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BCL11A is a triple-negative breast cancer gene with
critical functions in stem and progenitor cells
Walid T. Khaled1,2,*, Song Choon Lee1,*, John Stingl3, Xiongfeng Chen4, H. Raza Ali3,5, Oscar M. Rueda3,

Fazal Hadi2, Juexuan Wang1, Yong Yu1, Suet-Feung Chin3, Mike Stratton1, Andy Futreal1, Nancy A. Jenkins6,

Sam Aparicio7, Neal G. Copeland6, Christine J. Watson8, Carlos Caldas3,5,9 & Pentao Liu1

Triple-negative breast cancer (TNBC) has poor prognostic outcome compared with other

types of breast cancer. The molecular and cellular mechanisms underlying TNBC pathology

are not fully understood. Here, we report that the transcription factor BCL11A is overexpressed

in TNBC including basal-like breast cancer (BLBC) and that its genomic locus is amplified in

up to 38% of BLBC tumours. Exogenous BCL11A overexpression promotes tumour formation,

whereas its knockdown in TNBC cell lines suppresses their tumourigenic potential in

xenograft models. In the DMBA-induced tumour model, Bcl11a deletion substantially

decreases tumour formation, even in p53-null cells and inactivation of Bcl11a in established

tumours causes their regression. At the cellular level, Bcl11a deletion causes a reduction in the

number of mammary epithelial stem and progenitor cells. Thus, BCL11A has an important role

in TNBC and normal mammary epithelial cells. This study highlights the importance of further

investigation of BCL11A in TNBC-targeted therapies.
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O
ne of the major challenges in treating breast cancer is the
heterogeneous nature of the disease1. TNBC accounts for
around 15% of all breast cancer cases and in the absence

of effective targeted therapies, TNBC patients tend to have a poor
prognosis2–4. At the molecular level, several distinct subtypes of
breast cancer have been identified based on the gene expression
profiling3,5,6. The most commonly used classification describes
six subtypes: luminal A, luminal B, Her2, claudin low, basal-like
breast cancer (BLBC) and normal3,6. More recently, analysis of
large numbers of tumour samples as part of the METABRIC
study identified 10 pathologically distinct subtypes known as
integrative cluster (IC) 1–10 (ref. 5). The majority of TNBC cases
(80%) have a BLBC7 or IC10 (ref. 5) gene expression signatures.
In addition, cancer sequencing studies have identified mutations
of p53, PTEN and BRCA1 in TNBC2,4,8,9. However, driver
oncogenic genomic aberrations in TNBC have not been
comprehensively identified.

The developmental hierarchies of the mammary epithelium
and hematopoietic lineages share many similarities10 in that stem
cells progressively give rise to lineage-restricted progenitors,
which ultimately differentiate and generate all functional cells.
A number of key hematopoiesis transcription factors have
important roles in mouse mammary gland development and
are human breast cancer genes11–15. For example, the key
regulator of T-helper-2 cell development, GATA3, is critical in
luminal mammary cell development12,13 and is a luminal breast
cancer marker gene16. In this study we interrogated cancer
genomics data focusing on a subset of important hematopoiesis
factors and identified BCL11A as a novel TNBC oncogene.

Results
BCL11A is highly expressed in triple-negative breast cancer. In
an attempt to identify potential TNBC oncogenes, we selected a
list of genes known to have important roles in hematopoiesis
and investigated their expression across the major molecular

subtypes of breast cancer3. We first re-analysed a publically
available microarray data set6 and found that out of the
examined genes, BCL11A was differentially and highly
expressed in BLBC (Supplementary Fig. 1a). This is in sharp
contrast to GATA3, which is highly expressed only in luminal
subtypes (Supplementary Fig. 1a) and is a known prognostic
marker for these tumours 16.

