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Feed conversion efficiency (FCE) is an economically crucial trait in fish, however, little
progress has beenmade in genetics and genomics for this trait because phenotypes of the
trait are difficult to measure. In this study, we constructed a high-density and high-
resolution genetic linkage map with 28,416 SNP markers for common carp (Cyprinus
carpio) based on high throughput genotyping with the carp 250K single nucleotide
polymorphism (SNP) array in a full-sib F1 family of mirror carp (Cyprinus carpio)
consisting of 141 progenies. The linkage map contained 11,983 distinct loci and
spanned 3,590.09 cM with an average locus interval of 0.33 cM. A total of 17 QTL for
the FCE trait were detected on four LGs (LG9, LG20, LG28, and LG32), explaining
8.9–15.9% of the phenotypic variations. One major cluster containing eight QTL (qFCE1-
28, qFCE2-28, qFCE3-28, qFCE4-28, qFCE5-28, qFCE6-28, qFCE7-28, and qFCE8-28)
was detected on LG28. Two clusters consisting of four QTL (qFCE1-32, qFCE2-32,
qFCE3-32, and qFCE4-32) and three QTL (qFCE1-20, qFCE2-20, and qFCE3-20) were
detected on LG32 and LG20, respectively. Nine candidate genes (ACACA, SCAF4,
SLC2A5, TNMD, PCDH1, FOXO, AGO1, FFAR3, and ARID1A) underlying the feed
efficiency trait were also identified, the biological functions of which may be involved in
lipid metabolism, carbohydrate metabolism, energy deposition, fat accumulation,
digestion, growth regulation, and cell proliferation and differentiation according to GO
(Gene Ontology). As an important tool, high-density and high-resolution genetic linkage
maps play a crucial role in the QTL fine mapping of economically important traits. Our novel
findings provided new insights that elucidate the genetic basis and molecular mechanism
of feed efficiency and the subsequent marker-assisted selection breeding in
common carp.
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INTRODUCTION

Aquatic products are an important source of nutrition for people
around the world, especially in food-deficient countries
(Easterling, 2007; Rice and Garcia, 2011). The long-term
challenge for aquaculture breeders is to improve the yield-
related traits in fish to meet the growing demand for fish
products while minimizing their impact on the environment
(Wringe et al., 2010; Laghari et al., 2013). As feed cost
comprises about 65–75% of the total production cost in most
aquaculture industries, an effective way to solve this problem is to
breed fish with high feed conversion efficiency (FCE) (Gjedrem
and Baranski, 2009). Generally, feed conversion efficiency is
defined as the ratio of feed intake to weight gain in animals
(Sherman et al., 2009; Ferreira et al., 2016). Similar to most yield-
related traits, FCE is a heritable trait controlled by a series of
genes, the environment, and their interactions, which has been
confirmed in livestock, poultry, and fish (Herd et al., 2003; Cai
et al., 2008; Begli et al., 2016; Lu et al., 2017; Fu et al., 2020; Miao
et al., 2021). So, the aim of improvement in FCE could be
achieved by breeding to select genetically superior animals.

Globally, as one of the most important fishes, common carp
(Cyprinus carpio) is cultured in over 100 countries worldwide
with over 4 million metric tons of global annual production
(Bostock et al., 2010; http://www.fao.org/fishery/statistics/global-
aquaculture-production/query/en). Because of the economic
importance of common carp for the aquaculture industry, over
the past decades, researchers have developed a variety of genomic
resources and genetic tools to facilitate genetic improvement and
breeding programs (Sun and Liang, 2004; Christoffels et al., 2006;
Williams et al., 2008; Xu P. et al., 2014). Especially, the
completion of genome sequencing of Songpu mirror carp and
subsequent development of a 250,000 high-quality SNPs array
chip which provides favorable tools for ultra-high density linkage
map construction (Xu J. et al., 2014; Xu P. et al., 2014; Xu et al.,
2019).

High-quality genetic linkage maps are essential tools for
quantitative trait loci (QTL) mapping. In past decades, a
number of linkage genetic map had been constructed and
QTL mapping for many traits in the fish have been studied
(Yue, 2014; Ashton et al., 2017). Common carp genetic
researchers have also constructed a number of linkage maps in
common carp based on different mapping families using SSR and
SNP markers in recent two decades. These linkage maps have
been widely used for QTL mapping of many economically
important traits in common carp. Such as growth-related
traits, disease resistance, meat quality, sex-determination traits,
and so on have been successfully mapped (Jun Wang, 2012;
Laghari et al., 2013; Kuang et al., 2015; Lv et al., 2016; Peng et al.,
2016; Zheng et al., 2016; Jia et al., 2020; Su et al., 2020).

