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Abstract

During COVID-19, awareness of proper hand washing has increased significantly. It is crit-
ical that people learn the correct hand washing techniques and adopt good hand washing
habits. Hence, this study proposes using wearable devices to detect hand washing activity
among other daily living activities (ADLs) and classify steps proposed by the World Health
Organization (WHO). Two experiments were conducted with 16 participants, aged from
20 to 31. The first experiment was hand washing following WHO regulation (ten partic-
ipants), and the second experiment was performing eight ADLs (eight participants). All
participants wore two wearable devices equipped with accelerometers and gyroscopes; one
on each wrist. Four machine learning classifiers were compared in classifying hand washing
steps in the leave-one-subject-out (LOSO) mode. The SVM model with Gaussian kernel
achieved the best performance in classifying 11 washing hands steps, with an average F1-
score of 0.8501. When detected among the other ADLs, hand washing following WHO
regulation obtained the F1-score of 0.9871. The study demonstrates that wearable devices
are feasible to detect hand washing activity and the hand washing techniques as well. The
classification results of getting the soap and rubbing thumbs are low, which will be the
main focus in the future study.

1 INTRODUCTION

Appropriate hand washing is crucial to prevent the transmission
of bacteria, viruses and parasites [1, 2] and reducing the rate of
infections [3, 4]. In particular, during the period of the COVID-
19 pandemic, the importance of hand washing has been empha-
sised [5]. There are two important aspects of hand washing: the
habit (when to wash hands) and the techniques (how to wash
hands). Ataee et al. mentioned ten occasions when hand wash-
ing is necessary [6]. However, there are still cultural differences
in the hand washing habit. For example, in an international sur-
vey among 63 countries in 2015, it appeared that around 77%
of people did not wash their hands after using the toilet, and
even in the developed countries, the rate was high, such as 50%
in Netherlands and 43% in Italy [7]. Regarding the hand wash-
ing quality, the World Health Organization (WHO) proposes
the regulation of hand washing techniques with six major steps
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(steps 2–7) as shown in Figure 1 whereby hand washing lasts
for 40–60 s [8]. Thus, the proper hand washing techniques must
be learned, along with forming a good hand washing habit. To
monitor these, sensor technology and machine learning algo-
rithms can be used to identify different classes of the hand wash-
ing techniques proposed by the WHO and detect hand washing
among other daily living activities (ADLs).

Multiple types of sensors have been investigated previously,
such as internet-of-things (IoT) [9, 10], audio sensor [11, 12],
and camera [13–15]. Nevertheless, these sensors still have lim-
itations since they need to be set up close to the activity area.
People wash their hands in various places at home, such as the
bathroom or kitchen. Hence, IoT sensors need to be installed
in all these places, which increases the expense and the com-
plexity of setup. Additionally, it is advisable to provide individu-
als with feedback, especially while helping them form the hand
washing habit. However, these sensors cannot identify different
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FIGURE 1 WHO recommended hand washing steps [8]

users unless assisted with other sensors, for example, Beacon
or motion sensors [16]. Despite being able to recognise people,
cameras cause privacy concerns, especially when installed in the
bathroom. In addition, they cannot detect hand washing steps
(techniques).

As an alternative method, wearable sensors, including an
accelerometer and gyroscope, can be applied. In the study of
Mondol et al. [17], the Harmony system was developed to detect
the hand washing quality for food workers. In this system, a
smartwatch was attached to the participant’s wrist to collect the

movement signals, a Bluetooth transmitter was integrated into
the dispenser to detect whether the participant used the soap,
and a Beacon sensor was used to send alerts when the par-
ticipant was in the area that required hand hygiene or when
the participant did not properly wash hands. The accelerome-
ter and gyroscope signals were processed to extract the time-
domain features, and a decision tree (DT) was utilised to detect
classes of hand washing. The classifier was trained in the user-
independent mode. In this model, all the participants are split
into two groups, the data of one group is used for training,
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and the other group’s data is used for testing. As a result, the
DT classifier received an average accuracy of 85%. In the later
study [18], researchers explored the impact of the sensor posi-
tion, and they tried to detect hand washing activity among other
ADLs using the Feed Forward Neural Network (FFN). With the
F1-scores of 0.72 and 0.74 for the left and right wrist, respec-
tively, there was no significant difference between which sides
the wearable device was worn. Because each participant only
wore the smartwatch on one side, the result may be impacted
by the different performances of participants. The WISDM
dataset [19] was added without including hand washing to test
whether other ADLs are misclassified as hand washing. The
authors achieved the result by reducing the false positive rate
by 77% compared to the baseline method [20]. However, they
did not discuss which ADLs are more likely to be classified as
hand washing.