We then investigated the expression of BCL11A in other
patient data sets including METABRIC5 and TCGA8, which
between them have curated gene expression, copy number (CN)
variation and clinical data from close to 3,000 patients5.
Pathologically, we found that high BCL11A expression
significantly correlated with TNBC pathology (Fig. 1a). At the
molecular level, high BCL11A expression was also found to
significantly correlate with the BLBC subtype in the METABRIC,
TCGA and six other microarray data sets (Fig. 1b and
Supplementary Fig. 1b). Quantitative reverse transcription PCR
(qRT–PCR) analysis of BCL11A expression on a randomly
selected subset of METABRIC tumours (all subtypes, n¼ 230)
validated the above expression data (Supplementary Fig. 2a). In
addition, we also found that high BCL11A expression in
METABRIC samples correlated with the recently described
IC10 cluster of tumours (Fig. 1c), thus further supporting the
concordance between the BLBC and IC10 classifications.
Consistent with TNBC cases, high BCL11A expression
was significantly correlated with a high histological grade
(Supplementary Fig. 2b).

Furthermore, high BCL11A expression in BLBC cases was
further validated by immunohistochemistry (IHC) on a subset of
the METABRIC tumours (all subtypes, n¼ 368. BLBC, n¼ 24).
Strong BCL11A immunostaining was predominantly found in
BLBC (Fig. 2a). Out of 24 BLBC samples examined from this
subset, 16 scored positive for BCL11A (Fig. 2a; details in
Methods). In addition, samples stained positively in IHC also
had higher RNA levels compared with those scored as negative
(Supplementary Fig. 2c).
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Figure 1 | BCL11A is highly expressed in TNBC. (a) Significant correlation between BCL11A expression and the TNBC type of breast cancer in both
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One mechanism for the induction of high BCL11A expression
in BLBC cases could be CN aberrations. From B2,000
breast cancer cases in METABRIC5, CN gains at the BCL11A
genomic locus were identified in 62 patients (Supplementary
Fig. 3a), which also correlates with high BCL11A expression
(Supplementary Fig. 3b). Importantly, out of these 62 patients
with CN gains, 39 were classified as BLBC, which account
for 18.6% (39/210) of the total BLBC cases in METABRIC
(Fig. 2b). Examination of the TCGA data set revealed that 38%
(31/81) of BLBC samples have BCL11A CN gains, which is
again significantly correlated with higher gene expression (Fig. 2c
and Supplementary Fig. 3c). A similar result was also found
when the METABRIC data was analysed using the integrative
clustering, with 15.6% of IC10 samples having BCL11A CN
gains (Fig. 2d).

Further analysis of the TGCA data set revealed that in BLBCs,
the BCL11A locus is almost exclusively hypomethylated and this
is correlated with high expression levels (Fig. 2e). There was also
no correlation between BCL11A CNs and the methylation status.
This result suggests that epigenetic changes at the BCL11A locus
could be another mechanism that contributes to its high
expression in BLBC. Given the strong correlation with TNBC,
patients with either high expression or CN gains of BCL11A
had poor survival rates compared with the rest of the cohort
(Fig. 2f, g). A similar trend was also observed in four other patient
data sets17–20 (Supplementary Fig. 3 f-i). In particular, patients
with CN gains of BCL11A had a higher rate of relapse and
metastasis and a lower rate of survival (Supplementary Fig. 3d-e).
The utility of BCL11A expression/CN as a biomarker in the clinic
thus warrants further investigation. Indeed, the future release of
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patient outcome for the complete TCGA cohort will aid in
clarifying this finding.

High levels of BCL11A promote tumour development.
Although BCL11A is involved in rare B-cell lymphomas and is
able to transform fibroblast cells in vitro21,22, the cellular and
molecular mechanisms of BCL11A-mediated tumourigenesis
remains unclear. To address this, we first tested whether
BCL11A overexpression could promote the colony formation or
tumour development in mammary epithelial cells. We over-
expressed BCL11A in immortalized non-tumourigenic mouse
EpH4 (ref. 23) or human HMLE24,25 cells (Supplementary Fig. 4a)
and performed Matrigel and suspension mammosphere assays.
Forced BCL11A expression in both EpH4 and HMLE (EpH4-11A
and HMLE-11A) cells resulted in double the number of spheres
compared with their respective control cells (Fig. 3a-b).
Furthermore, mouse EpH4-11A cells injected orthotopically in
cleared mammary fat pads of immune-compromized NOD/SCID/
IL2rg� /� (NSG) mice26 formed larger and palpable tumours
compared with control cells (n¼ 6) (Fig. 3c and Supplementary
Fig. 4b). Similarly, three out of four mice injected with HMLE-11A
cells developed tumours within 8 weeks of injection (Fig. 3d and
Supplementary Fig. 4c) suggesting that elevated levels of BCL11A
promote tumour development. Moreover, gene expression
analysis of these three tumours along with the 2,000 tumours
from the METABRIC study clustered them with the BLBC
subgroup (Fig. 3e).