It is obvious that genetic improvements for the efficiency of
feed utilization are important. So far, some DNA variants that
play a role in the feed efficiency of poultry and livestock have been
proposed by QTL mapping and association studies (Koning et al.,
2003; Barendse et al., 2007; Sherman et al., 2009; Do et al., 2014;
Mignon-Grasteau et al., 2015; Silva et al., 2019; Ye et al., 2020;
Delpuech et al., 2021). However, the feed intake of each

experimental individual is generally difficult to measure in
fish. So, only a few QTL analyses on FCE traits have been
conducted in fish and these QTL mapping studies may be
insufficient because of the relatively low power of linkage
analyses (Wang et al., 2012b; Lu et al., 2017; Barría et al.,
2021). Recently, with the aid of the high throughput SNP
genotyping array, an ultra-high density linkage map has
revealed many important findings related to growth-related
traits, sex dimorphism, and muscle quality traits in common
carp (Peng et al., 2016; Zheng et al., 2016).

In the present study, using a 250,000 SNPs chip, a high-density
linkage map with 28,416 SNP markers was constructed in a full-
sib family of common carp, which is the highest density genetic
linkage map for common carp so far. Using this map, we carried
out the QTL fine mapping for the FCE trait. The candidate genes
were also recognized from the genome regions of quatative trait
loci. Furthermore, the results of our analysis wil provide a basis
for genetically improving the feed efficiency of common carp in
the future.

MATERIALS AND METHODS

Mapping Family and Phenotypic
Measurements
Songpu mirror carp (SMC) is a strain derived from a European
subspecies (C. carpio) of common carp, which is one of the most
valuable fish species for freshwater breeding as well as one of the
species that is highly promoted to culture in China. An F1 full-sib
family of SMC was produced at the Hulan Aquaculture
Experimental Station of the Heilongjiang River Fisheries
Research Institute, Harbin, China. A large number of Songpu
mirror carp individuals (n � 500) were collected as brood fish, and
their genetic distances were estimated using polymorphic
microsatellite markers. Then a pair of female and male mature
fish with suitable genetic distance were used as the maternal
parent and the paternal parent to generate the experiment family
(F1) by artificial crossing. After hatching, approximately 3,000
offspring were raised in a pond under a standard feeding regime.
A total of 150 progeny were randomly collected from the
experimental population as the fish panel for feed conversion
tests after 60 days post-hatching. The fish were stocked
individually in a tank with a size of 90 cm × 85 cm × 70 cm in
a series of re-circulating aquarium systems. All conditions in
these tanks were regularly maintained throughout the
experiment, i.e., water temperature was 22°C and water flow
rate is 1 ms−1. The juveniles were fed solely by complete carp
extruded feed. Each experimental fish was equipped with a feed
box. The pallet feeds used in this experiment contain 34% crude
protein, 10% crude lipid, and 7% ash (Supplementary Table S1).
In order to eliminate potential differences and as much as
possible, we trained the experimental fish to adapt to the
culture environment and reared them individually in the re-
circulating aquarium tanks for 2 weeks before the feed conversion
trial. During the feed conversion trail, the experimental family
was fed three times (9:00, 13:00, and 17:00) a day. The feces in
each tank were siphoned out daily and the water was changed
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completely once a week. The residue of feed was siphoned out,
recorded, and deducted from the feed weight supplied each day to
acquire the accurate feed consumption of each fish.

Subsequent phenotypic measurements of feed conversion
efficiency were made. Phenotypic data of the FCE were
collected after 3 months of feeding trials. Briefly, we recorded
body weight (BW) at the beginning (initial BW, BWI) and the end
(final BW, BWF) of the feeding test. Total feed intake (FI) was
recorded as the difference between the beginning and final weight
of feed used during the test. Then, the FCE was calculated as the
BW gain after the experiment divided by total FI. Since the
phenotypically extreme or abnormal individuals were excluded
from the experiment trial according to the statistical analysis, a
total of 141 offspring was determined as the experimental sample
for linkage map construction and QTL analysis.

DNA Extraction and SNP Genotyping
Approximate 0.5 ml of blood from each sample was collected into
a tube containing EDTA. Genomic DNA was extracted from the
preserved blood using QIAamp DNA BloodMini Kit (Qiagen,
Shanghai, China) following the manufacturer’s protocol. A
NanoDrop-1000 spectrophotometer (Thermo Fisher Scientific,
United States) was used to determine the DNA concentration in
each sample and the integrity of DNA was checked by 1.5%
agarose gel electrophoresis. DNA samples used for genotyping
were diluted to 50 ng/ul and genotyped at GeneSeek (Lincoln,
Nebraska, United States) using the common carp 250K SNP array
(Xu J. et al., 2014). Affymetrix CEL files were analyzed using
Affymetrix Genotyping Console software (version 4.0) for quality
control and genotype calling. The CHP files generated from
Affymetrix Genotyping Console were then extracted and
converted to Ped/Map format for further analysis. SNPs were
removed if they had a missing genotype rate >1% and a minor
allele frequency (MAF) < 1%. SNPs retained were collected for
subsequent analysis.