In study [21], also one wristwatch was used, including the
accelerometer and gyroscope sensors. The data were collected
both in a controlled and uncontrolled environment. A hid-
den Markov model (HMM) classifier was used with an accu-
racy of 85% with firstly determining the order of hand wash-
ing classes in the user-independent mode. Compared to study
[17, 18], the before (rubbing hands) and after (turning off the
faucet) hand washing activities were included. These two classes
were detected using an extra binary classifier, with an accuracy
ranging from 35% to 54%. Rather than attaching sensors to
the wrist, Wang et al. used four armbands which also included
Electromyography (EMG) sensors [22]. Two armbands were
placed on the forearms and two on the upper arms. This study
investigated two types of hand hygiene, alcohol-based hand
rubbing and hand washing with soap and water. During data
acquisition, each type was performed 15 times/participant. The
after hand washing classes were categorised into three classes:
rinsing hands, drying hands with a towel, and turning off the
faucet. EXtreme Gradient Boosting (XGBoost) combined with
E.Divisive [23] was applied. Furthermore, Wang et al. discussed
the impact of different sensors and the attached position. The
highest accuracy was achieved using the signals from all three
sensors (accelerometer, gyroscope, and EMG) from both arm-
bands attached to the forearm for 91% in the user-independent
mode. The classifier was also trained in the user-dependent
mode: one part of the dataset of a participant used for training
and the remaining part of the same participant used for testing.
The number of sessions used for training the model was exam-
ined in the user-dependent mode, which indicated that after
using the data of 16 sessions, the classification accuracy could
reach 90%. In study [16], an online monitoring system includ-
ing a smartwatch was developed with the Convolutional (CNN)
combined with Long Short Term Memory (LSTM) neural net-
work as the classifier. The accuracy of each step was over 90%
in the real-life dataset.

Previous studies have proven the feasibility of using wear-
able sensors, especially accelerometers and gyroscopes, to mon-
itor the hand washing techniques suggested by the WHO and
determine the duration of hand washing. However, they did not
detect all the steps covered in the hand washing techniques, for
example, getting soap. In addition, few studies [18] looked at

FIGURE 2 Setting up of the experiment

detecting hand washing among other ADLs. At last, the impact
of sensors and the wearing side was examined based on the aver-
age classification performance rather than for each hand wash-
ing step. Therefore, this study proposes a wireless system with
wearable devices to monitor hand washing. The contributions
of this study are:

∙ Classifying hand washing steps in the WHO regulation.
∙ Classifying hand washing activity among other ADLs
∙ Differentiating hand washing activities between not following

(untrained) and following (trained) the WHO regulation.
∙ Investigating the impact of the combination of sensors on the

classification of each hand washing step.

To accomplish this, two wearable sensors composed of three-
axis accelerometers and gyroscopes were attached to each
wrist. Features are extracted from both the time and frequency
domain, and multiple machine learning algorithms are explored
in the leave-one-subject-out (LOSO) mode.

2 METHODOLOGY

2.1 The wearable device

As shown in Figure 2, two Byteflies sensors [24] were used, one
on each wrist. The sensor includes a three-axis accelerometer
and a three-axis gyroscope, both running at 100 Hz. The place-
ment direction on each wrist was fixed. The sensors were auto-
matically synchronised. Two radar sensors were also applied to
detect the hand washing movement during the experiment, but
their received signals will not be discussed in this paper.

2.2 Dataset preparation

2.2.1 Hand washing data collection

This study involved ten individuals (seven males, three females,
aged 20–23). Participants washed their hands with the WHO
regulation poster placed in front of them and instructed by
a researcher. Each participant performed hand washing three
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TABLE 1 Annotated hand washing classes