Knockdown of BCL11A reduces tumourigenicity of TNBC
cells. Analysis of BCL11A expression in a panel of breast cancer
cell lines revealed that BCL11A is highly expressed in TNBC lines

but is undetectable in any of the luminal cell lines tested
(Supplementary Fig. 5a). Next, we assessed if disrupting BCL11A
expression could affect the clonogenic and oncogenic potential of
the TNBC cell lines. To inactivate BCL11A in these cells, we
performed shRNA knockdown experiments (Supplementary
Fig. 5b) in the TNBC cell lines 4T1 (mouse), MDA231,
SUM159 and HMLER (human). Knockdown of BCL11A had no
significant impact on cell viability, cell cycle kinetics or cell death
(Fig. 4a-c and Supplementary Fig. 5b,d). However, BCL11A
knockdown significantly reduced the clonogenic capacity of all
four cell lines (Fig. 4d-f and Supplementary Fig. 5c). To assess
tumourigeneic potential, BCL11A knockdown cells were injected
subcutaneously into NSG recipients. Robust tumours developed
from the control 4T1, MDA231, SUM159 and HMLER cells
within 25 days. In contrast, the BCL11A knockdown cells pro-
duced tumours of significantly reduced sizes (Fig. 4g-i and
Supplementary Fig. 5c). Furthermore, primary and secondary
limiting dilution transplantations of MDA231 control or shRNA1
cells revealed a reduction in the number of tumour-initiating
cells during the secondary transplants from 1/123 to 1/667
(Supplementary Fig. 5e).

Bcl11a is required for the development of DMBA tumours. To
examine the role of BCL11A in mammary tumour development
in vivo, we generated Bcl11a conditional knockout (cko) mice
(referred to as flox/flox; Supplementary Fig. 6a), as germline
deletion of Bcl11a causes neonatal lethality27 and crossed them to
the inducible Rosa26-CreERT2. As a tumour model, we used the
potent carcinogen DMBA (7,12-dimethylbenz(a)anthracene) in
combination with medroxyprogesterone acetate (MPA) to
promote TNBC-like tumours in the mouse28,29. To minimize
the effects of Bcl11a deletion on non-mammary tissues, we
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transplanted mammary tissue from 8- to 12-week-old control
(wild type) or flox/flox virgin female mice into contralateral
cleared fat pads of female NSG mice followed by DMBA muta-
genesis as illustrated in Supplementary Fig. 6b. By week 15, after
the last dose of DMBA was administered, palpable tumours were
visible in the mammary glands engrafted with the control
mammary cells, but not with the flox/flox cells (Fig. 5a). By week
22 post DMBA treatment, all control cell engraftments (8/8)
developed tumours compared with only one from flox/flox
mammary cells (1/8) (Fig. 5b). qRT–PCR analysis of this tumour
revealed expression of Bcl11a probably owing to incomplete

Cre-loxP recombination (Supplementary Fig. 6c, sample T1).
Also, qRT–PCR and IHC results revealed that tumours
upregulated Bcl11a expression in response to DMBA-induced
carcinogenesis (Supplementary Fig. 6c-d). These data thus
reveal a requirement for Bcl11a in DMBA-induced mammary
tumourigenesis.

To investigate Bcl11a oncogenic activity in the DMBA model
further, we performed the DMBA mutagenesis experiment using
Trp53flox/flox30 (p53 single cko) or Bcl11aflox/flox/p53flox/flox
(cko alleles for both p53 and Bcl11a or Dflox/flox) mammary
tissues. In the recipients transplanted with Trp53flox/flox cells,
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palpable tumours were detectable as early as 4 weeks after the last
injection of DMBA, and most tumours were detectable by week
10 (Fig. 5b; n¼ 16). However, deletion of Bcl11a together with
p53 in Dflox/flox mice severely delayed tumour development with
only 4 out of 16 mice developeing tumours by week 17 (Fig. 5b).
This result indicates that BCL11A is a potent oncogene and is
required in concert with p53 for tumour development.

