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Abstract

The intramuscular fat (IMF) content and fatty acid composition are important meat quality

traits that are mostly affected by the cattle breed. Muscle, adipose tissue and liver are impor-

tant organs involved in the development of intramuscular adipose tissue. Thus, we hypothe-

sized that there were marked differences in the adipogenesis and lipid metabolism of these

tissues between Wagyu-cross and Holstein steers during the finishing phases. To test this

hypothesis, we analyzed the expression levels of adipogenesis- and lipid metabolism-

related genes in longissimus muscle (LM), subcutaneous fat (SCF) and liver from Wagyu-

cross and Holstein steers at 26 months of age. The IMF content and fatty acid profile of LM

were determined. Wagyu-cross steers had a higher IMF content and MUFA percentages

in the LM than Holstein steers (P<0.05). The relative expression of FGF2, COL1A1,

SREBP1c, SCD1, GRP78 and LEP was greater in the LM of Wagyu-cross steers than in

Holstein steers (P<0.05). In contrast, Holstein steer SCF had higher (P<0.05) mRNA

expression levels of FABP4 and ADIPOQ than Wagyu-cross steers. In the liver, the expres-

sion of SREBP1c and GRP78 in Wagyu-cross steers was significantly higher than that in

Holstein steers (P<0.05). The results demonstrate that both intramuscular adipogenesis

and fibrogenesis are enhanced in Wagyu-cross steers compared with Holstein steers during

the finishing phase and that IMF deposition is positively correlated with the maturity of SCF

and hepatic lipid accumulation in Wagyu-cross steers.
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Introduction

Marbling or intramuscular fat (IMF) contents are an important trait determining the quality

of beef and directly affect the taste, juiciness, and tenderness of meat [1]. IMF can be enhanced

due to both adipogenesis and lipid metabolism. The initial stage of adipogenesis mainly con-

cerns the conversion from fibro/adipogenic progenitor cells to preadipocytes [2], which is reg-

ulated by multiple signals, including extracellular factors such as fibroblast growth factors

(FGFs) [3], transforming growth factor beta (TGFβ) [4] and extracellular matrix (ECM) com-

ponents [5]. Intracellular regulators mainly include zinc-finger protein 423 (ZNF423) [6].

Enhancing preadipocyte differentiation of progenitor cells increases the IMF content in cattle.

During the terminal stage of adipogenesis, there are also several key transcription factors

that control the differentiation of preadipocytes into mature adipocytes, such as CAAT/

enhancer binding proteins (C/EBPs) [7], peroxisome proliferator-activated receptor γ
(PPARγ) [8, 9], and sterol regulatory element-binding protein-1c (SREBP1c) [10], which

induce the expression of many downstream target genes involved in lipid metabolism.

Communication among multiple organ plays an important role in lipid metabolism, and

there is a clear interaction between muscle, subcutaneous fat (SCF) and liver in ruminant lipid

metabolism. The liver carries out central metabolic functions; for example, long-chain fatty

acids (LCFAs) in the liver are esterified to produce triglycerides (TG), which are packaged into

very-low-density lipoproteins (VLDL) and then exported to muscle and adipose tissues by the

bloodstream [11]. SCF is not only a fuel reservoir that supplies nonesterified fatty acids

(NEFAs) for muscle and liver [12] but also an endocrine organ that produces numerous bioac-

tive factors such as adipokines that communicate with muscle and liver [13]. Therefore, it is

necessary to monitor the lipid metabolism of SCF and the liver, which affect the development

of IMF.

In addition to IMF, the intramuscular fatty acid composition also contributes importantly

to meat quality [14], and beef rich in monounsaturated fatty acids (MUFAs) and polyunsatu-

rated fatty acids (PUFAs) can decrease the risks of cardiovascular disease in humans [15]. In

former studies, it was shown that the cattle breed could significantly affect the IMF content

and fatty acid composition [16–21]. Japanese black cattle (Wagyu) have the unique ability to

store enormous amounts of fat and MUFAs within the muscle, which is a good animal model

to study adipogenesis and lipid metabolism [22]. In recent years, there has been growing

demand for high-marbling beef in China, where a certain number of Wagyu-cross cattle have

been farmed. In addition, Holstein steers, which have the genetic potential to deposit IMF

with relatively little SCF, are starting to be raised for a high quality and profitable beef product

in dominant milk-producing provinces in China. Based on the IMF difference, a series of com-

parative studies were carried out between Wagyu and Holstein steers, which revealed that