Class

Detail (Related steps proposed by the

WHO as shown in Figure 1)

a 0, 8, 10

opening the faucet,
wetting/ rinsing hands

and turning off the
faucet

b 1, getting the soap

c 2, rubbing hands palm to palm

d 3, right palm over left dorsum with interlaced
fingers

e 3, left palm over right dorsum with interlaced
fingers

f 4, palm to palm with interlaced fingers

g 5, backs of fingers to opposing palms with
interlaced fingers

h 6, rubbing left thumb

i 6, rubbing right thumb

j 7, clasped fingers of right hand in left palm

k 7, clasped fingers of left hand in right palm

times, each time spending 60–80 s. One camera was placed
aside for recording as the ground-truth annotation. Eleven
activities (classes a–k) were labelled, as listed in Table 1. The
classes were categorised into three groups: before hand washing
(steps 0, 1, and 2), hand washing (steps 3–11), after hand wash-
ing (steps 0 and 1). Class a covers three hand washing steps:
opening the faucet, wetting/ rinsing hands, and turning off the
faucet. These activities were performed both before and after
hand washing. Therefore, they were categorised into one class.
Step 9, drying hands, was not included. Considering real appli-
cation, people usually first turn off the faucet and then get the
towel to dry their hands. Thus, hand drying was not included in
this study.

2.2.2 ADLs data collection

To test the system’s ability to classify hand washing among
other ADLs, we also conducted another experiment that
included eight ADLs: sitting, standing, walking, computer
typing, going upstairs, and going downstairs, brushing teeth,
and untrained hand washing. These activities were included
because:

∙ These activities are basic ADLs and are normally performed
every day.

∙ Brushing teeth is also one type of bathroom activity and it
also includes high-frequency movements of the wrists.

Eight participants joined the experiment (three females and
five males, aged 23–31). The right wrist was the dominant wrist
of all participants. Among the eight participants, two people

joined the experiment of hand washing dataset collection as
well. Same as the experiment of hand washing, all partici-
pants wore two Byteflies sensors, one on each wrist. In this
experiment, participants were asked to perform activities in
their own way. The performed activities and procedures are as
following:

1. Sitting (3 min). Participants could talk, use smartphones, or
with slight arm movements.

2. Computer typing (3 min). Participants were asked to type the
given text material.

3. Standing (3 min). The requirement is the same as sitting.
4. Walking (180 m). Participants were asked to walk at their nor-

mal speed.
5. Going upstairs (60 stairs × 2 times). Participants were asked

to go at their normal speed.
6. Going downstairs (60 stairs × 2 times). Participants were

asked to go at their normal speed.
7. Hand washing (3 times). The time was recorded from par-

ticipants opening the faucet to rinsing hands and closing the
faucet.

8. Brushing teeth. The time was recorded from participants
squirting the toothpaste on the toothbrush to rinsing the
mouth. All the participants used manual toothbrushes.

One researcher was by aside to annotate activities. The exper-
iments were approved by the KU LEUVEN Social and Societal
Ethics Committee (SMEC), with the assigned serial number G-
2020-2705. All participants signed the informed consent form
before participating in the experiment.

2.3 Data analysis

2.3.1 Data pre-processing

The collected accelerometer and gyroscope signals were seg-
mented based on the annotation of the video recording. After-
wards, segmented signals were then sliced by a fixed-length win-
dow. In the previous studies, the applied windows size ranged
from 0.06 s (three data points) [21] to 1 s (50 data points)
[17], with the overlap rate in the range of (50%, 70%). In this
study, the testing window size was varied between (0.08 s, 3.5
s), with an overlap rate of 0/50%. A Support Vector Machine
(SVM) classifier was used as the classifier, trained in the user-
independent mode. The result of optimal window size is shown
in Section 3.

2.3.2 Feature extraction

The features were extracted from each axis and the magnitude
of the three axes. In the time domain, the extracted features were
the mean, standard deviation, root mean square (RMS), mini-
mum (min), maximum (max), range (= max–min), interquartile
range, skewness, kurtosis, mean-crossing times (= the number
of the time the signal value passing through the mean value), and
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TABLE 2 Hyper-parameters tuning results of classifiers in the
user-independent mode

Classifier Hyper-parameter Searching range Tuned value

SVM C - penalty parameter 2n , n ∈ (−5, 15) [28] 25

𝛾 2n, n ∈ (−15, 5) 2−7

KNN K 1 − 15 3

XGBoost maximum depth of
decision trees

1 − 10 2

minimum child weight 1 − 5 4

𝛾 2n, n ∈ (−5, 5) 25

FFN Number of hidden
layers

1 − 5 3

Number of neurons 2n, n ∈ (1, 8) 128 - layer 1
128 - layer 2
64 - layer 3

energy. In addition, the correlation between every two axes and
zero-crossing times (= the number of the time the signal value
passing through zero) were calculated from each axis, except
for the magnitude signal. In the frequency domain, the fre-
quency power, the frequency at the highest amplitude, 25% fre-
quency (F25d), 75% frequency (F75d), Normalised frequency
(1 − F 25d∕F 75d ) and spectral energy were extracted. As a
result, 74 features were extracted from each sensor, with 296
features extracted from all sensors.