Linkage Map Construction
Prior to map construction, Mendelian inheritance errors also
were checked by a chi-square test using the parameters of
segregation distortion (p < 0.001). Only the SNPs conforming
to Mendelian inheritance were used for further linkage analysis.
Then, the remaining markers through a series of quality control
procedures above were subjected to JoinMap for linkage map
construction. The double pseudo-test cross strategy was
employed for linkage analysis. SNPs were separated into three
segregation patterns: AAxAB or BBxAB (1:1 segregation only in
male parent), ABxAA or ABxBB (1:1 segregation only in female
parent), and ABxAB (1:2:1 segregation in both parents). The
linkage maps were constructed by using JoinMap 4.0 (Van
Ooijen, 2006) with “CP” type population, which is designed to
handle F1 population data containing various genotype
configurations. A threshold of 5.0 was set for assigning
markers into different linkage groups (LGs). The Kosambi
mapping function was used to estimate map distances in
centiMorgans (cM) through the maximum likelihood (ML)
algorithm. Graphical visualization of the linkage maps was
drawn by MapChart 2.2 software (Voorrips, 2002).

QTL Mapping and Annotation of Candidate
Genes
QTL mapping analysis was performed for the FCE trait using
software package MapQTL5.0 (Van Ooijen, 2004) with CIM
(composite interval mapping) and MQM (multiple QTL
model) mapping algorithms. A 1,000 permutation test was
used to determine the LOD score significance thresholds at a
95% confidence level. After the 1,000 permutation test, a LOD
threshold of 2.8–3.1 was set to identify significant QTL on each
linkage group. The phenotypic variance explained (PVE) was
estimated through stepwise regression (Li et al., 2007).

For each nearest SNP marker of QTL, we extracted candidate
genes at the SNP loci from the reference genome of common carp.
To annotate the functions of the FCE genes, we searched their
orthologs by blastx against eudicots non-redundant database with
an e-value threshold of 10−5. We also used Blast2GO (Conesa
et al., 2005) with default parameters to assign the Gene Ontology
(GO) to obtain more information of candidate genes that may be
related to feed efficiency based on the annotation information.

RESULTS

Phenotypic Data
Out of 150 experimental fish fed in individual tanks, 141 were
alive throughout the 3 months of the experiment and used for the
further phenotyped analysis of feed efficiency. The descriptive
statistics of the phenotypic measurements of feed efficiency used
for the present studies are given in Table 1. The panel had 26.52 ±
4.66 g mean initial body weight (BWI). The minimum and
maximum for the BWI were 15.65 and 42.85 g, respectively.
After the 3-month feeding trial, the average final body weight
(BWF) of the individuals reached 150.72 ± 44.06 g. Theminimum
andmaximum for the BWF were 42.99 and 271.52 g, respectively.
The total feed intake (FI) of the fish was between 67.1 and 324.3 g
with an average value of 200.1 ± 41.3 g. The deduced feed
conversion efficiency (FCE) of the 141 individuals ranged
from 40.8 to 89.4% with an average value of 60.8% (SD �
10.6%). The coefficient of variation (CV) of four traits ranged
from 0.17 to 0.29 (Table 1).

Selection of SNP Markers
The genotypic data of all 141 F1 offspring and their parents is
available. A total of 219,902 SNP markers were successfully
genotyped. According to the assessment of genotyping quality
and polymorphism in all samples from the mapping family, the

TABLE 1 | Descriptive statistics of phenotypic data.

Trait Minimum Maximum Mean ± SD CV

BWI (g) 15.65 42.85 26.52 ± 4.66 0.18
BWF (g) 42.99 271.52 150.72 ± 44.06 0.29
FCE (%) 40.8 89.4 60.8 ± 10.6 0.17
FI (g) 67.1 324.3 200.1 ± 41.3 0.21

FCE, feed conversion efficiency; BWI/BWF, initial/final body weight; FI, feed intake.
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genotypes of a total of 102,741 SNPs were exhibited polymorphic
among the mapping panel. After further filtration with more
stringent conditions to remove SNPs with low calling rate [SNPs
calling rate 99% and minor allele frequency (MAF) greater than
1%], a total of 35,505 SNP markers were retained for further
analysis. We selected 28,831 SNP markers based on segregation
distortion and non-Mendelian inheritance (p < 0.001) for further
linkage analysis and mapping (Table 2).

Linkage Map Construction
Among 28,831 SNPmarkers, 28,416 SNPs were mapped on 11,983
distinct positions in 50 linkage groups (Figure 1; Table 3;
Supplementary Table S2). A total of 98.6% of high-quality

SNPs markers could be successfully mapped. The remaining
415 markers were not mapped. The total map distance was
3,590.09 cM with an average value of 71.80 cM. The number of
markers on the linkage group varied from 213 (LG23) to 920
(LG45), and the average number of mapped markers per LG was
568 markers. The genetic length of each LG ranged from 53.48 cM
(LG37) to 159.93 cM (LG7) with an average length of 71.80 cM.
The average locus intervals varied from 0.14 cM in LG31 to
0.58 cM in LG7. The overall average marker interval was
0.33 cM. Based on the method described by Chakravarti et al.
(1991), the expected genome length was estimated to be
3,623.71 cM. So, the percentage of the genome covered by the
linkagemap was calculated to be 99.07%. Detailed information and
characteristics of this high-density genetic map were summarized
in Table 3. As shown in Figure 2, the SNP distribution on each
linkage group was also examined, which illustrated an even
distribution of SNP markers on each linkage group with some
exceptions at the middle and terminal regions of LGs.