Wagyu had higher terminal differentiation activity of adipocytes in the longissimus muscle

(LM) and SCF than the Holstein steers [17, 23–27]. However, little information is available

regarding the differences in the molecular regulation of preadipocyte determination and liver

lipid metabolism between these two breeds in the finishing phase. Therefore, we hypothesized

that there were marked differences in adipogenesis and lipid metabolism of LM, subcutaneous

fat (SCF) and liver between Wagyu-cross and Holstein steers at 26 months of age.

Material and methods

Ethics statement

The research was undertaken with the approval of the Animal Ethics Committee of the Insti-

tute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences (HAAS) (Harbin,
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China). All procedures were in strict accordance with the guidelines proposed by the China

Council on Animal Care.

Animals and sample collection

Wagyu-cross (Snow dragon beef, the offspring of Wagyu and Filial 1 hybrid (F1) crossbred

cows of Limousin by Fuzhou yellow cattle, n = 3) and Holstein steers (n = 3) were kept under

the same conditions from 11 to 26 months of age. Steers of both breeds were raised individu-

ally in pens with the free stall feeding system. Each animal had 9 m2 for normal activities, and

the pen was cleaned every day. All steers were fed twice daily a high-energy diet and given free

access to water and mineral blocks. The diet compositions are shown in Table 1. Body weights

were measured monthly, and feed intakes of the groups were recorded daily.

Immediately after slaughter, samples of LM, SCF (between the 12th and 13th ribs) and liver

tissue were collected from each animal, minced, snap frozen in liquid nitrogen promptly and

subsequently stored at -80˚C. Additionally, a 2- to 3-cm-thick muscle slice was removed from

the 12th rib area of the LM, fixed in 4% paraformaldehyde and embedded in paraffin. A second

sample of LM was vacuum-packed and stored at -80˚C until determination of intramuscular

fat content and fatty acid composition.

Postslaughter measurements

Carcass, liver and perirenal fat weights were recorded after slaughter. The LMs were chopped

and lyophilized using a freeze-drying machine, and samples were analyzed in triplicate for

crude fat (method 960.39; AOAC, 2000).

Fatty acid analysis

Total lipids were extracted from LM via chloroform/methanol (2:1, v/v) extraction, and fatty acid

methyl ester (FAME) synthesis was conducted according to the methods described by Nuernberg

et al. (2010). FAMEs were separated by gas chromatography (6890N; Agilent Technologies,

Santa Clara, California) using a capillary column (Supelco SP. 2560; 0.25 mm by 0.20 μm by 100

m; Sigma-Aldrich Chemie GmbH, Munich, Germany) and a flame ionization detector. For the

separation of FAMEs from samples, the following temperature program was applied with

Table 1. Composition of the experimental diets.

Item Early Middle Late

Ingredient (%)

Flaked corn 63 57 50

Flaked barley 7 14

Soybean meal 17.5 12.5 13

Wheat bran 17.5 13.5 11

Salt 4 4 4

Concentrate:roughagea 82:20 85:15 88:12

Nutrient composition, % of DM

Crude protein 12.5 11.5 10.5

Total digestible nutrients 76 79 83

a Corn stalk or rice straw was used as roughage in all diets. Early, middle, and late diets for two groups of steers were

used in the first phase from 11 to 15 months of age, in the second phase from 16 to 22 months of age and in the third

phase from 23 to 26 months of age, respectively.

https://doi.org/10.1371/journal.pone.0247559.t001
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nitrogen as the carrier gas at a flow rate of 1 ml/min: from 150 to 165˚C at 1˚C/min, then

increased to 167˚C at 0.2˚C/min, from 167˚C to 225˚C at 1.5˚C/min, and the temperature was

maintained for 15 min. The injector and detector were maintained at 250˚C. Individual fatty

acids were identified by comparison with retention times of standards, which were purchased

from the Matreya Company (State College, Pennsylvania) and Sigma-Aldrich Canada.