2.3.3 Classification model

Four types of machine learning (ML) models were investigated
as they were applied in the previous works: SVM [10, 22], K-
Nearest Neighborhood (KNN) [16], XGBoost [22], and FFN
[18]. The SVM model applied the Gaussian kernel and was
trained in the one-versus-one mode. Hence, 55 binary classifica-
tion models were trained, and the predicted class was assigned
to the one with the highest score. The hyper-parameters of the
models were tuned using the grid-search method with testing
all the combinations [25]. The searching range and the tuning
result are shown in Table 2. While developing the FFN archi-
tecture, one hidden layer was added each time, and the number
of neurons in this layer was tuned. We stopped adding the
layer until the classification performance dropped on the cross-
validation set. Moreover, the searching range of the number
of neurons of the new hidden layer did not exceed that of the
previous one. All the models were trained in the LOSO mode:
in each fold, one participant’s data were selected for testing,
one participant’s data for validation, and the remaining eight
participants’ data were for training. In this study, the models
were trained in ten folds. The F1-score was applied as the eval-
uation metric. The class weight balancing method [26, 27] was
used to solve the imbalanced dataset problem by assigning the
class weight to be the inverse of the number of windows. The
model with the highest performance was used in the following
cases:

FIGURE 3 Plot of the mean F1-score of detecting handwashing steps
using various sizes of sliding window, with the overlap rate of 0% and 50%,
separately

∙ Investigating the optimal combination of the sensors. Vari-
ous combinations of sensors were tested, including only the
accelerometer sensor from one side, both accelerometer and
gyroscope sensors on one side, to all sensors.

∙ Detecting the hand washing activity among other ADLs. The
hand washing dataset was combined with the ADLs dataset.
As aforementioned, the ADLs dataset did not include hand
washing activity that followed the WHO regulation. Hence,
half of the participants’ data were used for training in each
dataset and the remaining for testing. In other words, the data
of five participants in the hand washing dataset and four par-
ticipants in the ADLs dataset were selected as the training
dataset. The data of the remaining participants were selected
as the testing dataset.

∙ Differentiate trained and untrained hand washing activi-
ties. While combining the hand washing dataset and ADLs
dataset, the hand washing activities in these two datasets were
categorised into two classes.

3 RESULT

3.1 Classification of hand washing
techniques

3.1.1 Optimal window size selection

Figure 3 displays the F1-score result of multiple sizes of win-
dows and overlap rates. The result implied that with the increase
in the window length, the classification performance rises as
well. This is because more information can be extracted in a
longer window, and it can reduce the impact of abrupt changes
in the signal. The 0% overlap has a similar result as the 50%



ZHANG ET AL. 153

FIGURE 4 Confusion matrix of the classification result of the SVM
model using all the sensors. a: opening the faucet, wetting/rising hands, turning
off the faucet; b: getting soap; c: rubbing hands palm to palm; d: right palm
over left dorsum; e: left palm over right dorsum; f: palm to palm with fingers
interlaced; g: backs of fingers to opposing palms with fingers interlocked; h:
rubbing left thumb; i: rubbing right thumb; j: rubbing with clasped fingers of
right hand; k: rubbing with clasped fingers of left hand

one, and it is even a little better than the 50% when the window
length equals to 2.56 s and 3.00 s. Hence, in the following study,
the 2.56 s window with no overlap is selected.

3.1.2 Comparison among classifiers

Table 3 presents the classification result of each classifier for
detecting hand washing classes. Among the 11 classes, KNN
obtains the highest performance in classes b, h, and i, and SVM
obtains the highest result in the remaining eight classes. As a
result, SVM achieves the highest average F1-score of 0.8501 ±
0.1655, followed by FFN with the F1-score of 0.8236 ± 0.2014.
The mean F1-score of class j is only 0.2286 using the KNN clas-
sifier, which impacts the average performance of KNN. This
will be explained in detail in Section 3.1.3. The standard devia-
tion (std) of the F1-score of all classifiers ranges from 0.1655 to
0.2799, which implies the subjective difference.

