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PARGT: a software tool 
for predicting antimicrobial 
resistance in bacteria
Abu Sayed Chowdhury  1*, Douglas R. Call1,2,3 & Shira L. Broschat1,2,3

With the ever-increasing availability of whole-genome sequences, machine-learning approaches can 
be used as an alternative to traditional alignment-based methods for identifying new antimicrobial-
resistance genes. Such approaches are especially helpful when pathogens cannot be cultured in the 
lab. In previous work, we proposed a game-theory-based feature evaluation algorithm. When using 
the protein characteristics identified by this algorithm, called ‘features’ in machine learning, our 
model accurately identified antimicrobial resistance (AMR) genes in Gram-negative bacteria. Here we 
extend our study to Gram-positive bacteria showing that coupling game-theory-identified features 
with machine learning achieved classification accuracies between 87% and 90% for genes encoding 
resistance to the antibiotics bacitracin and vancomycin. Importantly, we present a standalone 
software tool that implements the game-theory algorithm and machine-learning model used in these 
studies.

Antimicrobial resistance (AMR) refers to a property of bacteria when they become less susceptible to an anti-
microbial agent1–4. Bacteria can gain AMR by overexpressing or duplicating available genes, undergoing chro-
mosomal mutation, or obtaining resistance genes from other bacteria by means of horizontal gene transfer1, 5. 
According to a recently released report by the Centers for Disease Control and Prevention (CDC), at least 2.8 
million people in the United States are infected every year by antimicrobial-resistant organisms, and these infec-
tions result in more than 35,000 deaths6. Also, according to a recently released report by the Organisation for 
Economic Co-operation and Development (OECD), 2.4 million deaths are predicted in Europe, North America, 
and Australia in the next 30 years due to antimicrobial-resistant infections, and such infections could cause up to 
US$3.5 billion in additional health care costs per year7, 8. As AMR becomes a threat worldwide, both economi-
cally and to public health9–13, there is an urgent need to develop a preclinical tool for efficient prediction of AMR.

One conventional strategy for identifying genetically-encoded mechanisms for AMR involves sequence 
assembly14–17 and read-based techniques18–20 that map sequence data directly to reference databases. Although 
these methods perform well for known and highly conserved AMR genes, they may produce an unaccepta-
ble number of false positives (genes predicted to encode resistance when they do not) for highly dissimilar 
sequences as was demonstrated previously for Gram-negative bacteria21. Machine-learning techniques can be 
applied as an alternative solution for predicting putative AMR genes. Rather than using sequence similarity, a 
machine-learning model detects features, i.e., characteristics of a protein sequence, that are unique to AMR genes. 
Several machine-learning methods have been proposed to identify novel AMR genes from metagenomic and 
pan-genome data12, 22, 23, but these methods used a small number of genetic features for predictions. Moreover, 
these approaches did not use a feature-selection strategy to remove irrelevant and redundant features that might 
compromise the accuracy of a machine-learning model.

We recently introduced a game-theory-based feature selection approach (“game theoretic dynamic weight-
ing based feature evaluation”, or GTDWFE) predicated on the supposition that a single feature might provide 
limited predictive value, but that it might contribute to form a strong coalition when used with other features21. 
We applied our feature selection approach in Gram-negative bacteria and obtained prediction accuracies ranging 
from 93% to 99% for prediction of genes that encode resistance to acetyltransferase (aac), β-lactamase (bla), and 
dihydrofolate reductase (dfr). In our current study, we test the GTDWFE algorithm with data from Gram-positive 
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bacteria. We then combine the results for both studies and introduce “Prediction of Antimicrobial Resistance via 
Game Theory” (PARGT), a software program with a graphical-user interface (GUI) that is designed to identify 
antimicrobial-resistance genes for both Gram-positive and -negative bacteria.