Bcl11a is required for the maintenance of DMBA tumours.
Although Bcl11a is important for DMBA-induced mammary
tumour formation, it is more clinically relevant if it has functions
in mammary tumour progression and maintenance. We thus
performed the DMBA mutagenesis on WT, flox/þ and flox/flox
mammary epithelial cells before the induction of Bcl11a deletion.
Only when mammary tumours were detected and measured, the
mice were then injected with tamoxifen to induce Bcl11a deletion.
As shown in Fig. 5c, deletion of Bcl11a caused a significant
reduction in tumour size as soon as 5 days post deletion. On
contrary, tumours from the control heterozygous donor cells
continued to grow post tamoxifen injection (Fig. 5c). The
requirement of Bcl11a in the established mouse mammary
tumours is consistent with the decreased tumourigensis of
BCL11A knockdown breast cancer cells and underscores its
candidature for therapeutic development.

Bcl11a is required for mammary stem and progenitor cells.
To understand the biological function of Bcl11a in healthy
mammary epithelial cells, we generated a Bcl11a-lacZ knock-in
mouse to determine the temporal and spatial expression of
Bcl11a in the mammary gland (Supplementary Fig. 7a). X-gal
staining of the reporter embryos revealed that Bcl11a was
expressed in the mammary placodes from 12.5dpc (Fig. 6a).
At puberty, Bcl11a was expressed in the cap cells of the terminal
end buds, a region thought to harbour stem cells31 (Fig. 6b).
During adult mammary gland development, Bcl11a exhibited a
dynamic expression pattern with a marked increase at early
gestation and a gradual decline towards lactation and involution
(Supplementary Fig. 7b). qRT–PCR analysis of RNA samples
from several mammary epithelial compartments32,33 detected
higher levels of Bcl11a expression in the luminal progenitors
(CD49bþ /CD24hi), the basal cells (CD49Fhi/CD24þ ) and the
mammary stem cell (MaSC) (CD49Fhi/CD24med)-enriched
population (Fig. 6c).

We next induced Bcl11a deletion and analysed the mammary
epithelial fluorescence-activated cell sorting profile 3 weeks post
deletion. The basal mammary epithelial cells from the flox/flox
mice appeared to be depleted, and in particular the MaSC fraction
(Fig. 6d). In addition, Bcl11a deletion caused a significant
decrease in the number of luminal colony-forming cells (CFCs)
(Supplementary Fig. 7c). To functionally demonstrate loss of
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(c) Tumour size quantification of DMBA-mediated tumours in WT, þ /flox and flox/flox mice. Mice were checked regularly for tumour development and

once detected, Cre activation was induced using three injections of tamoxifen (first day of injection is indicated by black arrow). Tumours size was then

monitored for up to 20 days or until they reach a critical size.
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MaSC activities upon Bcl11a deletion and to determine that the
defects are cell-autonomous, we transplanted control and flox/flox
cells at limiting dilution into cleared fat pads of NSG mice (see
Methods). We found approximately sixfold reduction in stem cell
frequency from 1/483 to 1/2859, in the Bcl11a-deficient
mammary gland (Fig. 6e). Reduction of MaSCs and progenitors
in the Bcl11a-deficient mammary gland was also reflected in the
altered expression of the MaSC gene expression signature34

(Supplementary Table 1) (Supplementary Fig. 7e).

Discussion
We have demonstrated here that the transcription regulator
BCL11A is a novel breast cancer gene. By investigating cancer
genomics data from B3,000 patients (METABRIC and TCGA),
BCL11A was significantly expressed at higher levels in TNBC and
particularly in BLBC/IC10 tumours both at RNA and protein
levels. Experimentally, we have shown that disrupting BCL11A
expression in TNBC cell lines and in the mouse significantly
reduced tumour development and maintenance. At the cellular
level, Bcl11a is expressed and required in both MaSCs and
luminal progenitor cells in the mammary gland. Lineage tracing
experiments in the future will determine if Bcl11a is expressed in
the recently identified lineage-restricted luminal and basal
progenitor cells35 or in the bipotent MaSCs36. Importantly,
given the recent implication of luminal progenitors as the ‘cell of
origin’ of BLBC37,38, it will be important to ascertain if Bcl11a

upregulation in luminal progenitor cells is one of the earliest steps
in TNBC development.