3.1.3 Misclassification among hand washing
classes

Figure 4 presents the confusion matrix of the SVM model using
features extracted from all sensors. The main misclassifications
exist in three groups: classes a & b, classes h & i, and classes
j & c. The misclassification between classes a and b could be
because different people use different sides of the hand to open
and turn off the faucet and get the soap. During the experiment, T
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FIGURE 5 Comparison of the different combinations of the sensors in the classification of WHO hand washing steps. ACM, accelerometer; GYR, gyroscope;
left, left wrist; right, right wrist

six of the participants used their right hands to open and turn
off the faucet, and five of them kept using their right hand to get
the soap. In addition, the major movement of classes a and b is
the same, which is moving the hand from one point to another
point. Classes h and i belong to the same step in the WHO reg-
ulation, but the hand side varies. While performing these two
classes, participants were asked to rub their thumb, but differ-
ent subjects did so differently, either rotating only one hand or
both hands simultaneously. At last, the movements of classes c
and j were similar, with the right hand rotating on the palm of
the left hand. The only difference is that the fingers of the right
hand were clasped while performing class j, which our sensors
cannot detect. Thus, it is reasonable that these two classes are
confused with each other.

3.1.4 Combination of sensors

Figure 5 presents the mean F1-score results of various combi-
nations of sensors:

∙ only using the accelerometer on the left/right wrist
∙ only using accelerometer and gyroscope sensors on the

left/right wrist
∙ using all the sensors on both wrists.

1. The average results of only using the accelerometer on the
left/right side are similar. The accelerometer worn on the
left wrist performs better in detecting classes b, d and h. In
contrast, the accelerometer on the right side achieves sig-
nificantly better results in classes c, e, i, and k. The reason
could be that the main wrist is different in every step, and
the accelerometer is sensitive to the movement amplitude.
Hence, although classes d and e are categorised as the same
step in the WHO regulation, their classification results are

different while using an accelerometer on a different side.
This is the same reason for the results of classes h and i. For
class k, the requirement was clasping the left finger on the
right palm. Since among the participants, nine of them had
the right wrists as their dominant wrists, they also rotated
their right hands while performing class k. Moreover, the
rotation amplitude was larger than the one of class j.

2. After including the gyroscope sensors, the performance
of the sensors on the right side is improved in most
classes, except for class i. The average F1-score of using the
accelerometer and gyroscope attached to the left wrist is a lit-
tle higher than only using the accelerometer. This is because
class b is getting the soap. Therefore, the gyroscope sensor
can only detect rotations when the participants using their
hands to catch the soap drops, but which hand to get the
soap was varied in participants.

3. Among all the combinations, using all the sensors on both
sides achieved the best results, except for class b. This indi-
cates the importance of the sensors on both sides and gyro-
scope sensors. The reasons for the reduced performance of
class b can be that: (1) the number of windows of class b
is smaller than other classes; (2) the movements performed
in classes a and b were similar to each other. Hence, with the
increased types of features, classes a and b were misclassified,
which mainly reduced the precision and recall result.

3.2 Hand washing detection among other
ADLs and with hand washing activity without
following the WHO regulation

3.2.1 Combination of sensors

In the ADLs dataset, the right wrist was the dominant wrist of
all participants. In addition, while performing brushing teeth, all
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TABLE 4 The F1-score of trained hand washing among other daily
activities with various combinations of sensors

Sensors

ACM- right

wrist

ACM- both

wrists

ACM + GYR

- right wrist

All

sensors

F1-score 0.7625 0.8256 0.9545 0.9871

FIGURE 6 Confusion matrix of detecting hand washing among other
ADLs using all sensors. WH1, untrained hand washing; WH2, trained hand
washing. The confusions with WH1 and WH2 are highlighted in the red blocks

participants held the toothbrush using their right wrists. Hence,
in this part, the data of sensors attached to the right wrist were
always included. The F1-score of trained hand washing of each
combination is shown in Table 4. Using all the sensors achieved
the highest result in detecting trained hand washing. In addition,
the result of using both the accelerometer and gyroscope on the
right wrist is around 0.2 higher than only using one accelerom-
eter and 0.13 higher than using two accelerometers. This could
be because hand washing is only associated with hands move-
ments and most hand washing postures are periodic rotation
movements, which is detectable by the gyroscope.

3.2.2 Difference between trained and untrained
hand washing activities

Figure 6 shows the confusion matrix of detecting hand wash-
ing activity among other ADLs using all types of sensors. The
trained hand washing activity is rarely confused with other
ADLs activities, implying that using wearable sensors can recog-
nise the hand washing activities among the other seven ADLs.
In addition, the trained hand washing class is not confused with
the untrained one. The could be due to the types of movement,
as the hand washing movement following the WHO regulation
is more periodic than the untrained one. One example can be
found in Figure 7.