QTL Mapping
The profiles and characteristics of the QTL associated with FCE
are presented in Table 4; Figures 3, 4. A total of 17 significant
QTL regions were mapped onto four LGs using composite

TABLE 2 | SNPs selected for linkage mapping.

Item Number

SNPs on array 24,9913
SNPs successful genotyped 219,902
Polymorphic SNPs 102,741
SNPs with high genotyping quality 35,505
SNPs used for linkage mapping after further filtering 28,831
SNPs mapped to linkage map 28,416

FIGURE 1 | The high-density linkage genetic map for mirror carp.
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interval mapping (CIM) and multiple QTL models (MQM) in
MapQTL 5.0 program. The LOD significance thresholds for the
FCE ranged from 2.8 to 3.1 based on the permutation test results.
The phenotypic variances explained by each QTL (R2) were
estimated by CIM. As shown in Table 3, these regions include
51 SNP loci, distributed on four LGs including LG9, LG20, LG28,
and LG32 and having an effect of 8.9–15.9% phenotypic variance
explained (PVE). Most of these QTL were clustered together on
their respective LGs. One major cluster containing eight QTL
(qFCE1-28, qFCE2-28, qFCE3-28, qFCE4-28, qFCE5-28, qFCE6-

28, qFCE7-28, and qFCE8-28) was detected between the narrow
position of 37.07–44.78 cM on LG28, accounting for 9.5–10.6%
PVE. Among them, qFCE8-28 located at 44.52–44.78 cM had the
highest LOD value (3.44) and correspondingly had the highest
contribution to phenotypic variation (10.6%). On LG32, a cluster
situated within a region (15.07–32.64 cM) consisted of four QTL
(qFCE1-32, qFCE2-32, qFCE3-32, and qFCE4-32) with a LOD
value of 3.04–3.49 and was able to explain 9.5–12.1% of the PVE.
The most significant QTL qFCE2-32 located on LG32 at
16.29–20.45 cM presented the highest LOD value of 3.49,

TABLE 3 | Summary of the linkage map of the mirror carp.

LG No. of SNPs Distinct positions Genetic length (cM) Locus interval (cM)

1 444 153 63.14 0.41
2 726 279 83.48 0.30
3 703 296 68.48 0.23
4 489 157 89.21 0.57
5 417 154 74.39 0.48
6 647 206 68.51 0.33
7 730 276 159.93 0.58
8 439 164 67.22 0.41
9 291 137 70.76 0.52
10 691 274 86.61 0.32
11 817 308 57.75 0.19
12 791 337 80.55 0.24
13 382 207 98.09 0.47
14 758 305 71.76 0.24
15 467 186 60.74 0.33
16 582 254 79.46 0.31
17 457 200 61.54 0.31
18 873 414 77.04 0.19
19 437 199 73.42 0.37
20 507 198 106.16 0.54
21 735 250 73.06 0.29
22 865 308 57.33 0.19
23 213 108 59.75 0.55
24 847 388 60.14 0.16
25 645 235 62.38 0.27
26 430 189 74.39 0.39
27 361 150 61.11 0.41
28 583 260 63.05 0.24
29 521 198 71.75 0.36
30 714 286 64.56 0.23
31 858 438 59.99 0.14
32 525 242 70.72 0.29
33 862 386 71.56 0.19
34 288 160 76.03 0.48
35 576 302 74.21 0.25
36 572 258 68.84 0.27
37 691 333 53.48 0.16
38 436 196 61.66 0.31
39 403 193 71.10 0.37
40 572 282 68.58 0.24
41 745 323 59.80 0.19
42 722 254 77.35 0.30
43 450 177 68.35 0.39
44 515 209 60.55 0.29
45 920 391 68.53 0.18
46 302 138 55.27 0.40
47 384 227 72.26 0.32
48 314 126 63.22 0.50
49 378 136 76.37 0.56
50 341 136 66.49 0.49
Total 28,416 11,983 3,590.09 0.33
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explaining 12.1% of the total PVE. Three QTL on LG20 (qFCE1-
20, qFCE2-20, and qFCE3-20) consisted of a cluster located on
39.41–51.37 cM regions with LOD values of 2.85–2.96, and
contributions to PVE of 8.9–9.2%. Two QTL (qFCE1-9 and

qFCE2-9) on LG9 were detected at positions 15.81–27.08 and
32.32–38.81 cM, with LOD values of 3.20 and 3.11. The QTL
qFCE2-9 located at LG9 at 32.32–38.81 cM explained the highest
percentage of the total PVE of 15.9%.

FIGURE 2 | The patterns of marker distribution on each linkage group. The X-axis represents marker orders on each linkage group. The Y-axis represents SNP
marker position (cM) or each linkage group.
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Candidate Gene Identification
To further identify potential causative genes, we screened the
genome and collected protein-coding genes at the nearest SNP
loci from each QTL. A total of nine genes associated with feed

conversion efficiency in nine QTL were identified (Table 5).
These candidate protein-coding genes were annotated by GO.We
identified a gene, acetyl-CoA carboxylase alpha (ACACA), from
the qFCE1-9 on LG9. We also identified two genes, SR-related

TABLE 4 | Analysis of QTL and estimation of genetic effects.