In addition, it will be important to identify how BCL11A is
transcriptionally regulated and what are its downstream targets in
TNBC. In erythrocytes, KLF1 has been shown to affect BCL11A
expression39, while in non-small cell lung cancer MIR30A has
been suggested to regulate BCL11A expression40. We found no
correlation between KLF1 or MIR30A and BCL11A expression in
the TCGA data set (Supplementary Fig. 8), suggesting that
BCL11A regulation could be context dependent. In terms of
downstream targets, in leukaemia, it has been shown that
BCL11A abrogates p21 transcription possibly via direct
regulation of SIRT1 (refs 41,42). Previous work from our lab
also showed that in B cells, BCL11A induces MDM2 expression,
which is a negative regulator of p53 (ref. 43). However, the TCGA
data does not indicate a strong correlation between BCL11A and
SIRT1 or MDM2 expression at least in the tumour context
(Supplementary Fig. 8). Therefore, identifying the putative
BCL11A regulators and its downstream targets in the breast
epithelial cells should clarify its molecular and cellular roles in
TNBC.

In conclusion, through cancer genomics, in vitro assays,
experimental xenograft models and mouse genetics, we have
demonstrated in this study that BCL11A is a new breast cancer
gene and a critical regulator in normal mammary epithelial
development. These results warrant further investigation of
BCL11A as a potential candidate for TNBC-targeted therapy.
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Figure 6 | Expression and critical roles of Bcl11a in mouse MaSCs and progenitors. (a,b) X-gal staining of a 12.5dpc embryo and whole mount of the

mammary gland from a 5-week-old Bcl11a-lacZ/þ female virgin mouse. The dashed circles highlight the mammary placodes and the terminal end buds. LN:

lymph node. (scale bar, 500mm) (c) qRT–PCR for Bcl11a in different mammary epithelial cell compartments that were fluorescence-activated cell sorting-

purified using antibodies for CD24, CD49f and CD49b. Data are presented as mean±s.d. (n¼ 3) and t-test was performed and the P values are displayed

on the plot. (d) Depletion of the MaSCs-enriched population (CD24medCD49fhi, dashed lines) in the Bcl11a-deficient mammary gland detected by flow

cytometric analysis. (e) Limiting dilution transplant (fat pad) assay showing severely compromized engraftment of Bcl11a-deficient MaSCs. Stem cell

frequency calculation is described in the Methods.
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Methods
Mouse strains and breeding. All experimental animal work was performed in
accordance to the Animals (Scientific Procedures) Act 1986, UK and approved by
the Ethics Committee at the Sanger Institute. Bcl11a bacterial artificial chromo-
somes (BACs) were identified from the 129/SvJ mouse BAC library (Sanger
Institute) and used to generate the Bcl11a-lacZ- and Bcl11a cko-targeting vectors.
For Bcl11a-lacZ reporter, targeting construct (Supplementary Fig. 7a) was
generated based on the recently published strategy44. For the Bcl11a cko mouse,
targeting construct (Supplementary Fig. 6a) was generated based on the
original recombineering strategy45. Gene targeting in embryonic stem (ES) cells
and chimera production were performed according to the standard procedures.
The Bcl11a cko line was then crossed to the Rosa26-Cre-ERT2 mouse line
described previously46. The p53 cko line was described previously30. Homozygous
p53 cko mice were crossed to the Bcl11a/Cre-ERT line described above and the F1
generation was mated to generate mice doubly conditional for Bcl11a and p53.
Genotyping was confirmed using the primers listed in Supplementary Table 2. Cre
activation was mediated by three injections of 1 mg tamoxifen per mouse over 3
days.