A major objective was to develop a software tool with a simple and intuitive GUI that is capable of extract-
ing protein features without the need for manual curation and then use these features to identify putative AMR 
genes. PARGT integrates all of the tools and scripts required to identify protein features and to automatically 
generate feature subsets obtained via the GTDWFE algorithm. PARGT can be used with the Windows, Linux, 
or macOS, operating systems, and it provides options for predicting bac and van resistance genes in any Gram-
positive bacteria and aac, bla, and dfr resistance genes in any Gram-negative bacteria. Users can test a single 
sequence or an entire genome for these genes. In addition, PARGT allows users to add newly confirmed AMR 
or non-AMR sequences to the training set as well as to reset the training data back to the original training set 
downloaded with the tool.

Results
Validation of PARGT​.  We validated the GTDWFE algorithm for feature selection as implemented 
previously21. In our earlier work, we considered the AMR (positive) and non-AMR (negative) amino-acid 
sequences of aac, bla, and dfr for Acinetobacter, Klebsiella, Campylobacter, Salmonella, and Escherichia as train-
ing datasets and tested our trained support vector machine (SVM)24, 25 machine-learning model with sequences 
from Pseudomonas, Vibrio, and Enterobacter. The combination of GTDWFE and SVM resulted in correct clas-
sification rates of 93%, 99%, and 97% for aac, bla, and dfr, respectively. This demonstrated that our approach 
was promising and that the GTDWFE algorithm is capable of identifying the most relevant, non-redundant, and 
interdependent features necessary for accurate prediction.

In this paper we consider validation of our GTDWFE model for AMR proteins in Gram-positive bacteria. 
We use the unique AMR and non-AMR sequences available for bac and van from the Gram-positive bacteria 
Clostridium spp. and Enterococcus spp. as the training datasets for our SVM model. These training datasets are 
used to generate the best feature subsets by means of the GTDWFE approach. The training datasets contain 25 
and 52 AMR (positive) examples for bac and van, respectively. A total of 52 non-AMR examples are considered 
as negative samples for each of the training datasets. In the GTDWFE approach, we select features based on 
the relevance, non-redundancy, and interdependency values of all features. For this analysis, we need to set an 
interdependent group size δ to measure the interdependency between features, where δ is used in the computa-
tion of the Banzhaf power index26 and indicates the size of each feature group. We selected a value of δ = 3 based 
on previous work21 where we found that an interdependent group size of 3 was sufficient to identify best feature 
subsets from training datasets. We then test our trained model with known AMR and non-AMR samples from 
Staphylococcus, Streptococcus, and Listeria. The test datasets contain 6 and 9 AMR (positive) sequences for bac 
and van, respectively, and 14 non-AMR (negative) sequences are used for each test dataset.

Tables 1 and 2 list the predicted bac and van AMR sequences from our test datasets, respectively. In each 
table, we provide the NCBI accession number27 for each protein sequence together with its name, and we note 
whether an AMR protein was correctly classified as AMR (true positive) or a non-AMR sequence was incorrectly 
classified as AMR (false positive). The GTDWFE algorithm successfully identified all six bac AMR genes (true 
positives). However, it missclassified 2 of the 14 non-AMR sequences as AMR (false positives). Therefore, the 
number of true positives, true negatives (negatives accurately classified), false positives, and false negatives (posi-
tives classified as negatives) for bac are 6, 12, 2, and 0, respectively, and the sensitivity, specificity, and accuracy 
for bac are 100%, 86%, and 90%, respectively. As shown in Table 2 for van, 8 of 9 AMR sequences were correctly 
classified as AMR (true positives) whereas 2 of 14 non-AMR sequences were classified as AMR (false positives). 
Therefore, the number of true positives, true negatives, false positives, and false negatives for van are 8, 12, 2, 
and 1, respectively, and the sensitivity, specificity, and accuracy for van are 89%, 86%, and 87%, respectively. 
Note that the two tables contain one hypothetical protein and one putative uncharacterized protein. We have 
categorized these two proteins as false positives because they were identified as essential (non-AMR) genes in 
the Pathosystems Resource Integration Center (PATRIC)28, 29. However, it is quite possible that PARGT correctly 
identified them as AMR proteins given the number of annotation errors in public databases30. CDC71755 is from 

Table 1.   Predicted bac AMR sequences for Staphylococcus, Streptococcus, and Listeria using the GTDWFE 
algorithm.