Histology and image analysis

Five-micrometer sections were prepared from LM tissue blocks from each animal, and the sec-

tions were deparaffinized, rehydrated and stained with hematoxylin-eosin (H/E). Intramuscu-

lar adipocyte and muscle fiber size were estimated by measuring the average diameter of at

least 200 cells using the interpolating polygon function of ImageJ software (National Institute

of Health, USA), and the density of muscle fibers (fibers/mm2) was estimated by the point tool

using 300 points. To evaluate the percentage of the endomysium area, a microscopic image of

H/E-stained muscle fibers was transformed into a grayscale 8-bit image, which was further

binarized into muscle fibers (black), perimysium (white) and endomysium (white). Then, the

perimysium area was blackened with a brush tool; thus, the percentage of endomysium area

was detected using a threshold operation.

RNA extraction and quantitative real-time PCR

Total RNA was extracted from LM, SCF and liver samples using TRIzol reagent (Invitrogen,

Carlsbad, CA, USA), and approximately 1 μg of RNA from each sample was reverse tran-

scribed into cDNA using the PrimeScript™ RT reagent Kit with gDNA Eraser (TaKaRa). Real-

time PCR was performed using SYBR1 Premix Ex Taq™ II (Tli RNaseH Plus) (TaKaRa). All

data were normalized by RPLP0 as an internal control. Relative expression levels of each gene

between the two cattle breeds were calculated using the 2-ΔCt method [28], where ΔCt = Ct(tar-

get genes) − Ct(RPLP0). The fold-change value was calculated using the formula: mean 2-ΔCT

(high)/mean 2-ΔCT (low). Primers are listed in Table 2.

Statistical analyses

Statistical analysis was performed using SAS statistical software (SAS Institute, Cary, NC, USA).

The phenotypic data, histological analysis data and mRNA abundance between the two breeds

were evaluated by Student’s t-test. All results are presented as the mean ± SE, and statistical sig-

nificance was considered at P<0.05. Pearson correlation coefficients among differentially

expressed genes (DEGs), as well as correlation coefficients between DEGs and the IMF content

or fatty acid composition in the LM, were calculated using the CORR procedure of SAS. Cytos-

cape software was utilized to construct the gene association network based on the Pearson cor-

relation coefficient among DEGs in the LM, with a p-value<0.01 as the threshold. Important

nodes were reflected by computing the betweenness centrality (BC). High BC nodes are

highlighted in large circles and red color. All the nodes were placed in hierarchically arranged

layers using yFiles layouts in Cytoscape. A heatmap was generated to visualize the correlation

between the DEGs and fatty acid composition in the LM. A principal component analysis

(PCA) was performed using the relative gene expression data of three tissues in originPro 2018.

Results

Phenotypic data

The phenotypic data for Wagyu-cross and Holstein steers at 26 months of age are presented in

Table 3. The Holstein steers had significantly higher initial body weight, slaughter weight,
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Table 2. List of primers.

Gene name Abbreviation Primer sequence (5’!3’) Accession Product size

Fibroblast growth factor 2 FGF2 F GTGCAAACCGTTACCTTGCTAT NM_174056.4 157bp

R GTTCGTTTCAGTGCCACATACC

Fibroblast growth factor receptor 1 FGFR1 F ATGGACTCCGTGGTGCCTTCG NM_001110207.1 244bp

R TCCCGTTCACCTCAATGTGCTTC

Transforming growth factor beta 1 TGFβ1 F CAATTCCTGGCGCTACCTCA NM_001166068.1 127bp

R GCGAAAGCCCTCTATTTCCTCT

Collagen, type I, alpha 1 COL1A1 F CCACCCCAGCCGCAAAGAGT NM_001034039 163bp

R ACGCAGGTGACTGGTGGGATGTC

Zinc finger protein 423 ZNF423 F GAAGGCATCAACCATGAGTGTAAG NM_001101893.1 141bp

R CTGGACGAAGACTGTGAAGCAC

Sterol regulatory element-binding protein1c SREBP1c F CCGAGGCCAAGTTGAATAAATCT NM_001113302.1 147bp

R ACACCAGGTCCTTCAGCGATTTG

CCAAT enhancer binding protein alpha CEBPα F GCAAAGCCAAGAAGTCCG NM_176784.2 183bp

R GGCTCAGTTGTTCCACCCGCTT

Peroxisome proliferator activated receptor gamma 2 PPARγ2 F TCTGCAAGGACCTCACAAGA NM_181024.2 173bp