Linkage
group

QTL name Marker
interval

Marker
interval
(CM)

Linkage
group
size
(CM)

LOD Permutation* PVE
%

Nearest
maker

LG9 qFCE1-9 snp108444-
snp022617

15.81–27.08 70.76 3.20 3.1 12.9 snp204986

LG9 qFCE2-9 snp105119-
snp098735

32.32–38.81 70.76 3.11 3.1 15.9 snp057963

LG20 qFCE1-20 snp049074-
snp067360

39.41–41.65 106.16 2.91 2.8 9.1 snp221731

LG20 qFCE2-20 snp041990-
snp145914

41.81–42.35 106.16 2.85 2.8 8.9 snp145912

LG20 qFCE3-20 snp145904-
snp146285

49.45–51.37 106.16 2.96 2.8 9.2 snp145909

LG28 qFCE1-28 snp247225-
snp164238

37.07–37.90 63.05 3.38 3.0 10.4 snp247112

LG28 qFCE2-28 snp060450-
snp164244

38.03–38.19 63.05 3.26 3.0 10.1 snp060453

LG28 qFCE3-28 snp050416-
snp173574

38.56–39.20 63.05 3.12 3.0 9.7 snp247094

LG28 qFCE4-28 snp094907-
snp190172

39.67–40.04 63.05 3.13 3.0 9.7 snp094899

LG28 qFCE5-28 snp105167-
snp204381

42.27–42.67 63.05 3.05 3.0 9.7 snp137852

LG28 qFCE6-28 snp025842-
snp168930

43.09–43.28 63.05 3.28 3.0 10.2 snp164078

LG28 qFCE7-28 snp031019-
snp123627

43.46–43.86 63.05 3.05 3.0 9.5 snp173520

LG28 qFCE8-28 snp006951-
snp008550

44.52–44.78 63.05 3.44 3.0 10.6 snp171092

LG32 qFCE1-32 snp076503-
snp004530

15.07–16.29 70.72 3.40 3.0 11.0 snp004531

LG32 qFCE2-32 snp004530-
snp066978

16.29–20.45 70.72 3.49 3.0 12.1 snp004486

LG32 qFCE3-32 snp066980-
snp157023

21.35–23.59 70.72 3.04 3.0 9.5 snp157021

LG32 qFCE4-32 snp189518-
snp085154

31.09–32.64 70.72 3.13 3.0 9.8 snp193531

*Represents the chromosome-wide significance LOD, threshold at p < 0.05.

FIGURE 3 | QTL mapping and significant regions were identified for FCE in common carp.
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CTD-associated factor 4 (SCAF4) and solute carrier family 2
member 5 (SLC2A5), from the qFCE2-20 and qFCE3-20 on
LG20, respectively. On LG28, we identified three genes at
three QTL. At the qFCE1-28, we identified a tenomodulin
(TNMD) gene of which it has been reported that its
polymorphisms were associated with adiposity and also with
glucose metabolism in men (Tolppanen et al., 2007). We
further identified a gene, protocadherin 1 (PCDH1), at the
qFCE3-28. We also recognized a forkhead box O (FOXO)
gene from the qFCE8-28. This gene encodes a protein that is
regulated by factors involved in growth and differentiation
indicating it plays a role in these processes (Wang et al., 2009;
Zhu et al., 2010; Huo et al., 2014; Watamoto et al., 2019). We also
identified three genes, argonaute RISC component 1 (AGO1),

free fatty acid receptor 3-like (FFAR3), and AT rich interactive
domain 1A (ARID1A) at qFCE1-32, QTL qFCE2-32, and qFCE3-
32 on LG32, respectively.

DISCUSION

In past decades, fish-breeding methodologies have developed
from traditional selection to modern biotechnologies, such as
marker-assisted selection (MAS) and molecular breeding (Yue,
2014; Tong and Sun, 2015; Ashton et al., 2017).
Implementation of MAS requires DNA markers that are
tightly linked to traits of interest by means of QTL mapping
or association analysis (Lande and Thompson, 1990; Rezende

FIGURE 4 | LOD curves for QTLs contributing to FCE. The X-axis indicates marker distance and the Y-axis represents the LOD with the dashed line indicating the
threshold value of permutation.

TABLE 5 | Summary of candidate genes for FCE trait in mirror carp.

QTL
name

Chr Associated
SNPs

SNP
location (bp)