NCBI accession number Protein names Note

AAF81096 Putative undecaprenol kinase True positive

AAO04051 Undecaprenol kinase True positive

BAE05519 bacA True positive

BAE19180 Putative undecaprenol kinase bacitracin resistance protein True positive

CAL27243 Putative undecaprenol kinase True positive

EEK11594 Undecaprenyl-diphosphatase UppP True positive

EUJ19660 Hypothetical protein MAQA_05683 False positive

WP_018370157 Serine O-acetyltransferase False positive
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a Staphylococcus organism identified from a metagenome sequence, and EUJ19660 is from a Listeria aquatica 
organism obtained from an environmental water sample.

Performance comparison with BLASTp and Kalign tools.  We also compared the performance of 
our GTDWFE algorithm with BLASTp (https​://blast​.ncbi.nlm.nih.gov/Blast​.cgi?PAGE=Prote​ins) and Kalign31 
(https​://www.ebi.ac.uk/Tools​/msa/kalig​n/) results using default parameter settings. The outcomes shown in 
Supplementary Table S1 are the percent identities for bac AMR and non-AMR samples from Staphylococcus, 
Streptococcus, and Listeria with respect to the bac AMR samples of Clostridium and Enterococcus. A percent 
identity for BLASTp and Kalign as low as 38.13% and 46.19%, respectively, are needed to identify all the bac 
AMR sequences; however, these low percent identities lead to 6 and 3 of 14 false positives for BLASTp and 
Kalign, respectively, in which non-AMR sequences are miscategorized. Therefore, the low percent identities for 
BLASTp and Kalign required to identify all AMR sequences increase the number of false positives for a set of 
diverse AMR sequences. In Supplementary Table S2 we show that the performances of BLASTp and Kalign when 
identifying van AMR sequences are actually better than that of the GTDWFE algorithm. This is due to the very 
high similarity (>98.5% identity) between the training AMR and test AMR datasets for van. When training and 
test sets share high similarity, BLASTp and Kalign are guaranteed to give good results. However, as in the case 
of bac for which the training and test AMR data similarity ranges between 38.13% and 41.01%, BLASTp does 
not perform well. For Kalign, the similarity ranges between 46.19% and 49.17% so that it performs better than 
BLASTp. However, the GTDWFE algorithm will outperform both BLASTp and Kalign because it does not use 
sequence similarity but rather protein features for prediction. BLASTp and Kalign do not predict; they match 
sequence similarity.

Discussion
In this work, we implemented a software package PARGT and extended our earlier work of identifying AMR 
genes in Gram-negative to Gram-positive bacteria. PARGT integrates the required software tools and scripts 
needed to generate all protein features automatically, and it performs predictions on user-inputted sequences. 
Moreover, users can update PARGT by including their own known AMR and non-AMR sequences to train the 
machine-learning model to potentially improve prediction accuracy. As our previous work described the experi-
mental results for Gram-negative bacteria, in this paper we only included prediction results for Gram-positive 
bacteria. Simulation results showed that PARGT can predict AMR sequences for Gram-positive bacteria with 
accuracy ranging from 87% to 90%. PARGT gave better results for bac due to the diversity of sequences avail-
able, but BLASTp and Kalign exhibited better performance in the case of van because of the high similarity of 
sequences. To generate evolutionary and secondary structure features, we used the Uniprot database (containing 
538,585 FASTA sequences) as our reference database for relatively fast execution; however, more accurate values 
for these features can be obtained using large-scale protein databases such as UniRef90 or UniRef100 (http://www.
unipr​ot.org/help/unire​f) as target/reference databases. Note, however, that there is a trade-off between accuracy 
and computational time when using a large-scale reference database to generate features. A parallel version of 
PARGT would reduce the execution time of the tool for and ameliorate the use of large-scale reference databases.