R TCATAGTGCGGAGTGGAAAT

Lipoprotein lipase LPL F ACGATTATTGCTCAGCATGG NM_001075120.1 130bp

R ACTTTGTACAGGCACAACCG

Adipocyte differentiation related protein ADRP F GCCGAGTTACTATGTTAGACT NM_173980.2 219bp

R AGCCAGGACAGATAGAGC

Fatty acid binding protein 4 FABP4 F TGGAAACTTGTCTCCAGTGAAA NM_174314.2 120bp

R ACCCCCATTCAAACTGATGA

Acetyl-CoA carboxylase alpha ACACA F GAGACAAACAGGGACCATT NM_174224.2 145bp

R ATCAGGGACTGCCGAAAC

Stearoyl-CoA desaturase 1 SCD1 F GTGATGTTCCAGAGGAGGTACTACAA NM_173959.4 95bp

R AACGTTTCATCCCACAGATACCA

Glucose-regulated protein 78 GRP78 F AACGACCCCTGACGAAAGAC NM_001075148.1 129bp

R TCACTCGAAGAATGCCATTCAC

Leptin LEP F CGATTCCTGTGGCTTTGG NM_173928.2 178bp

R GGAGCCCAGGGATGAAGT

Adiponectin, C1Q and collagen domain containing ADIPOQ F ATCGCCTCCTACTTCCACCCTG NM_174742.2 130bp

R TTGTCCTCGCCATGACTGGGT

Ribosomal protein lateral stalk subunit P0 RPLP0a F TTCTCCTTCGGGCTGGTCAT NM_001012682.1 167bp

R GGTACAGATGCGACGGTTGG

a Housekeeping gene.

https://doi.org/10.1371/journal.pone.0247559.t002

Table 3. Phenotypic data of Wagyu-cross and Holstein steers at 26 months of age (LSMEAN ± SE).

Trait Wagyu-cross Holstein P-value

Initial body weight (11months of age), kg 348.6±12.38 446.6±21.39 <0.01

Slaughter weight (SW), kg 683.0±17.35 938.3±21.62 <0.01

Average daily gain, g/day 713.0±15.63 1048.47±61.19 <0.01

Hot carcass weight (HCW), kg 393.1±23.22 538.3±28.53 <0.01

Intramuscular fat content, % 15.72±0.53 11.86±1.01 0.03

Perirenal fat weight, % HCW 2.3±0.26 3.0±0.21 0.08

Liver weight, % SW 0.82±0.05 0.83±0.04 0.41

https://doi.org/10.1371/journal.pone.0247559.t003
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average daily gain and HCW than the Wagyu-cross steers (P<0.01), and the perirenal fat per-

centage tended to be greater in Holstein steers (P = 0.08). Conversely, the IMF content was

higher in Wagyu-cross steers (P = 0.03).

Fatty acid composition of LM

The fatty acid composition of LM in Wagyu-cross and Holstein steers is presented in Table 4.

Compared with Holstein steers, the percentages of C14:1 (P = 0.01), C16:1 (P = 0.05) and

MUFAs (P = 0.04) were higher in Wagyu-cross steers, whereas the percentages of C18:0

(P = 0.02) and C20:3n6 (P = 0.04) were lower in Wagyu-cross steers, and the percentages of

C20:4n6 (P = 0.06), SFAs (P = 0.09), and PUFAs (P = 0.07) tended to be lower in Wagyu-cross

steers.

Muscle structure trait

As shown by HE staining (Fig 1A), the endomysium between the muscle fibers occupied more

space in the Wagyu-cross steers, which had a higher percentage of endomysium area than the

Holstein steers (P<0.05) (Fig 1B). The density of muscle fibers was higher in Holstein steers

(P<0.05) (Fig 1C). There were no differences in muscle fiber size between the two cattle breeds

(Fig 1D), whereas the size distribution of intramuscular adipocytes showed that the Wagyu-

cross steers had larger adipocytes than Holstein steers (Fig 1E).