Carp gene Id Gene location (bp) Gene
name

Annotation

From To

qFCE1-9 LG9 snp108444 22,188,096 CAFS_CommonC_G_091,796 22,185,301 22,207,580 ACACA Acetyl-CoA carboxylase alpha
qFCE2-20 LG20 snp145912 13,067,352 CAFS_CommonC_G_057,517 13,064,285 13,078,405 SCAF4 SR-related CTD-associated

factor 4
qFCE3-20 LG20 snp145909 14,807,639 CAFS_CommonC_G_057,228 14,795,909 14,807,894 SLC2A5 Solute carrier family 2

member 5
qFCE1-28 LG28 snp247112 10,256,532 CAFS_CommonC_G_063,176 10,254,148 10,297,988 TNMD Tenomodulin
qFCE7-28 LG28 snp173520 10,000,245 CAFS_CommonC_G_062,723 9,998,381 10,015,209 PCDH1 Protocadherin 1
qFCE8-28 LG28 snp171092 2,535,708 CAFS_CommonC_G_062,559 2,533,722 2,542,477 FOXO Forkhead box O
qFCE1-32 290 snp004531 562,238 CAFS_CommonC_G_004,026 560,784 589,106 AGO1 Argonaute RISC component 1
qFCE2-32 290 snp004486 372,623 CAFS_CommonC_G_004,020 370,723 376,820 FFAR3 Free fatty acid receptor 3-like
qFCE3-32 LG32 snp157021 20,092,699 CAFS_CommonC_G_068,410 20,081,844 20,104,892 ARID1A AT rich interactive domain 1A

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7784878

Zhang et al. Genetic Linkage Map and QTL Mapping

https://www.ncbi.nlm.nih.gov/gene/26523
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


et al., 2012). Most economically important traits in fish, such as
growth, disease resistance, and sex are controlled by multiple
genes known as QTL. Most of these QTL have minor effects,
but several pyramided may have major effects on traits (Tong
and Sun, 2015). Theoretically, if genes and genetic markers
associated with traits of interest are identified, the genetic
variants could be used as tools in MAS analyses (Tong and Sun,
2015).

Considering common carp as a traditional cultivated species
and commercial value, it has always been an important mission
for breeders to cultivate new varieties with better characters. Up
to now, QTL studies in common carp have covered a wide range
of traits including growth, cold tolerance, meat quality, muscle
fiber-related, sex determination, etc (Sun and Liang, 2004; Zhang
et al., 2011; Laghari et al., 2013; Peng et al., 2016; Zheng et al.,
2016). Compared to other economic traits, QTL analyses for FCE
traits in aquaculture fish are rarely reported due to the difficulty to
measure the phenotypes for these traits (Lu et al., 2017; Pang
et al., 2017; Pang et al., 2018). So, it is expected that more genetics
studies on FCE traits will be considered so that molecular
breeding strategies for these traits would be developed. In this
study, we constructed a high-density and high-resolution genetic
linkage map for Songpu mirror carp and performed the first fine-
scale QTL mapping for FCE. A group of closely linked markers
and potential candidate genes were identified, which open new
opportunities for MAS implementation, which can ultimately
accelerate breeding mirror carp for high feed conversion
efficiency.

Ultra-High Density Genetic Map for Mirror
Carp
It is well known that the separation type of mapping population
directly affects the efficiency of linkage map construction (Wei
et al., 2019). The commonly used mapping families for the
construction of linkage genetic maps include F2 and backcross
(BC) families, double haploid (DH), and recombinant inbred
lines (RIL). However, it is a big challenge to construct DH or RIL
families in most teleost fish, and the constructions of F2 and BC
families usually take a relatively long time (Peng et al., 2016). The
F1 progeny displays many different types of segregation. So,
Grattapaglia and Sederoff proposed using the F1 family as the
mapping panel with a double pseudo-testcross strategy which has
been successfully applied to genetic linkage map construction in
many aquaculture species (Grattapaglia and Sederoff, 1994; Wu
et al., 2010; Song et al., 2012; Peng et al., 2016). In this study, the
parents of the F1 population were derived from the cultured
families of mirror carp at the Hulan station of the Heilongjiang
Fisheries Research Institute of the Chinese Academy of Fishery
Sciences, and the genetic distances among these fish were
estimated using a panel of polymorphic microsatellite markers.
A male and a female mature fish (F0) which showed a relatively
high genetic distance were used to generate an experimental
family (F1) by artificial crossing. Therefore, the mapping
family used in this study with a double pseudo-testcross
strategy was suitable for the construction of a genetic
linkage map.

Obviously, a high-quality genetic map is an essential tool for
QTL mapping with high efficiency and accuracy. However, a
limited number of traditional markers make it difficult to cover
the whole genome (Wen et al., 2020). The SNPmarker is the most
abundant and polymorphic marker in the genome which is very
suitable for high-density linkage map construction. As an
effective way, the second-generation sequencing technology
makes it possible to obtain a sufficient number of SNP
markers for linkage map construction in a short time.
However, the call rate and genotyping accuracy of SNPs are
critically important for the construction of a high-quality linkage
map, as it is well known that missing data and genotyping errors
would lead to incorrect map orders (Hackett and Broadfoot,
2003).

Compared with other SNP genotyping approaches, Affymetrix
Axiom SNP genotyping platform has become an effective
solution for large-scale SNP genotyping as it has higher call
rates (>99%) and higher accuracy and has been successfully
applied to the construction of the linkage map and QTL
analysis of multiple species (Andreas et al., 2013; Sushma
et al., 2016; Higgins et al., 2018; Gong et al., 2019; You et al.,
2019). Recently, two high-density genetic linkage maps have been
constructed based on Affymetrix Axiom SNP genotyping data for
channel catfish (Ictalurus punctatus) and Yellow River carp (C.
carpio), presenting the highest density linkage maps in
aquaculture species (Li et al., 2015; Peng, et al., 2016). In this
study, we also chose the same high-throughput SNP genotyping
platform for SNP genotyping and constructed a high-density and
high-accurate linkage genetic map for mirror carp. In order to get
high-quality makers, we used more stringent data filtering
(missing value < 1%) than the former studies of high-density
linkage map construction. As a result, a total of 28,416 high-
quality SNP markers were successfully mapped. The genetic map
covered 99.07% of the genome with a density of 0.33 cM average
distance, which demonstrates its power in the detection of
potential QTL associated with FCE in mirror carp at a fine scale.