Methods
GTDWFE algorithm for feature selection.  Feature collection, feature extraction, calculation of feature 
values, and feature selection using the GTDWFE algorithm are explained in detail in previous works21, 32. Briefly, 
a total of 621D candidate features were collected by means of a thorough literature search, where D stands for 
dimension (some features are single values, i.e., 1D, while others are vector values, e.g., 20D for the 20 different 
amino acids). We extracted all 621D features from both our positive (AMR) and negative (non-AMR) datasets 
and calculated their values. The GTDWFE algorithm was then used to select features for use in our machine-
learning model. The GTDWFE selects the best feature at each iteration based on the relevance, non-redundancy, 
and interdependency values of all features. Initially, the weights of all features are the same i.e., 1. The relevance 
of a feature to the target class (AMR or non-AMR) and the distance of the feature to other features are calcu-

Table 2.   Predicted van AMR sequences for Staphylococcus, Streptococcus, and Listeria using the GTDWFE 
algorithm.

NCBI accession number Protein names Note

AAQ17160 Vancomycin/teicoplanin A-type resistance protein VanA (plasmid) True positive

AAQ17159 Vancomycin resistance protein VanH (plasmid) True positive

AAQ17157 Vancomycin response regulator VanR (plasmid) True positive

AAQ17158 Sensor histidine kinase VanS (plasmid) True positive

AAQ17161 Vancomycin B-type resistance protein VanX (plasmid) True positive

AAL07292 D,D-dipeptidase VanXb, partial True positive

AAQ17162 D-alanyl-D-alanine carboxypeptidase VanY (plasmid) True positive

AAQ17163 vanZ protein (plasmid) True positive

CDC71755 Putative uncharacterized protein False positive

WP_018370157 Serine O-acetyltransferase False positive

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins
https://www.ebi.ac.uk/Tools/msa/kalign/
http://www.uniprot.org/help/uniref
http://www.uniprot.org/help/uniref
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lated using Pearson’s correlation coefficient and the Tanimoto coefficient, respectively. These calculations are 
performed for all features, and the feature with the highest summation of relevance and distance is chosen as the 
initial selected feature. The Banzhaf power index26 is then calculated to estimate the interdependency between 
the selected feature and the remaining features. We measure the contribution of each feature when it forms a 
group with other features, and the conditional mutual information is calculated to find the Banzhaf power index 
of the features. The weight of each remaining feature is updated by adding the product of the current weight and 
the Banzhaf power index to the feature selected previously. In other words, at each step, we readjust the weight of 
the remaining features dynamically based on the features selected in earlier steps. Thus, the weight of a candidate 
feature actually corresponds to the interdependence values with the earlier selected features. The feature with 
the highest summation of relevance and distance values multiplied by the revised weight is chosen as the next 
selected feature. This process is repeated until the desired number of features has been reached.

Machine‑learning algorithm.  After identifying the best feature subset for use with our classifier by means 
of the GTDWFE algorithm, we trained an SVM machine-learning model using this feature subset. This binary 
classifier was then used for prediction. As was true for our previous work, in PARGT we tuned the SVM using 
the training datasets and chose the best SVM model to predict the AMR proteins in the test sequences. We 
considered 10-fold cross validation to tune the SVM model. The SVM model with a radial basis function (RBF) 
kernel and a cost value of 4 was identified as the best model for both bac and van training datasets. For the SVM, 
the RBF is used as a function in the kernel trick to implicitly transform the original space of the data to a high-
dimensional space to make the data samples linearly separable, and the cost parameter is used to regulate the 
classification error.

Overview of PARGT software.  PARGT is an open-source software package designed and implemented 
for predicting antimicrobial resistance genes in bacteria. PARGT is written using both Python 3 and R. R scripts 
were written to identify physicochemical and secondary structure features and for machine-learning modeling, 
and Python 3 was used to run the R scripts, to generate position-specific scoring matrix (PSSM) features, and 
to implement the GUI. PARGT weight the importance of protein features based on their contributions during 
classification. All the required bioinformatics tools33–39 and scripts necessary to generate the protein features 
required in our machine-learning model are included in PARGT. PARGT uses the best feature subset identified 
by our GTDWFE algorithm to make predictions. It allows users to add new AMR and non-AMR sequences 
to the training datasets, and the software automatically updates the machine-learning model with the addi-
tional sequences, potentially resulting in an increase in the accuracy of the model. To minimize execution time, 
PARGT uses the UniProt database containing 538,585 protein sequences as a reference database, rather than a 
larger database, for generating PSSM and secondary structure features.