Gene expression in LM

The relative mRNA expression levels of the sixteen adipogenesis- and lipid metabolism-related

genes in the LM of the two cattle breeds are presented in Fig 2A. FGF2, FGFR1, COL1A1,

ZNF423, SREBP1c, CEBPα, PPARγ2, ACACA, SCD1, GRP78 and LEP in the LM showed higher

expression levels in Wagyu-cross steers when compared with Holstein steers (P<0.05), corre-

sponding to a fold-change of 2.11, 3.77, 4.93, 1.63, 4.60, 3.42, 2.42, 3.19, 10.82, 10.13 and 1.43,

Table 4. Fatty acid composition (% of total fatty acids) of LM in Wagyu-cross and Holstein steers.

Breed Wagyu-cross Holstein P-value

C14:0 3.62±0.16 3.18±0.37 0.16

C14:1 1.26±0.14 0.81±0.07 0.01

C16:0 28.38±0.97 28.87±0.76 0.35

C16:1 5.70±0.51 4.63±0.22 0.05

C18:0 11.16±0.65 13.08±0.43 0.02

C18:1n9c 44.85±0.53 43.07±1.19 0.11

C18:2n6c 2.63±0.19 3.49±0.56 0.10

C18:3n3 0.21±0.01 0.23±0.02 0.15

C20:3n6 0.13±0.01 0.19±0.02 0.02

C20:4n6 0.21±0.02 0.43±0.12 0.06

∑SFA 44.21±1.15 46.37±0.84 0.09

∑MUFA 52.62±1.2 49.3±0.97 0.04

∑PUFA 3.17±0.22 4.33±0.66 0.07

∑SFA, saturated fatty acid, without any double bonds (C14:0, C15:0, C16:0, C17:0 and C18:0); ∑MUFA,

monounsaturated fatty acid, with a single double bond (C14:1 C16:1, C17:1 and C18:1); ∑PUFA, polyunsaturated

fatty acid, all fatty acids with two or more double bonds (including C18:2n6c, C18:3n3, C20:3n6 and C20:4n6).

https://doi.org/10.1371/journal.pone.0247559.t004
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respectively. TGFβ1 tended to have higher expression levels (1.61-fold) in Wagyu-cross steers

than in Holstein steers (P = 0.078). However, no significant differences were found in the

mRNA expression of LPL, ADRP, FABP4 and ADIPOQ between the two cattle breeds.

Gene expression in SCF

The relative mRNA expression levels of the sixteen adipogenesis- and lipid metabolism-related

genes in the SCF of the two cattle breeds are presented in Fig 2B. FABP4 and ADIPOQ in SCF

showed higher expression levels in Holstein steers than in Wagyu-cross steers (P<0.05), corre-

sponding to fold changes of 2.31 and 1.69, respectively. SCD1 tended to have higher expression

levels (1.47-fold) in Holstein steers than in Wagyu-cross steers (P = 0.09).

Gene expression in liver

The relative mRNA expression levels of the nine adipogenesis- and lipid metabolism-related

genes in the livers of the two cattle breeds are presented in Fig 2C. Significant differences were

found in the gene expression levels of SREBP1c, FABP4 and GRP78 between Wagyu-cross and

Holstein steers, and SREBP1c and GRP78 had higher expression levels (2.19-fold and 1.7-fold)

in Wagyu-cross than in Holstein steers. Conversely, the FABP4 gene showed higher expression

levels (7.62-fold) in Holstein steers than in Wagyu-cross steers. ACACA tended to have higher

expression levels (1.64-fold) in Wagyu-cross steers than in Holstein steers (P = 0.096). In addi-

tion, ACACA, SCD1 and FABP4 were expressed at low levels in the liver.

Fig 1. Histological analysis of muscle cross-sections in Wagyu-cross and Holstein steers. (A) HE staining of

intramuscular adipocytes and muscle fibers. Scale bar: 200 μm. Large arrows indicate perimysium, and small arrows

indicate endomysium. (B) Endomysium area %. (C) Density of muscle fibers. (D) Frequency distribution of muscle

fiber diameter. (E) Frequency distribution of intramuscular adipocyte diameter.

https://doi.org/10.1371/journal.pone.0247559.g001
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Relationships among the expression levels of genes in LM

To display the correlation between DEGs in the LM more clearly, Cytoscape software was uti-

lized to construct a gene association network, which contained 11 nodes and 37 edges. Each

node of the Cytoscape network represents a gene, and the edge between nodes represents a pos-

sible regulatory relationship between genes. As shown in Fig 3, adipogenesis- and lipid

Fig 2. Relative gene expression in the LM (A), SCF (B) and liver (C) from Wagyu-cross and Holstein steers. The

expression levels were calculated using the 2-ΔCt method and were normalized to RPLP0. Bar values represent the

mean ± SEM, and asterisks indicate p<0.05 between the two groups.

https://doi.org/10.1371/journal.pone.0247559.g002
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metabolism-related genes were placed in hierarchically arranged layers from top to bottom.