QTL Analysis and Candidate Genes
Most economically important traits of fish such as growth, disease
resistance, and flesh quality are controlled by multiple genes,
environmental factors, and their interactions (Song et al., 2012;
Shao et al., 2015; Peng et al., 2016; Zheng et al., 2016). Phenotypic
variation of these traits is thought to be caused by quantitative
genetic variation that results from the segregation of alleles at
multiple quantitative trait loci (QTL) (Mackay et al., 2009; Zhang
et al., 2021). The purpose of QTL mapping is to understand the
number and effect of genes that determine traits and to assist in
the selection of breeding to accelerate the genetic improvement of
important traits (Doerge, 2002; Naish and Hard 2008).

A number of studies looking for genetic mechanisms affecting
feed efficiency, which involved numerous biological processes
and functional pathways in livestock and poultry, have been
reported using different methods (Sherman et al., 2009; Do et al.,
2014; Ferreira et al., 2016; Silva et al., 2019; Li et al., 2020; Li et al.,
2021). Compared to the livestock and poultry, it has been a
challenge to map loci associated with feed efficiency because the
phenotypic value of each individual is generally difficult to obtain
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in aquaculture species (Lu et al., 2017; Pang et al., 2017). To date,
only a few QTL analyses associated with feed conversion
efficiency have been reported in aquaculture species.
Preliminary QTL results about FCE in fish are from Liu’s
study, which used AFLP markers to construct a catfish genetic
map and found a QTL associated with FCE (Liu, 2001).
Zimmerman et al. revealed three QTL for the number of
pyloric caeca in three LGs of rainbow trout, and this is an
important index associated with FCE (Zimmerman et al.,
2005; Tong and Sun, 2015). Recently, Lu et al. performed the
QTLmapping of feed conversion rate (FCR) in mirror carp based
on twomapping panels consisting of 92 and 68 samples and using
507 and 307 markers, respectively. As a result, 18 QTL affecting
FCR were detected in two datasets (Lu et al., 2017). Pang et al.
constructed a high-resolution genetic linkage map in a full-sib F1
family of crucian carp (Carassius auratus) consisting of 113
progenies with 8,460 SNP markers. Eight FCE-related QTL
and seven candidate genes involved in energy metabolism,
digestion, biosynthesis, etc were detected (Pang et al., 2017).
Although QTL about feed efficiency traits in common carp have
been reported, not all of the genetic variants of the traits have
been captured as the sample size of the mapping populations and
the number of markers used were relatively small. QTL mapping
has a large positioning range and there are too many genes in the
location range. So the candidate genes were difficult to be
determined. Historically, in the absence of high throughput
genotyping data, it was difficult to perform QTL fine
mappings and candidate gene identification. In this study, we
were able to take advantage of the common carp 250K SNP
genotyping array and construct an ultra-high density linkage map
for mirror carp, providing new insights into the FCE trait and
related genes. In the present investigation, a total of 17 QTL
associated with FCE were mapped on four linkage groups,
explaining 8.9–15.9% of the PVE, and nine candidate genes
related to FCE involved in multiple biological processes were
identified in common carp.

Feed conversion efficiency is a complex trait, which involves
many physiological processes such as feeding, digestion,
biosynthesis, metabolism, and so on, and is driven by a series
of biological pathways. In our study, nine candidate genes
associated with FCE were identified in common carp. Among
these genes, ACACA has been reported as a part of a single
multifunctional polypeptide in eukaryotes, and plays a critical
role in the metabolism of fatty acid biosynthesis (Abu-Elheiga
et al., 1995). ACACA is a biotin-containing enzyme that catalyzes
the carboxylation of acetyl-CoA to malonyl-CoA, the rate-
limiting step in fatty acid synthesis (Brusselmans et al., 2005).
ACACAmay induce dysregulation of lipid metabolism in human
and mouse is known to result in metabolic diseases, such as
obesity and diabetes (Wakil and Abu-Elheiga, 2009), it may also
result in severe metabolic disorders in lactating cows (Loor et al.,
2007). Therefore, we speculated that ACACA may be directly
associated with fat metabolism and may subsequently affect FCE
in common carp. The protein encod SCAF4 containing a domain,
which found in hepatocyte growth factor-regulated tyrosine
kinase substrate (Hrs), plays a critical role in the recycling and
involved in endocytic trafficking (Li et al., 2002; Lea et al., 2019).