FIGURE 7 Examples of acceleration signals of hand washing; g = 9.8
m/s2

4 DISCUSSION

4.1 Compared with previous studies

Table 5 summarises the accuracy results of every hand washing
step of the proposed method and previous studies. As some pre-
vious studies [17, 21] only presented their results in figures, their
results are not listed here. Study [22] and study [21] included
hand washing steps 8–10: rinsing hands, drying hands, and turn-
ing off the faucet. However, we categorised these three steps
into one class (class a). Hence, to comparison, the results of
steps 8 and 9 of study [21, 22] are listed together in Table 5.
Study [21] and study [20] separated class f into two classes, left
and right, so there are two values in that column. As a result,
the proposed method is comparable to the other studies, espe-
cially for classifying classes d, e, f, and k. However, the results of
classes h, i, and j for the proposed method are lower than those
of other studies. The reason could be that the number of sen-
sors used in the proposed method is less than study [22], or the
dataset size is smaller.

In our study, the optimal window size is 256 data points with
no overlap, which is not in the range proposed by other stud-
ies that were 3-50 data points with 50–75% overlap. This shows
that the optimal window size depends on the types and number
of activity classes. For instance, in study [22], the average dura-
tion of turning off the faucet was around 0.5 s, so it was rea-
sonable to select the 0.2 s window with 75% overlap, and it can
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increase the detection precision in real-life application. However
turning off the faucet is incorporated with turning on the faucet
and rinsing hands as in one class in our study. For the overlap
rate, although a higher overlap rate can enlarge dataset size, it
can also increase the biased result with similar windows tested.

Compared to previous studies, our study has the advantages
that:

∙ We include getting the soap as one class, even though the
accuracy is 71%. Since getting soap was detected by the Blue-
tooth sensors integrated into the dispenser in the previous
study [17], our result from wearable sensors suggests that the
IoT sensors in the dispenser can be removed, which would
simplify the installation and reduce the cost. In addition, this
study categorises opening the faucet, rinsing hands, and turn-
ing off the faucet into one class. This is because the period of
each action is short, and they are typically performed sequen-
tially.

∙ We prove the feasibility of recognising WHO recommended
hand washing activity among other ADLs, using two wearable
devices. Hence, the next step is to detect occasions in which
hand hygiene is necessary, which can help people form good
hand washing habits via sending alarm signals when they for-
get to wash their hands, such as after going to the toilet.

∙ We analyse the difference between trained hand washing
activity from the untrained one. This analysis result can be
used to develop the training system to help people learn how
to wash their hands properly.

∙ In our study, we do not consider the order of the hand wash-
ing steps. Thus, we used the SVM model. Moreover, the clas-
sification results of six classes are higher than the ones of
study [21] using HMM model, which implies that the order
of hand washing steps is not essential to classification.

4.2 Limitations and future work

1. Although SVM achieved 0.8501 for the average F1-score in
classifying hand washing steps, the results of getting the soap
(class b) and rubbing thumbs (classes h and i) are much lower
than the average score, less than 0.7. Thus, the future study
will focus on increasing the classification performance of
these steps. The possible solution can be including other sen-
sors, for instance, the pressure sensor/motion sensors for
detecting getting the soap and EMG sensors for detecting
the movement of fingers.

2. In this study, we only considered one method of perform-
ing brushing teeth, which is using a manual toothbrush. The
future work can also include samples of using an electric
toothbrush.

3. In this study, sensors attached to both wrists achieved the
highest results for both classification of hand washing tech-
niques and detecting hand washing activity among other
ADLs. However, we mainly focused on the participants with
the right wrist as the dominant side. The future study will
also take participants with the left wrist as the dominant side
into consideration.
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4. Byteflies sensors were used in our study, but they may not be
convenient for users. Because the sensors were attached to
the body via patches, which was not reusable. In the future,
this sensor can be replaced with other similar devices, such
as the smartwatch that also includes both the accelerometer
and gyroscope sensors.

5 CONCLUSION

This study demonstrates the feasibility of a system using two
Byteflies sensors and an SVM classifier to classify 11 hand wash-
ing steps. The result suggests that the optimal combination of
the devices is two devices integrated with an accelerometer and
a gyroscope, one device on each wrist. The hand washing activ-
ity can also be classified among other ADLs and untrained hand
washing activity. The system will be improved to serve as a train-
ing system for individuals who need to form a good hand wash-
ing habit.
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