Based on the betweenness centrality (BC) values of each node in the network, FGF2, SREBP1c,
PPARγ2, SCD1 and LEP were identified as hub nodes, displaying higher connectivity within the

network. PPARγ2 had the highest BC, occupying the center of the network. FGF2 was at the top

of the network and was significantly positively correlated with most genes except ZNF423,

which was only significantly correlated with PPARγ2. In addition, the expression of FGFR1 was

positively correlated with that of SREBP1c, CEBPα, PPARγ2, ACACA and LEP. There was a sig-

nificant positive correlation among FGF2, COL1A1, SREBP1c, GRP78, SCD1 and LEP.

Fig 3. Gene association network composed of five hub genes. Node color and size: red and larger nodes represent

hub genes with more links. PPARγ2 appears to be the super hub gene in the network with the highest connectivity.

https://doi.org/10.1371/journal.pone.0247559.g003

PLOS ONE Effect of breed effect on gene expression of adipogenesis and lipid metabolism in cattle

PLOS ONE | https://doi.org/10.1371/journal.pone.0247559 February 24, 2021 9 / 16

https://doi.org/10.1371/journal.pone.0247559.g003
https://doi.org/10.1371/journal.pone.0247559


Relationships among gene expression levels, IMF content and fatty acid

composition in LM

The correlation among DEGs in the LM, IMF content and fatty acid percentages is depicted in

Fig 4. It is worth noting that COL1A1, SCD1 and GRP78 gene expression showed a strong posi-

tive association with IMF content, the percentage of C14:1 and moderate positive correlations

with the percentages of C16:1 and MUFAs. Most gene expression showed a negative associa-

tion with the percentages of C18:0, SFAs, C18:1n9c, C18:3n3, C20:3n6, C20:4n6 and PUFAs.

PCA of the gene expression in LM, SCF and liver

A principal component analysis (PCA) of the gene expression of liver, LM and SCF was per-

formed to highlight the differences in adipogenesis and lipid metabolism among the three tis-

sues and between the two breeds. The first two principal components together explained

86.5% of the total variance, with 79.0% for PC1 and 7.5% for PC2. In the loading plot, most

genes were allocated to quadrant b, which was responsible for forming the SCF cluster (Fig

5A). In quadrant a, the liver cluster was only defined by the GRP78 gene. In addition, SREBP1c
and ZNF423 were separated from the other variables in quadrant d. The score plot showed that

Fig 4. Correlations among gene expression levels, IMF content and fatty acid composition in the LM. The number

in each cell represents the correlation coefficient.

https://doi.org/10.1371/journal.pone.0247559.g004

Fig 5. Loading plot (A) and score plot (B) of the principal component analysis (PCA) for gene expression in the

LM, SCF and liver. LM: longissimus muscle, SCF: subcutaneous fat, LV: liver.

https://doi.org/10.1371/journal.pone.0247559.g005
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eighteen tissue samples were clearly divided into three clusters, corresponding to each tissue

(Fig 5B). The tissue samples of the two breeds were clearly separated in each cluster except

SCF in which Wagyu-cross steers samples were scattered. The SCF cluster was separated from

the liver and LM clusters along PC1, while PC2 separated the liver cluster from the LM cluster.

Discussion

Recently, some researchers showed that the IMF content and intramuscular fatty acid compo-

sition depended not only on adipogenesis but also on lipid metabolism in the muscle, adipose

tissue and liver of cattle [29–31]. In the present study, we showed that Wagyu-cross steers had

higher IMF content and percentages of C14:1, C16:1 and MUFAs in the LM than Holstein

steers at 26 months of age. To elucidate the molecular mechanisms involved in these physio-

logical differences. A comparative analysis was performed to investigate the expression levels

of adipogenesis- and lipid metabolism-related genes in the LM, subcutaneous fat (SCF) and

liver from Wagyu-cross and Holstein steers. As a result, we observed greater mRNA expres-

