATP isoforms appear to have no or less affinity for MCs,
the effects of these toxins are more pronounced in the liver
tissue. As there are tissues where OATPs with high affinity
for MCs are not present, but effects still can be seen, it is
plausible to assume that either other transporters or other
(passive) uptake mechanisms for MCs are in place in these
tissues. MCs are relatively polar molecules while the more
hydrophobic amino acid residues in some of them could
be expected to have an influence on their toxicokinetics
and possibly also on their toxicity (Ward and Codd 1999).
Indeed, MC-LW and MC-LF showed a higher surface activ-
ity than MC-LR on a phosphatidylcholine-cholesterol mon-
olayer when tested by biophysical methods (Vesterkvist and
Meriluoto 2003). A follow-up study showed that MC-LW
and MC-LF induced stronger cytotoxic effects on Caco-2
cells than MC-LR (Vesterkvist et al. 2012). By analogy, it
could be hypothesized that the more hydrophobic MCs could
have a higher cardiovascular toxicity than the more hydro-
philic congeners.

It is likely that there are additional toxic substances and
medical conditions which might potentiate the adverse (car-
diovascular) effects of cyanotoxins but the data on this topic
are scarce. One interesting aspect is whether the COVID-19
disease known to have cardiovascular effects (Salabei et al.
2022; Xie et al. 2022) may have any interactions with cyano-
bacterial toxicity.

Overall conclusions

In the light of the presented evidence, it is likely that cyano-
toxins do not constitute a major risk to cardiovascular health
under ordinary conditions met in everyday life. The risk of
illnesses in other organs, in particular the liver, is higher
under the same exposure conditions. However, cardiovascu-
lar effects could be expected due to indirect effects arising
from damage in other organs. In addition to risks related to
extraordinary concentrations of the cyanotoxins and atypical
exposure routes, chronic exposure and co-existing diseases
could make some of the cyanotoxins more hazardous to car-
diovascular health.

It is generally concluded that the emphasis in future
research should thus be on oral, chronic exposure of mam-
malian species, including at environmentally relevant con-
centrations. It is also necessary that in vivo experiments are
conducted in parallel with studies on cells and tissues. It
would be extremely beneficial to attract more medical pro-
fessionals to cyanotoxin research ranging from molecular
level studies to epidemiology. The efforts should finally lead
to environmental health guidelines aiming at human health
protection.
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