Mammary epithelial cell isolation and analysis. Mammary epithelial cells were
dissociated using a mixture of collagenase (Roche) and hyaluronidase (Sigma), and
cells were stained using the following primary antibodies: biotinylated anti-CD45
(clone 30-F11; eBioscience, 1:500), anti-Ter119 (clone Ter119; eBioscience, 1:500)
and anti-CD31 (clone 390; eBioscience, 1:500); anti-CD24-R-phycoerythrin (PE;
clone M1/69, eBioscience, 1:500), anti-CD49f-Alexa Fluor 647 (AF647; clone
GoH3, eBioscience, 1:100), anti-CD49b-Alexa Fluor 488 (AF488; clone HMa2;
eBioscience, 1:500) and Sca1-Alexa Fluor 647 (AF647; clone D7, eBioscience,
1:500). Secondary antibodies used: Strepavidin-PE-Texas Red (PE-TR; Molecular
Probes, 1:500). Apoptotic cells were excluded by elimination of propidium iodide-
positive cells. Flow cytometric analysis was done using CyAN ADP (DakoCyto-
mation) and all sorts were performed using MoFlo (DakoCytomation) and gates
were set to exclude 499.9% of cells labelled with isoform-matched control anti-
bodies conjugated with the corresponding fluorochromes. For whole-mount ana-
lysis, abdominal glands (no. 4) were spread out using forceps on a glass slide and
incubated in Carnoy’s fixative overnight. The slide was washed in water and placed
in carmine alum (Sigma) stain overnight. The slide was again washed with ethanol
and cleared in Xylene for 1 day before documentation. For histological analysis,
abdominal glands were fixed in 4% formaldehyde in PBS for 24 h at room tem-
perature. The glands were transferred to 70% ethanol and stored at � 20 �C until
embedding and sectioning. All tissues were embedded in wax and sectioned at
5 mm before being stained with haematoxylin and eosin.

Mammary CFC assay. For colony-forming assays, the medium used was (human)
NeuroCult NS-A Proliferation Medium (StemCell) supplemented with 5%
fetal bovine serum, 10Zg ml� 1 epidermal growth factor (Sigma), 10 ng ml� 1

basic fibroblast growth factor (Peprotech) and N2 Supplement (Invitrogen); the
cultures were maintained at 37 �C/5% CO2 for 7 days; then fixed using ice-cold
acetone/methanol (1:1) and visualized using Giemsa staining (Merck). Lin�

CD24hiCD49bþ luminal progenitors from the flox/flox mammary gland were
sorted and plated with irradiated feeders in colony-forming assay medium for
6 days before the number of mammary CFCs was enumerated.

Transplantation of mammary epithelium. Mammary epithelial cells (basal
fraction) from tamoxifen-injected and non-injected flox/flox or flox/þ mice were
sorted based on CD24/CD49f and transplanted in limiting doses (500/750/1,000/
2,000 cells) into cleared fat pads of 3-week-old NSG females. In each case, non-
injected and tamoxifen-injected epithelial cells were engrafted into contralateral
glands of the same recipient mice. The recipient mice were impregnated 3–6 weeks
after transplant and outgrowths produced were dissected, stained with carmine and
scored. Stem cell frequency was calculated using L-Calc (StemCell Technologies).

DMBA/MPA tumourigenesis protocol. Mammary fragments were transplanted
into cleared fat pads of 3-week-old NSG mice. At the time of surgery, the MPA
slow release pellet (Innovative Research of America) was also implanted sub-
cutaneously. The mice were allowed to recover for 2 weeks and then Bcl11a
deletion was induced using three injections of tamoxifen. One week after deletion
of Bcl11a, 1 mg of DMBA (Sigma) was administered orally; this was followed by
three further doses of 1 mg of DMBA over 3 weeks. Mice were then examined
weekly for tumour incidence and killed when tumours reached the legal limit.

Transfection and mammosphere assays. EpH4 (gift from Professor Christine
Watson) and MDA231 (ATCC) cells were cultured to confluence in 1:1 DMEM:F12
(Invitrogen) media containing 10% fetal calf serum (FCS; FetalcloneIII, Clonetech).
4T1 (ATCC) cells were cultured in Roswell Park Memorial Institute (RPMI) media
(Invitrogen) containing 10% FCS, and SUM159 cells (gift from Dr Charlotte
Kuperwasser) were cultured in Ham’s F12 (Sigma), 5% FCS, insulin (5mg ml� 1,
Sigma) hydrocortisone (1mg ml� 1, Sigma) and 1� Penicillin Streptomycin Gluta-
mine (PSG) (Gibco). HMLE and HMLER cells (gift from Professor Robert Weinberg)

were cultured in complete HuMEC media (Invitrogen). The control or the Bcl11a
overexpression piggyBac vectors were delivered into cells using the Amaxa Basic
Nucleofactor Kit for primary mammalian epithelial cells (Lonza) according to the
manufacturer’s recommendations. Transfected cells were maintained at 37 �C/5%
CO2 for 48 h. Cells were then cultured in puromycin (1–5mg ml� 1) for 48 h to allow
for selection. To induce BCL11A expression in EpH4 and HMLE cells, doxycycline
(Clonetech) was used at a final concentration of 1.0mg ml� 1. Floating or Matrigel-
embedded mammosphere were cultured and passaged as previously described47 in
ultra-low attachment plates (Corning).