So, we consider that its molecular function may be related to the
growth of common carp, and may have a specific function related
to FCE. SLC2A5 has been reported as a facilitated glucose/
fructose transmembrane transport which is the key solute
carrier in the carbohydrate metabolic process of glucose and
gluconeogenesis (Berghe, 1996). It takes part in carbohydrate
digestion and absorption and leads to a significantly enhanced
rate of triglyceride synthesis. SLC2A5 is also responsible for
fructose uptake by the small intestine in mammals (Wu et al.,
2009; Nomura et al., 2016). High expression of SLC2A5 in the
small intestine in rats or mice leads to increased fructose
absorption (Wright et al., 2007). A recent study showed that a
higher expression level of SLC2A5 was related to higher feed
conversion efficiency-related traits (Diniz et al., 2020). Hence, we
suggested that this gene was associated with food digestion,
carbohydrate metabolic processing, and further influences on
FCE in common carp. TNMD expression is highly affected by
obesity, adipose tissue location, and weight loss in human adipose
tissue, indicating that TNMD may play a role in adipose tissue
function (Saiki et al., 2009). Therefore, we suggested that it may
be associated with FCE by intervening in influence energy
deposition and fat accumulation in common carp. The protein
encoded by this gene has a domain associated with the catalytic
domain of sugar utilizing enzymes, including maltooligosyl
trehalose synthase, glycogen branching enzyme, glycogen
debranching enzyme, isoamylase, etc, which endows PCDH1
with the capability to play several functions in different
pathways (Aron et al., 2017). So, we suggested that it takes
part in digestion and absorption and might be related to feed
efficiency in common carp. FOXO is also involved in lipid
metabolism and has been reported as one of the important
candidate genes associated with obesity and body mass in
human (Kim et al., 2006). The mRNA levels of FOXO
isoforms in rat livers were altered in response to fasting and
re-feeding, which suggests that the genes respond differently to
nutritional and hormonal factors (Imae et al., 2003). Hence, we
suggested that FOXO was associated with fat accumulation and
growth in common carp. AGO1 encodes a member of the
argonaute family of proteins which can affect cell proliferation,
motility, and apoptosis in human (Parisi et al., 2011). Tang et al.
(2020) report that AGO1 participates in a mechanism that
controls adipose tissues, insulin sensitivity, and whole-body
metabolic state. They found that when challenged with an
obesity-inducing high-fat high-sucrose (HFHS) diet, AGO1-
knockout mice displayed significantly lower body weight gain
and lower body fat, improved insulin sensitivity, and enhanced
energy expenditure. In human donors with obesity or type 2
diabetes mellitus, AGO1 is expressed at higher levels than in
healthy controls, which also supports the role of this pathway
(Tang et al., 2020). So, we indicate it is also possibly associated
with digestive andmetabolic functions in common carp. FFAR3 is
a G protein-coupled receptor that is activated by a major product
of dietary fiber digestion, the short-chain fatty acids (SCFAs),
which are an essential energy source and signaling molecules that
regulate various cellular processes and physiological functions
(Stoddart et al., 2008; Zaibi et al., 2010). Recent studies have
shown that these receptors are involved in the lipid metabolism in
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various tissues and play an important role in the absorption of
nutrients in animal intestine (Hara et al., 2013; Ichimura et al.,
2014; Lu et al., 2015; Meza-Cuenca et al., 2018). Therefore, FFAR3
may be a promising candidate gene for FCE in common carp, and
further functional approaches are necessary to validate. ARID1A
has been reported to affect cholesterol synthesis as well as
glycogen metabolism-related proteins levels in human and
could play a significant role to help cell proliferation and
inhibit cell apoptosis (Flores-Alcantar et al., 2011; Bosse et al.,
2013; Goldman et al., 2016). ARID1A deletion in isolated
hepatocytes directly leads to free fatty acid-induced lipid
accumulation and insulin resistance in mice. These findings
reveal a new mechanism underlying the role of ARID1A in
glucose and lipid metabolism (Qu et al., 2019). ARID1A has
also been reported to have a positive correlation of expression
with the bodymass trait in human (Keildson et al., 2014; Giri et al.
, 2018). Thus, we speculate that ARID1A plays similar roles in
regulating lipid accumulation and body mass in common carp.

Obviously, the QTL and genes detected in this study need to be
further verified for their functional relatedness to FCE in the
future. These novel findings would be used for future genetic and
genomic researches of FCE traits, thereafter providing essential
markers of MAS breeding for the potential improvement of feed
efficiency in mirror carp.

CONCLUSION

In conclusion, taking advantage of the common carp 250K SNP
genotyping array, high throughput genotyping data were
accurately and efficiently collected from a mirror carp
mapping family and used to construct a high-density, high-
resolution genetic linkage map for mirror carp. This map
processes the highest marker density among all the
constructed genetic maps in mirror carp. Based on this
valuable genetic map, fine-scale QTL mapping of FCE was
performed and candidate functional genes were also identified.
These candidate genes were identified as functionally related to
lipid metabolism, carbohydrate metabolism, energy deposition,
fat accumulation, digestion, regulating growth, and cell
proliferation and differentiation. The present high-density
genetic map and mapping results provide a basis for further
genetic research of feed conversion efficiency and facilitate future

MAS breeding for the feed conversion efficiency trait in common
carp.1
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