Architecture of PARGT​.  Figures 1 and 2 depict the architecture and GUI for PARGT, respectively. PARGT 
allows a user to input a set of known AMR and non-AMR sequences to use in the training dataset, generating 
all required feature values for these sequences automatically. As shown in Fig. 1, the 20D amino acid composi-
tion feature vector, 168D feature vector based on the composition, transition and distribution (CTD) model40, 41, 
400D feature vector based on the PSSM, and 33D feature vector based on the secondary structure sequence and 
secondary structure probability matrix are generated from the input protein sequences. Then the best feature 
subset is constructed using our GTDWFE feature selection algorithm. An SVM is used as the machine-learning 
model that is trained using the selected feature set. Recall that the SVM model used for PARGT is automatically 
tuned during the training phase. Finally, the trained SVM model is applied to predict AMR sequences from the 
test dataset.

As shown in Fig. 2, PARGT provides the option of predicting aac, bla, and dfr resistance genes for Gram-
negative bacteria and bac and van resistance genes for Gram-positive bacteria. A user must select the appropriate 
option for predicting AMR from the GUI menu and also supply the test file for the set of protein sequences in 
FASTA format that they wish to have classified as AMR or non-AMR. PARGT automatically computes all the 
required feature values for the test sequences, and it provides an output file containing the set of predicted AMR 
sequences for the user’s test file. If a user wants to include new known AMR or non-AMR sequences to augment 
the training datasets, PARGT provides an option to do so for the five above-mentioned resistance classes. In 
addition, it provides the option of restoring the original training datasets in case a user decides they prefer to 
use them or or else wants to compare predictions using two different sets of training data.

Datasets.  We retrieved protein sequences for AMR genes from the Antibiotic Resistance Genes Database 
(ARDB)42, and non-AMR sequences were obtained from the PATRIC28, 29. Initially, we gathered 124 bac and 
374 van AMR sequences for the Gram-positive bacteria Clostridium spp. and Enterococcus spp., and we ran-
domly chose 52 essential protein sequences to use as non-AMR sequences. As many of the protein sequences 
were duplicates, CD-HIT43, 44 was applied to find unique sequences. A sequence identity of ≥ 90% was used as 
a threshold for removing duplicate sequences. After eliminating redundant protein sequences, our final counts 
were 25 bac and 52 van AMR sequences; none of the 52 non-AMR sequences were duplicates. We used this data-
set to train our machine-learning model. In addition to the training dataset, we also gathered 102 bac and 22 van 
AMR sequences and 14 non-AMR sequences for the Gram-positive bacteria Staphylococcus spp., Streptococcus 
spp., and Listeria spp. from the data sources indicated above. We again applied CD-HIT to this dataset, and after 
the removal of duplicate sequences, 6 bac and 9 van AMR sequences and 14 non-AMR sequences remained. We 
used these as our test dataset to measure the accuracy of the classifier. The sequence identity of protein sequences 
could be as low as 10%. After validating our GTDWFE algorithm with the training and test sequences for the bac 
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Figure 1.   The components of PARGT. Components outlined by dotted lines indicate additional training 
samples supplied by a user.

Figure 2.   Illustration of the PARGT GUI with its pop-up menu.
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and van AMR classes, we again trained our classifier, but we used the sequences from all five bacterial genera, i.e., 
both training and test sequences, to potentially increase the accuracy of PARGT. The same retraining was also 
performed for our Gram-negative bacteria.

Data availability
NCBI27 accession numbers for all proteins used in this work are listed in Supplementary Tables S3–S5. All 
experimental data are available at https​://githu​b.com/abu03​4004/PARGT​.

Code availability
The open source PARGT software package implemented for this work and the user’s manual are available at https​
://githu​b.com/abu03​4004/PARGT​.
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