RNA knockdown. BCL11A shRNA sequences were obtained from the TRC con-
sortium48 (TRCN0000033449 and TRCN0000033453) were cloned into piggyBac
transposon vector (PB-H1-shRNA-GFP). 4T1, SUM159, MDA231 and HMLER
cells were transfected with 4.0 mg of piggyBac vector using Amaxa Basic
Nucleofactor Kit for primary mammalian epithelial cells (Lonza) and GFPþ cells
were sorted/analysed 24–48 h later.

RNA extraction and real-time PCR analysis. RNA from sorted cells was
extracted using PicoPure RNA isolation kit (Molecular Devices) according to the
manufacturer’s instructions. RNA from mammary tissue and cell lines was
extracted using Tri-Reagent (Invitrogen) according to the manufacturer’s
instructions. Complementary DNA (cDNA) was synthesized from 1 to 2 mg of total
RNA using the Transcriptor Reverse Transcription cDNA Synthesis Kit (Roche).
RT–PCR was performed using Hi-Fidelity Extensor mix (Thermo) using primers
listed in Supplementary Table 2. Quantitative real-time PCR detection of cDNA
was performed using SYBR Green Master Mix (Sigma, ABI and Invitrogen)
according to supplier’s recommendations. The real-time PCR reactions were run
in ABI-7900HT (Applied Biosystems) in triplicate. Primers used for real-time
PCR on mouse samples were designed using PrimerBank49 website (http://
pga.mgh.harvard.edu/primerbank/) and listed in Supplementary Table 2. All
primers were purchased from Sigma-Aldrich. For real-time PCR on human
samples Taqman gene expression probes (Life Technologies) were used.

Cell cycle analysis. A total of 150,000 control or BCL11A knockdown cells were
seeded in six-well plates and allowed to recover for 48 h. Cells were then incubated
with 5 mM Edu (Invitrogen) for 1 h. Cells were fixed and assayed using the EdU
flow cytometery detection kit (Invitrogen) following the manufacturer’s
instructions.

Annexin v assays. A total of 100,000 control or BCL11A knockdown cells (in
triplicates) were seeded in six-well plates and allowed to recover for 48 h. Cell were
then collected and stained using the Annexin-V-AF647 (BioLegend) following the
manufacturer’s instructions, and cells were then quantified using fluorescence-
activated cell sorting.

Cell viability assay. A total of 1,000 control or BCL11A knockdown cells (in
triplicates) were seeded in 96-well plates and allowed to recover for 48 h. Cells were
then incubated with CellTiter Aqueous One Solution (Promega) for 4 h following
the manufacturer’s instructions. Absorbance was then measured at 490 nm using a
plate reader (Bio-Rad).

Western blotting and IHC. Protein samples were prepared as described pre-
viously14 and probed using anti-Bcl11a (Abcam, Clone 14B5, 1:1000) and Actin
(Cell Signalling, 1:10000). For IHC analysis, BCL11A (Abcam (14B5, 1:50); CK14
(Abcam; 1:100) and ERa (SCBT; 1:50) were used. Staining was detected using
AF488- or Cy3-conjugated secondary (Sigma) and bisbenzimide-Hoechst 33342
(Sigma). Fluorescence microscopy was carried out using a Zeiss Axiophot
microscope equipped with a Hamamatsu Orca 285 camera, with images visualized,
captured and manipulated using Simple PCI 6 (C Imaging Systems). The
hematoxylin- and eosin-stained samples were visualized on a LEICA light
microscope, while the mouse mammary gland whole mounts were visualized using
the LEICA MZ75 light microscope.