sion of SREBP1c, CEBPα, PPARγ2, ACACA and SCD1 in the LM of Wagyu-cross steers than

in that of Holstein steers. SREBP1c, CEBPα and PPARγ2 are key transcription factors involved

in adipogenesis and fat formation in vitro and in vivo [10, 32, 33] that promote the expression

of ACACA and SCD1. Acetyl-CoA carboxylase alpha (ACACA) is a key rate-limiting enzyme

of de novo fatty acid biosynthesis, and it has been reported that there is a positive relationship

between ACACA enzyme activity and the IMF content in cattle [34], which is consistent with

our findings. Stearoyl-CoA desaturase (SCD) is an endoplasmic reticulum (ER) enzyme that

converts SFAs into MUFAs in mammalian adipocytes [35]. In the present study, the expres-

sion levels of SCD1 were higher in the LM of Wagyu-cross steers than in Holstein steers, con-

sistent with the finding that Wagyu-cross steers had higher percentages of C14:1, C16:1 and

MUFAs in the LM than Holstein steers. In addition, we detected that Wagyu-cross steers had a

higher expression level of glucose-regulated protein 78 (GRP78) in the LM, which is a marker

gene of ER stress and can repair misfolded proteins. We speculated that higher IMF deposition

might induce muscle damage and ER stress in the LM of Wagyu-cross steers [36]. Muscle his-

tological evidence showed that the muscle fibers were looser in the LM of Wagyu-cross steers

than in the Holstein steers, indicating that the structure of the endomysium was broken in the

LM of Wagyu-cross steers. Therefore, the upregulation of GRP78 might play an important role

in muscle repair [37]. On the other hand, higher IMF deposition caused a higher expression

level of the LEP gene in the LM of Wagyu-cross steers. Leptin (LEP) is a negative feedback sig-

nal in the regulation of lipid metabolism balance that inhibits lipid accumulation and pro-

motes fatty acid oxidation [38]. A previous study revealed a positive correlation between the

mRNA level of the LEP gene and adipocyte size in crossbred steers [39], which is consistent

with the results of histological analysis.

Adipogenesis mainly consists of two stages: adipocyte determination and differentiation.

Although adipocyte determination mainly occurs in the early stage of cattle development,

higher mRNA expression of some key factors responsible for commitment to adipogenesis

was still detected in the LM of Wagyu-cross steers at 26 months of age. Zinc-finger protein 423

(ZNF423) was identified as a transcriptional regulator of preadipocyte determination and con-

trols PPARγ expression [6]. In this study, we observed greater mRNA expression of ZNF423 in

the LM of Wagyu-cross steers than in Holstein steers, indicating that there are differences in

early adipogenesis in the LM from both breeds at 26 months of age. To further investigate the

preadipocyte developmental potential in the LM of Wagyu-cross steers, we detected the

expression of fibroblast growth factor 2 (FGF2) and its receptor fibroblast growth factor

receptor 1 (FGFR1), which are known to regulate adipose-derived mesenchymal stem cell
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proliferation [40, 41]. Our results showed that FGF2 and FGFR1 expression was greater in the

LM of Wagyu-cross steers than in that of Holstein steers. This result suggested that there were

more abundant adipogenic progenitor cells in the LM of Wagyu-cross steers, which may be a

key factor that contributed to the greater IMF content in the LM of Wagyu-cross steers com-

pared with Holstein steers.

Because intramuscular adipocytes and fibroblasts originate from common progenitor cells

named fibro/adipogenic progenitors (FAPs) [2], adipogenesis is inseparable from fibrogenesis,

together forming adipose tissue and the extracellular matrix (ECM). Collagen type I is a major

component of the ECM and is elevated by the TGF-β signaling pathway [42]. Recent studies

have shown that TGF-β stimulates collagen, type I, alpha 1 (COL1A1) mRNA expression

largely via autocrine expression of FGF2 [43], which may explain why COL1A1 expression was

greater in the LM of Wagyu-cross steers than in Holstein steers, although transforming growth

factor beta 1 (TGFβ1) tended to have higher expression levels in Wagyu-cross steers. Previous

studies have shown that both adipogenesis and fibrogenesis in muscle were enhanced in

Wagyu cattle compared with Angus cattle [16]. Therefore, our results again highlight the effect

of breed on the control of adipogenesis and fibrogenesis in muscle.