Microarray analysis. The intensity value for each probe set was calculated and the
average of each gene was computed before the data analysis. For the quality control
(QC) step, a set of intensity value of control genes were examined. All data were
normalized and scaled by Partek Genomic Suite 6.4. Principal components analysis
was performed to show the distribution of samples, eliminating outliers. Differ-
entially expressed genes were selected by one-way analysis of variance by the factor
of KO versus wild type, P valueo0.08. Hierarchical clustering of selected genes was
performed to show the expression pattern. The resulting genes then underwent a
pathway analysis (GeneGO: http://www.genego.com) to determine the biological
significance of the data.

Xenograft tumourigenesis assays. One hundred thousand EpH4, HMLE, 4T1,
MDA231, SUM159 or HMLER cells were suspended in 25% Matrigel (BD
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Biosciences) and HBSS, and injected into either cleared contralateral number 4
mammary fat pads of 3-week-old female mice or subcutaneously in 6–12-week-old
female NSG mice. For secondary transplants, tumours were dissociated using
collagenase/hyloronase mix (Roche) for 16 h and viable cells were counted and
injected into NSG recipient mice at the indicated doses.

METABRIC analysis. Matched DNA and RNA were extracted for tumours. CN
analysis was performed using the Affymetrix SNP 6.0 platform. The arrays were
pre-processed and normalized using CRMAv2 (ref. 50) method from
aroma.affymetrix. Allelic-crosstalk calibration, probe sequence effects
normalization, probe-level summarization and PCR fragment length normalization
were performed for each array. The intensities obtained were normalized against a
pool of 473 normals for the samples with no matched pair or against their matched
normal when available (258 samples). The log-ratios were then segmented using
the circular binary segmentation algorithm51 in the DNAcopy Bioconductor
package52. Then, callings into five groups (homozygous deletion, heterozygous
deletion, neutral CN, gain (42) and amplification 43) were made using
thresholds based on the variability of each sample and their proportion of tumoural
cells. RNA analysis was performed using Illumina HT-12 v3 platform and analysed
using beadarray package53. BASH54 was used to correct for spatial artifacts. The
bead-level data were summarized and a selection of suitable probes based on their
quality was done using the re-annotation of the Illumina HT-12v3 platform55. The
samples were classified into the five breast cancer subtypes using PAM50 (ref. 56),
but only those genes with a probe with perfect annotation on the chip were
considered. A mixture model was used to classify BCL11A expression into low and
high values57,58.

TCGA data analysis. All TCGA data and figures were accessed, analysed and
generated using the cBio Cancer Genomics Portal59. All data included in this
manuscript is in agreement with the TCGA publication guidelines.

METABRIC IHC analysis. A subset of patients enroled in the METABRIC study
with tumour samples represented in tissue microarrays (TMAs) were included for
the detection of BCL11A protein expression by IHC. TMAs were constructed from
formalin-fixed paraffin-embedded tumour blocks as previously described60. Each
tumour was represented by a single 0.6-mm tissue core. A total of 439 tumours
were included arising from 436 patients (three were synchronous tumours arising
in the contralateral breast). CN and gene expression data was available for 368 of
these tumours for correlative analyses. Three micrometre TMA sections were
dewaxed in xylene and rehydrated through graded alcohols. IHC was conducted
using a BondMaX Autoimmunostainer (Leica, Bucks, UK). Antigen retrieval was
achieved by heating TMA sections in pH 6 citrate buffer for 20 min. Primary
mouse monoclonal (clone 14B5) antibody bound to BCL11A (ab19487, AbCam)
was diluted to 1:200 and detected using a BOND Polymer detection kit (Leica) and
signal developed with 3,30-diaminobenzidine (DAB). Stained TMA sections were
digitized using the Ariol (Genetix Ltd, Hampshire, UK) platform for scoring by a
pathologist (H.R.A.). The ordinal Allred scoring system was used for assessing the
amount of staining present in tumour cells accounting for the intensity (0¼ no
staining, 1¼weak, 2¼moderate and 3¼ strong) and proportion (0¼ 0%,
1¼o1%, 2¼ 1–10%, 3¼ 11–33%, 4¼ 34–66% and 5¼466%) of stained cells,
finally producing a summed score (intensityþ proportion¼Allred score) between
zero and eight. Analogous to clinical practice for estrogen receptor (ER), tumours
with an Allred score of 42 were deemed positive for BCL11A expression and
comparison with molecular subtypes was made using Pearson’s w2 test.

Statistical significance. All P values were calculated using Student’s t-test unless
otherwise indicated in the figure legends.
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