We used a network-based approach to display the correlation (P<0.01) between DEGs in

the LM of two cattle breeds. Surprisingly, DEGs were placed in hierarchically arranged layers

from top to bottom, which was consistent with the molecular event of each stage in adipogen-

esis [44]. In this manner, FGF2, SREBP1c, PPARγ2, SCD1 and LEP were identified as hub

genes that play a critical role in adipogenesis and lipid metabolism. PPARγ2 formed the central

molecule, showing the highest connectivity. In fact, it has been demonstrated that PPARγ2 is

not only a key transcriptional regulator of adipogenesis but also a pivotal coordinator of the

adipocyte differentiation process. PPARγ2 acts as an essential link between the regulator of

early adipose commitment and the expression of mature adipocyte genes. Cells deficient in

PPARγ2 are not capable of differentiating into adipocytes [45]. In addition, we found a possi-

ble interaction between COL1A1 and GRP78 in the network. This speculation is consistent

with a previous report that depletion of GRP78 decreased TGFβ1-induced COL1A1 expression

[46].

In contrast to what was observed in the LM, higher transcriptional activity of FABP4 and

ADIPOQ was detected in the SCF of Holstein steers compared with Wagyu-cross steers, sug-

gesting that there were more active adipocytes in the SCF of Holstein steers. In addition, SCD1
tended to have higher expression levels in the SCF of Holstein steers, which might contribute

to lipid storage and to membrane biogenesis for adipocyte proliferation and differentiation

[47, 48]. The expression of fatty acid binding protein 4 (FABP4) and adiponectin (ADIPOQ) is

highly regulated during adipocyte differentiation and negatively correlated with obesity [49–

51]. Together, our data show that the maturity status of adipocytes in Wagyu-cross steers was

more advanced than that in Holstein steers at 26 months of age, which is consistent with a pre-

vious report [17].

The liver, as a central metabolic organ, plays an important role in fatty acid deposition and

lipid metabolism. A previous study showed that the liver lipid metabolism of beef cattle was

influenced by breed [31]. Our results showed greater mRNA expression of SREBP1c and

GRP78 in the liver of Wagyu-cross steers than in Holstein steer livers, which was consistent

with what was observed in the LM. This result suggested that ER stress was induced in the liver

of Wagyu-cross steers, which may be attributed to excessive hepatic SFA and cholesterol accu-

mulation [52]. It has been reported that upregulated expression of GRP78 prevents ER stress,

promoting hepatic SREBP1c activation and reducing hepatic steatosis [53]. The liver is a pri-

mary target organ of adiponectin, which decreases hepatic lipogenesis by suppressing SREBP1c
expression [54]. The low expression of SREBP1c, ACACA and GRP78 in the liver of Holstein
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steers may be related to the high expression of adiponectin in adipose tissue [55]. The higher

expression of FABP4 in the liver of Holstein steers may be associated with inflammation [56].

The PCA showed the contrasting features among the tissues and breeds regarding adipo-

genesis- and lipid metabolism-related gene expression, showing a clear separation among

the three tissues or between the two breeds. The statistical approach showed that most of the

variables were responsible for fat cluster formation, suggesting that these genes are highly

expressed in adipose tissue. In contrast, GRP78 is the most important variable that kept liver

samples in the first quadrant and is highly expressed in the liver. SREBP1c and ZNF423, which

separated from the other variables, were primarily affected by the high expression of both

genes in the LM.

Conclusions

In summary, our findings demonstrated the impact of breed on the mRNA expression of adi-

pogenesis- and lipid metabolism-related genes in the LM, SCF and liver. At 26 months of age,

both adipogenesis and fibrogenesis in the LM were enhanced in Wagyu-cross steers compared

with Holstein steers. Wagyu-cross steers had more advanced mature adipocytes in the SCF. In

addition, we found that the expression of GRP78 was higher in the liver of Wagyu-cross steers,

likely indicating excessive hepatic lipid accumulation in Wagyu-cross steers compared with

Holstein steers. These data support the notion that IMF deposition is positively correlated with

the maturity of SCF and hepatic lipid accumulation in Wagyu-cross steers. The early maturity

of the Wagyu-cross steers is more favorable for IMF deposition.
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